rtsImplicit3D.h 68.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
#ifndef RTSIMPLICIT3D_H
#define RTSIMPLICIT3D_H

#define DIST_MAX	255

#include "rtsLinearAlgebra.h"
#include "rtsDTGrid3D.h"
#include <fstream>
#include <iostream>
#include <math.h>
#include <queue>
#include <algorithm>
using namespace std;

typedef int indextype;

///This class represents a 3D implicit function as a grid.  It provides methods for accessing values, interpolation, and several utilities.

template <class T> class rtsImplicit3D
{
private:
	//pointer to store the data
	T* m_data;
	//resolution of the data (x, y, z) dimensional extents
	vector3D<indextype> m_resolution;
	T m_boundary;			//boundary condition
	point3D<double> m_domain_min;	//min and max range values (used for parametric access)
	point3D<double> m_domain_max;
	vector3D<double> m_voxel_size;
	
	//bit-blit function copies 3D data quickly from source to dest
	void blit3D(const T* source,
				   indextype s_px, indextype s_py, indextype s_pz,
				   indextype s_sx, indextype s_sy, indextype s_sz,
				   T* dest,
				   indextype d_px, indextype d_py, indextype d_pz,
				   indextype d_sx, indextype d_sy, indextype d_sz,
				   indextype blit_size_x, indextype blit_size_y, indextype blit_size_z);

	void shallow_copy(const rtsImplicit3D<T> source, rtsImplicit3D<T> &dest);
	inline point3D<double> getParameter(indextype i);

	inline float isosurface_distance(point3D<double> p0, point3D<double> p1, T isovalue);
	inline float manhattan_distance(rtsImplicit3D<float>* function, point3D<indextype> p, bool sdf = false);
	void compute_distance_function_boundary(T isovalue, rtsImplicit3D<float>* &result, rtsImplicit3D<bool>* &mask, bool sdf = false);


public:
	//construct an implicit function with a size of 1
	rtsImplicit3D();			///<Create an empty implicit function
	//construct an implicit function of the specified resolution
	rtsImplicit3D(indextype res_x, indextype res_y, indextype res_z);	///<Create an implicit function with the specified resolution
	//construct an implicit function from sample data and a specified size
	rtsImplicit3D(T* data, indextype res_x, indextype res_y, indextype res_z);	///<Create an implicit function from previous data at the specified resolution
	//shallow-copy constructor, defines all shallow variables
	rtsImplicit3D(vector3D<int> resolution, T boundary, point3D<double> min_domain, point3D<double> max_domain);
	//full copy constructor, defines all variables
	rtsImplicit3D(T* data, vector3D<int> resolution, T boundary, point3D<double> min_domain, point3D<double> max_domain);
	rtsImplicit3D(const rtsImplicit3D<T> &original);	//copy constructor
	~rtsImplicit3D();		//destructor

	//overloaded operators
	rtsImplicit3D<T>& operator=(const rtsImplicit3D<T>& original);		///<Overloaded operator creates a copy of an implicit function
	rtsImplicit3D<T>& operator=(const T constant);						///<Overloaded operator sets all points in an implicit function to the given constant value
	inline T& operator()(indextype x, indextype y, indextype z);		///<Allows access to the sample point indexed by x, y, and z using the parenthesis operator
	inline T operator()(double i, double j, double k);					///<Allows access to the implicit function (based on the domain boundaries) at the position (i, j, k).  This class uses linear interpolation.
	rtsImplicit3D<T>& operator*=(const T constant);						///<Multiplies the values at all sample points by a constant.
	rtsImplicit3D<T>& operator+=(const T constant);						///<Adds a constant to the values at all sample points.
	rtsImplicit3D<T>& operator-=(const T constant);						///<Subtracts a constant from the values at all sample points.
	rtsImplicit3D<T>& operator/=(const T constant);						///<Divides all values by a constant.
	const rtsImplicit3D<T> operator+(const T constant);					///<Adds a constant to an implicit function and returns a new function.
	const rtsImplicit3D<T> operator-(const T constant);					///<Subtracts a constant from an implicit function and returns a new function.
	const rtsImplicit3D<T> operator*(const T constant);					///<Multiplies an implicit function by a constant and returns a new function.
	const rtsImplicit3D<T> operator/(const T constant);					///<Divides an implicit function by a constant and returns a new function.

	//casting operator
	//template <class U> friend class rtsImplicit3D<U>;
	template <class U> operator rtsImplicit3D<U>();						///<Casts between data types.

	//friend classes for overloading "backwards" operations (like 3*function)
	friend rtsImplicit3D<T> operator*(const T lhs, rtsImplicit3D<T> rhs){return rhs*lhs;}	///<Allows associative multiplication.
	friend rtsImplicit3D<T> operator+(const T lhs, rtsImplicit3D<T> rhs){return rhs+lhs;}	///<Allows associative addition.
	friend rtsImplicit3D<T> operator-(const T lhs, rtsImplicit3D<T> rhs)					///<Allows associative subtraction.
	{
		rtsImplicit3D<T> result;
		rhs.shallow_copy(rhs, result);	//make a copy of all of the shallow variables and allocate memory
		indextype size = rhs.m_resolution.x * rhs.m_resolution.y * rhs.m_resolution.z;
		//iterate and subtract
		for(indextype i=0; i<size; i++)
			result.m_data[i] = lhs - rhs.m_data[i];

		return result;
	}
	//friend rtsImplicit3D<T> operator/(const T lhs, rtsImplicit3D<T> rhs);

	//loading/saving data to disk
	void LoadRAW(indextype header_size, indextype data_x, indextype data_y, indextype data_z, const char* filename);	///<Loads RAW data from a file with the specified header size and data size.
	void SaveRAW(const char* filename);							///<Save the data as RAW data to disk.
	void LoadVOL(const char* filename);							///<Load a VOL file from disk.
	void SaveVOL(const char* filename);							///<Save a VOL file to disk.

	//data access methods
	inline T& xyz(indextype x, indextype y, indextype z);
	inline T ijk(double i, double j, double k);
	void Parameterize(double x_min, double x_max, double y_min, double y_max, double z_min, double z_max);
	void setBoundary(T boundary){m_boundary = boundary;}
	T getBoundary(){return m_boundary;}
	T* GetBits();
	indextype DimX(){return m_resolution.x;}
	indextype DimY(){return m_resolution.y;}
	indextype DimZ(){return m_resolution.z;}
	inline point3D<double> getParameter(indextype x, indextype y, indextype z);
	inline point3D<indextype> getNearestIndex(double i, double j, double k);
	inline point3D<double> getFractionalIndex(double i, double j, double k);
	inline point3D<indextype> getNearestIndex(indextype i);
	point3D<double> getMinDomain(){return m_domain_min;}
	point3D<double> getMaxDomain(){return m_domain_max;}
	vector<point3D<indextype>> getEdgeNodes(T isovalue, bool protrusions = true); ///<Returns a vector nodes lying on the edge of an implicit surface.
	rtsImplicit3D<T> Project2D();			//<Projects the data along the z-axis using a maximum-intensity projection.
	unsigned int BackgroundComponents6(indextype x, indextype y, indextype z, T threshold, int n=18);	///<Returns the number of background components 6-connected to the specified node.
	unsigned int Neighbors6(indextype x, indextype y, indextype z, T threshold); //<Returns the number of 6-connected neighbors above threshold.

	//data input methods
	void Insert(rtsDTGrid3D<T>* dt_grid, double factor, indextype x, indextype y, indextype z);
	void Insert(rtsImplicit3D<T>* source, indextype x, indextype y, indextype z);

	//data massaging
	
	void Scale(T min, T max);
	void Crop(indextype x, indextype y, indextype z, indextype size_x, indextype size_y, indextype size_z);
	void Binary(T threshold, T true_value);		///<Turns the image into a binary image based on a threshold value T.  All values below T are set to 0, all values above are set to true_value.
	void Threshold(T min, T value);
	void Threshold(T min, T max, T value);
	void Threshold(T min, T max, T inside, T outside);
	void Erode(T isovalue, T fill_value);			///<Erodes the image around the edges defined by an isovalue.
	unsigned int Thin(T isovalue);		///<Finds the skeleton of the given isosurface using erosion.
	bool TestTopology(T isovalue, unsigned int x, unsigned int y, unsigned int z);	///<Tests if the specified voxel is necessary to the topology of the specified isosurface.
	int Neighbors26(indextype x, indextype y, indextype z, T isovalue);		///<Returns the number of neighbors above the given isovalue.
	void FloodFill26(indextype x, indextype y, indextype z, T new_value);	///<Fills the connected component at (x, y, z) with the new value.
	void FloodFill6(indextype x, indextype y, indextype z, T new_value);	///<Performs a 6-connected flood-fill operation starting at the specified node.
	void MedianFilter(int dist_x, int dist_y, int dist_z, double factor = 0.5);		///<Performs a median filter on the data set.
	void ClampMax(T max);		///<Clamps the function to the given maximum value.
	void ClampMin(T min);
	void ClampMin(T min, T value);	///<Sets all function values below min to value.

	//create new data
	rtsImplicit3D<T>* Resample(indextype newres_x, indextype newres_y, indextype newres_z);
	rtsImplicit3D<float>* Isodistance_Manhattan(T isovalue, bool sdf = false);
	rtsImplicit3D<vector3D<T>>* Gradient();
	rtsImplicit3D<float>* EstimateAmbient(T threshold);
	rtsImplicit3D<float>* EstimateAttenuatedAmbient(T surface, T transparent, float attenuation);

	//implicit shapes
	//(these functions create some basic implicit shapes just for fun)
	void Sphere(double center_i, double center_j, double center_k, double radius, T in_value);

	//output functions
	void toConsole();

};

template <class T>
void rtsImplicit3D<T>::blit3D(const T* source,
				   indextype s_px, indextype s_py, indextype s_pz,
				   indextype s_sx, indextype s_sy, indextype s_sz,
				   T* dest,
				   indextype d_px, indextype d_py, indextype d_pz,
				   indextype d_sx, indextype d_sy, indextype d_sz,
				   indextype blit_size_x, indextype blit_size_y, indextype blit_size_z)
{
	indextype ps, pd;		//stores the mapping for the source point to the dest point
	//find the maximum points that can be blit to (in case source overlaps the edges of dest)
	blit_size_x = min(blit_size_x, min(s_sx - s_px, d_sx - d_px));
	blit_size_y = min(blit_size_y, min(s_sy - s_py, d_sy - d_py));
	blit_size_z = min(blit_size_z, min(s_sz - s_pz, d_sz - d_pz));

	indextype source_z_offset = s_sx * s_sy;
	indextype dest_z_offset = d_sx * d_sy;

	indextype z,y;
	for(z=0; z<blit_size_z; z++)
		for(y=0; y<blit_size_y; y++)
		{
			ps = (z + s_pz) * source_z_offset + (y + s_py) * s_sx + s_px;
			pd = (z + d_pz) * dest_z_offset + (y + d_py) * d_sx + d_px;
			memcpy((void*)(&dest[pd]), (void*)(&source[ps]), sizeof(T)*blit_size_x);
		}
}

template <class T>
void rtsImplicit3D<T>::shallow_copy(const rtsImplicit3D<T> source, rtsImplicit3D<T> &dest)
{
	dest = rtsImplicit3D<T>(source.m_resolution.x, source.m_resolution.y, source.m_resolution.z);
	dest.m_boundary = source.m_boundary;
	dest.m_domain_max = source.m_domain_max;
	dest.m_domain_min = source.m_domain_max;
	dest.m_voxel_size = source.m_voxel_size;
}

template <class T>
rtsImplicit3D<T>::rtsImplicit3D(vector3D<int> resolution, T boundary, point3D<double> domain_min, point3D<double> domain_max)
{
	//This function creates an implicit function based on all of the shallow variables
	m_resolution = resolution;
	m_boundary = boundary;
	m_domain_min = domain_min;
	m_domain_max = domain_max;
	m_voxel_size = domain_max - domain_min;
	m_voxel_size.x /= m_resolution.x;
	m_voxel_size.y /= m_resolution.y;
	m_voxel_size.z /= m_resolution.z;

	//allocate the data
	m_data = new T[m_resolution.x * m_resolution.y * m_resolution.z];
}

template <class T>
rtsImplicit3D<T>::rtsImplicit3D(T* data, vector3D<int> resolution, T boundary, point3D<double> domain_min, point3D<double> domain_max)
{
	//This function creates an implicit function based on ALL of the variables
	m_resolution = resolution;
	m_boundary = boundary;
	m_domain_min = domain_min;
	m_domain_max = domain_max;
	m_voxel_size = domain_max - domain_min;
	m_voxel_size.x /= m_resolution.x;
	m_voxel_size.y /= m_resolution.y;
	m_voxel_size.z /= m_resolution.z;

	//allocate the data
	indextype size = m_resolution.x * m_resolution.y * m_resolution.z;
	m_data = new T[size];
	memcpy(m_data, data, sizeof(T)*size);
	//for(int i=0; i<size; i++)
	//	m_data[i] = data[i];
}



template <class T>
rtsImplicit3D<T>::rtsImplicit3D()
{
	m_resolution.x = 1;
	m_resolution.y = 1;
	m_resolution.z = 1;
	m_data = new T[1];
	//m_boundary = 0;				//initialize boundary condition
	m_domain_min = point3D<double>(0.0, 0.0, 0.0);	//set range parameters
	m_domain_max = point3D<double>(1.0, 1.0, 1.0);
	m_voxel_size = vector3D<double>(1.0, 1.0, 1.0);
}

template <class T>
rtsImplicit3D<T>::rtsImplicit3D(indextype res_x, indextype res_y, indextype res_z)
{
	m_resolution.x = res_x;					//set resolution vector
	m_resolution.y = res_y;
	m_resolution.z = res_z;
	m_data = new T[res_x*res_y*res_z];		//allocate data
	memset(&m_boundary, 0, sizeof(T));							//initialize boundary condition
	m_domain_min = point3D<double>(0.0, 0.0, 0.0);	//set range parameters
	m_domain_max = point3D<double>(1.0, 1.0, 1.0);

	m_voxel_size = m_domain_max - m_domain_min;
	m_voxel_size.x /= m_resolution.x;
	m_voxel_size.y /= m_resolution.y;
	m_voxel_size.z /= m_resolution.z;
}

template <class T>
rtsImplicit3D<T>::rtsImplicit3D(T* data, indextype res_x, indextype res_y, indextype res_z)
{
	m_resolution.x = res_x;					//set resolution vector
	m_resolution.y = res_y;
	m_resolution.z = res_z;
	m_data = new T[res_x*res_y*res_z];		//allocate data
	//copy the sample data into the data array
	indextype size = res_x*res_y*res_z;
	for(indextype i=0; i<size; i++)
		m_data[i] = data[i];
	m_boundary = 0;							//initialize boundary condition
	m_domain_min = point3D<double>(0.0, 0.0, 0.0);	//set range parameters
	m_domain_max = point3D<double>(1.0, 1.0, 1.0);

	m_voxel_size = domain_max - domain_min;
	m_voxel_size.x /= m_resolution.x;
	m_voxel_size.y /= m_resolution.y;
	m_voxel_size.z /= m_resolution.z;
}

template <class T>
rtsImplicit3D<T>::rtsImplicit3D(const rtsImplicit3D<T>& original)
{
	//copy the shallow variables
	m_resolution = original.m_resolution;
	m_boundary = original.m_boundary;
	m_domain_min = original.m_domain_min;
	m_domain_max = original.m_domain_max;
	m_voxel_size = original.m_voxel_size;

	//allocate space for the data
	m_data = new T[m_resolution.x * m_resolution.y * m_resolution.z];
	//copy the data
	blit3D(original.m_data,
		   0, 0, 0,
		   m_resolution.x, m_resolution.y, m_resolution.z,
		   m_data,
		   0, 0, 0,
		   m_resolution.x, m_resolution.y, m_resolution.z,
		   m_resolution.x, m_resolution.y, m_resolution.z);
}

template <class T>
rtsImplicit3D<T>::~rtsImplicit3D()
{
	delete m_data;
}

template <class T>
typename rtsImplicit3D<T>& rtsImplicit3D<T>::operator=(const T rhs)
{
	indextype size = m_resolution.x*m_resolution.y*m_resolution.z;
	for(int i=0; i<size; i++)
		m_data[i] = rhs;

	return *this;
}

template <class T>
typename rtsImplicit3D<T>& rtsImplicit3D<T>::operator=(const rtsImplicit3D<T>& rhs)
{
	//check for self-assignment
	if(this == &rhs)
		return *this;

	//deallocate memory
	if(m_data != NULL)
		delete m_data;

	//copy the shallow variables
	m_resolution = rhs.m_resolution;
	m_boundary = rhs.m_boundary;
	m_domain_min = rhs.m_domain_min;
	m_domain_max = rhs.m_domain_max;
	m_voxel_size = rhs.m_voxel_size;

	//allocate and copy memory
	m_data = new T[m_resolution.x * m_resolution.y * m_resolution.z];
	//copy the data
	blit3D(rhs.m_data,
		   0,0,0,
		   m_resolution.x, m_resolution.y, m_resolution.z,
		   m_data, 
		   0, 0, 0, 
		   m_resolution.x, m_resolution.y, m_resolution.z,
		   m_resolution.x, m_resolution.y, m_resolution.z);

	//return the left hand side
	return *this;
}

template <class T>
inline T& rtsImplicit3D<T>::operator ()(indextype x, indextype y, indextype z)
{
	return xyz(x, y, z);
}

template <class T>
inline T rtsImplicit3D<T>::operator()(double i, double j, double k)
{
	return ijk(i, j, k);
}

template <class T>
rtsImplicit3D<T>& rtsImplicit3D<T>::operator *=(const T constant)
{
	indextype size = m_resolution.x * m_resolution.y * m_resolution.z;
	for(indextype i = 0; i<size; i++)
		m_data[i] *= constant;

	return *this;
}

template <class T>
rtsImplicit3D<T>& rtsImplicit3D<T>::operator +=(const T constant)
{
	indextype size = m_resolution.x * m_resolution.y * m_resolution.z;
	for(indextype i = 0; i<size; i++)
		m_data[i] += constant;

	return *this;
}
template <class T>
rtsImplicit3D<T>& rtsImplicit3D<T>::operator -=(const T constant)
{
	indextype size = m_resolution.x * m_resolution.y * m_resolution.z;
	for(indextype i = 0; i<size; i++)
		m_data[i] -= constant;

	return *this;
}
template <class T>
rtsImplicit3D<T>& rtsImplicit3D<T>::operator /=(const T constant)
{
	indextype size = m_resolution.x * m_resolution.y * m_resolution.z;
	for(indextype i = 0; i<size; i++)
		m_data[i] /= constant;

	return *this;
}
template <class T>
const rtsImplicit3D<T> rtsImplicit3D<T>::operator *(const T constant)
{
	rtsImplicit3D<T> result = (*this);
	result *= constant;

	return result;
}

template <class T>
const rtsImplicit3D<T> rtsImplicit3D<T>::operator +(const T constant)
{
	rtsImplicit3D<T> result = (*this);
	result += constant;

	return result;
}

template <class T>
const rtsImplicit3D<T> rtsImplicit3D<T>::operator -(const T constant)
{
	rtsImplicit3D<T> result = (*this);
	result -= constant;

	return result;
}

template <class T>
const rtsImplicit3D<T> rtsImplicit3D<T>::operator /(const T constant)
{
	rtsImplicit3D<T> result = (*this);
	result /= constant;

	return result;
}

template <class T>
template <class U>
rtsImplicit3D<T>::operator rtsImplicit3D<U>()
{
	//cast one type to another
	//create the data pointer from the current function
	indextype size = m_resolution.x * m_resolution.y * m_resolution.z;
	U* new_data = new U[size];
	for(int i=0; i<size; i++)
		new_data[i] = m_data[i];
	rtsImplicit3D<U> cast_result(new_data, m_resolution, m_boundary, m_domain_min, m_domain_max);

	return cast_result;
}

template <class T>
inline T& rtsImplicit3D<T>::xyz(indextype x, indextype y, indextype z)
{
	if(x<0 || y<0 || z<0 || x>=m_resolution.x || y>=m_resolution.y || z>=m_resolution.z)
		return m_boundary;
	//return m_data[(z * m_resolution.x * m_resolution.y) + (y * m_resolution.x) + x];
	return m_data[x + m_resolution.x * (y + z * m_resolution.y)];

}

template <class T>
inline point3D<indextype> rtsImplicit3D<T>::getNearestIndex(indextype i)
{
	point3D<indextype> result;
	result.z = i/(m_resolution.x*m_resolution.y);
	indextype mod = i%(m_resolution.x*m_resolution.y);
	result.y = mod/m_resolution.x;
	result.x = mod%m_resolution.x;

	return result;

}

template <class T>
void rtsImplicit3D<T>::LoadRAW(indextype header_size, indextype size_x,
							   indextype size_y, indextype size_z, const char *filename)
{
	//set the data size
	m_resolution = vector3D<indextype>(size_x, size_y, size_z);
	//delete any previous data
	if(m_data != NULL)
		delete m_data;

	ifstream infile(filename, ios::in | ios::binary);

	//load the header
	unsigned char* header = new unsigned char[header_size];
	infile.read((char*)header, header_size);

	//load the actual data
	indextype size = m_resolution.x * m_resolution.y * m_resolution.z;
	m_data = new T[size];
	infile.read((char*)m_data, size*sizeof(T));

	//calculate min and maxes
	infile.close();
}

template <class T>
void rtsImplicit3D<T>::LoadVOL(const char *filename)
{
	ifstream infile(filename, ios::in | ios::binary);	//create the files stream
	if(!infile)
		return;

	indextype size_x, size_y, size_z;				//create variables to store the size of the data set
	//load the dimensions of the data set
	infile.read((char*)&size_x, sizeof(int));			//load the file header
	infile.read((char*)&size_y, sizeof(int));
	infile.read((char*)&size_z, sizeof(int));

	//close the file
	infile.close();
	//load the raw data
	LoadRAW(12, size_x, size_y, size_z, filename);
}

template <class T>
void rtsImplicit3D<T>::SaveVOL(const char *filename)
{
	ofstream outfile(filename, ios::out | ios::binary);	//create the binary file stream

	//write the volume size to the file
	vector3D<int> vol_size = m_resolution;
	outfile.write((char*)&vol_size.x, sizeof(int));
	outfile.write((char*)&vol_size.y, sizeof(int));
	outfile.write((char*)&vol_size.z, sizeof(int));

	outfile.write((char*)m_data, sizeof(char)*vol_size.x*vol_size.y*vol_size.z);
}

template <class T>
void rtsImplicit3D<T>::SaveRAW(const char *filename)
{
	ofstream outfile(filename, ios::out | ios::binary);	//create the binary file stream

	//write the volume data
	outfile.write((char*)m_data, sizeof(T)*m_resolution.x*m_resolution.y*m_resolution.z);
}

template <class T>
inline T rtsImplicit3D<T>::ijk(double i, double j, double k)
{
	/*This function determines the value at the specified parametric points
	defined by the m_domain_min and m_domain_max parameter values.*/

	//if the parameter is outside the range, return the boundary value
	if(i<m_domain_min.x || j<m_domain_min.y || k<m_domain_min.z ||
	   i>m_domain_max.x || j>m_domain_max.y || k>m_domain_max.z)
	   return m_boundary;
	
	point3D<double> index = getFractionalIndex(i, j, k);

	//cout<<index.x<<","<<index.y<<","<<index.z<<endl;

	//interpolate the values
	int f_x = (int)floor(index.x);				//calculate floor and ceiling values
	int f_y = (int)floor(index.y);
	int f_z = (int)floor(index.z);
	int c_x = (int)ceil(index.x);
	int c_y = (int)ceil(index.y);
	int c_z = (int)ceil(index.z);

	double x_d = index.x - f_x;			//find the point within the voxel
	double y_d = index.y - f_y;
	double z_d = index.z - f_z;

	T i_1 = xyz(f_x, f_y, f_z)*(1.0 - z_d) + xyz(f_x, f_y, c_z)*(z_d);	//interpolate along z
	T i_2 = xyz(f_x, c_y, f_z)*(1.0 - z_d) + xyz(f_x, c_y, c_z)*(z_d);
	T j_1 = xyz(c_x, f_y, f_z)*(1.0 - z_d) + xyz(c_x, f_y, c_z)*(z_d);
	T j_2 = xyz(c_x, c_y, f_z)*(1.0 - z_d) + xyz(c_x, c_y, c_z)*(z_d);

	T w_1 = i_1*(1.0 - y_d) + i_2*(y_d);
	T w_2 = j_1*(1.0 - y_d) + j_2*(y_d);

	return w_1*(1.0 - x_d) + w_2*(x_d);
}


template <class T>
void rtsImplicit3D<T>::Parameterize(double x_min, double x_max, double y_min, double y_max, double z_min, double z_max)
{
	m_domain_min = point3D<double>(x_min, y_min, z_min);
	m_domain_max = point3D<double>(x_max, y_max, z_max);
	m_voxel_size = m_domain_max - m_domain_min;
	m_voxel_size.x /= m_resolution.x;
	m_voxel_size.y /= m_resolution.y;
	m_voxel_size.z /= m_resolution.z;
}

template <class T>
inline point3D<double> rtsImplicit3D<T>::getParameter(indextype x, indextype y, indextype z)
{
	//get the value between 0 and 1
	point3D<double> normalized((double)x / (double)(m_resolution.x) + (1.0/(m_resolution.x*2.0)),
							   (double)y / (double)(m_resolution.y) + (1.0/(m_resolution.y*2.0)),
							   (double)z/(double)(m_resolution.z) + (1.0/(m_resolution.z*2.0)));

	point3D<double> result(normalized.x * (m_domain_max.x - m_domain_min.x) + m_domain_min.x,
						   normalized.y * (m_domain_max.y - m_domain_min.y) + m_domain_min.y,
						   normalized.z * (m_domain_max.z - m_domain_min.z) + m_domain_min.z);

	return result;
}

template <class T>
inline point3D<indextype> rtsImplicit3D<T>::getNearestIndex(double i, double j, double k)
{
	//this function returns the index of the voxel containing the specified parameter point
	point3D<double> normalized((i - m_domain_min.x)/(m_domain_max.x-m_domain_min.x),
							   (j - m_domain_min.y)/(m_domain_max.y-m_domain_min.y),
							   (k - m_domain_min.z)/(m_domain_max.z-m_domain_min.z));
	
	point3D<indextype> result((normalized.x - (1.0/(m_resolution.x*2.0)))*(double)m_resolution.x+0.5,
							  (normalized.y - (1.0/(m_resolution.y*2.0)))*(double)m_resolution.y+0.5,
							  (normalized.z - (1.0/(m_resolution.z*2.0)))*(double)m_resolution.z+0.5);

	return result;
}

template <class T>
inline point3D<double> rtsImplicit3D<T>::getFractionalIndex(double i, double j, double k)
{
	//this function returns the index of the voxel containing the specified parameter point
	point3D<double> normalized((i - m_domain_min.x)/(m_domain_max.x-m_domain_min.x),
							   (j - m_domain_min.y)/(m_domain_max.y-m_domain_min.y),
							   (k - m_domain_min.z)/(m_domain_max.z-m_domain_min.z));
	
	point3D<double> result((normalized.x - (1.0/(m_resolution.x*2.0)))*(double)m_resolution.x,
							  (normalized.y - (1.0/(m_resolution.y*2.0)))*(double)m_resolution.y,
							  (normalized.z - (1.0/(m_resolution.z*2.0)))*(double)m_resolution.z);
	return result;
}


template <class T>
T* rtsImplicit3D<T>::GetBits()
{
	/*Returns bit data in lexocographical order (possibly for 3D texture mapping)*/
	return m_data;
}

template <class T>
rtsImplicit3D<T>* rtsImplicit3D<T>::Resample(indextype newres_x, indextype newres_y, indextype newres_z)
{
	/*This function resamples the current function at the specified resolution.
	No convolution is done for reducing he resolution.
	*/

	rtsImplicit3D<T>* result = new rtsImplicit3D<T>(vector3D<indextype>(newres_x, newres_y, newres_z),
						    m_boundary, m_domain_min, m_domain_max);

	//run through the entire resolution of the new function, sampling the current function
	int x, y, z;
	point3D<double> parametric;
	for(x = 0; x<newres_x; x++)
		for(y=0; y<newres_y; y++)
			for(z=0; z<newres_z; z++)
			{
				//compute the parametric point for the sample point
				parametric = result->getParameter(x, y, z);
				(*result)(x, y, z) = ijk(parametric.x, parametric.y, parametric.z);
			}

	return result;
}

template <class T>
void rtsImplicit3D<T>::Scale(T new_min, T new_max)
{
	/*This function scales all values of the implicit function to within a specified range
	*/

	//find the minimum and maximum values in this function
	indextype data_size = m_resolution.x * m_resolution.y * m_resolution.z;
	T min = m_data[0];
	T max = m_data[0];
	for(indextype i=0; i<data_size; i++)
	{
		if(m_data[i] < min)
			min = m_data[i];
		if(m_data[i] > max)
			max = m_data[i];
	}

	//scale all values to the specified range
	T current_range = max - min;
	T new_range = new_max - new_min;
	for(indextype i=0; i<data_size; i++)
		m_data[i] = ((m_data[i] - min)/current_range)*(new_range) + new_min;
}

template <class T>
void rtsImplicit3D<T>::Crop(indextype x, indextype y, indextype z, 
							indextype size_x, indextype size_y, indextype size_z)
{
	/*This function crops the implicit function at the specified nodes
	*/
	//create a pointer for the new data
	T* new_data = new T[size_x*size_y*size_z];

	//blit from the old data to the new data
	blit3D(m_data,
			x, y, z,
			m_resolution.x, m_resolution.y, m_resolution.z,
			new_data,
			0, 0, 0,
			size_x, size_y, size_z,
			size_x, size_y, size_z);

	//change the shallow variables
	vector3D<indextype> new_resolution = vector3D<indextype>(size_x, size_y, size_z);
	vector3D<double> voxel_size = getParameter(0,0,0) - getParameter(1,1,1);
	point3D<double> new_domain_min = getParameter(x, y, z) - 0.5*voxel_size;
	point3D<double> new_domain_max = getParameter(size_x-1, size_y - 1, size_z-1) + 0.5*voxel_size;
	//copy new shallow variables
	m_resolution = new_resolution;
	m_domain_min = new_domain_min;
	m_domain_max = new_domain_max;

	//copy data
	delete m_data;
	m_data = new_data;

}

template <class T>
void rtsImplicit3D<T>::Threshold(T min, T value)
{
	/*This function sets all values between min and max to value.
	*/
	int x, y, z;
	T test_value;
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				test_value = xyz(x, y, z);
				if(test_value >= min)
					xyz(x, y, z) = value;
			}
}

template <class T>
void rtsImplicit3D<T>::Threshold(T min, T max, T value)
{
	/*This function sets all values between min and max to value.
	*/
	int x, y, z;
	T test_value;
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				test_value = xyz(x, y, z);
				if(test_value >= min && test_value <= max)
					xyz(x, y, z) = value;
			}
}

template <class T>
void rtsImplicit3D<T>::Threshold(T min, T max, T inside, T outside)
{
	/*This function sets all values between min and max to value.
	*/
	int x, y, z;
	T test_value;
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				test_value = xyz(x, y, z);
				if(test_value >= min && test_value <= max)
					xyz(x, y, z) = inside;
				else
					xyz(x, y, z) = outside;
			}
}

template <class T>
void rtsImplicit3D<T>::Insert(rtsDTGrid3D<T>* dt_grid, double factor, indextype pos_x, indextype pos_y, indextype pos_z)
{
/*	This function copies a 3D DT-Grid into the implicit function at the specified position.
*/
	rtsDTGrid3D<T>::iterator i;
	indextype x, y, z;
	for(i=dt_grid->begin(); i != dt_grid->end(); i.increment())	//for each node in the grid
	{
		x = pos_x + i.getX();
		y = pos_y + i.getY();
		z = pos_z + i.getZ();
		if(x >= 0 || x < m_resolution.x ||
			y >= 0 || y < m_resolution.y ||
			y >= 0 || y < m_resolution.z)
			xyz(x, y, z) = max(i.value* factor, (double)xyz(x, y, z));
	}
}

template <class T>
void rtsImplicit3D<T>::Insert(rtsImplicit3D<T>* source, indextype x, indextype y, indextype z)
{
	blit3D(source->m_data, 0, 0, 0, source->m_resolution.x, source->m_resolution.y, source->m_resolution.z,
			m_data, x, y, z, m_resolution.x, m_resolution.y, m_resolution.z,
			source->m_resolution.x, source->m_resolution.y, source->m_resolution.z);
}


template <class T>
inline float rtsImplicit3D<T>::manhattan_distance(rtsImplicit3D<float>* function, point3D<indextype> point, bool sdf)
{
	/*This function updates the manhattan distance from a surface using the manhattan
	distance of its neighboring points.
	*/
	indextype x, y, z;
	x=point.x; y=point.y, z=point.z;
	int sign = 1;
	float result = DIST_MAX;
	float near_value;				//the value of the neighbor being considered
	float possible_value;			
	if(x!=0)
	{ 
		near_value = (*function)(x-1, y, z);
		if(!sdf)
			result = min(result, near_value + (float)m_voxel_size.x);
		else
		{
			if(near_value<0) sign = -1; else sign = 1;	//determine if the value is inside or outside
			possible_value = sign*(fabs(near_value) + m_voxel_size.x);
			if(fabs(possible_value) < fabs(result))
				result = possible_value;
		}

	}
	if(x!=function->DimX()-1)
	{
		near_value = (*function)(x+1, y, z);
		if(!sdf)
			result = min(result, near_value + (float)m_voxel_size.x);
		else
		{
			if(near_value<0) sign = -1; else sign = 1;	//determine if the value is inside or outside
			possible_value = sign*(fabs(near_value) + m_voxel_size.x);
			if(fabs(possible_value) < fabs(result))
				result = possible_value;
		}
	}
	if(y!=0)
	{
		near_value = (*function)(x, y-1, z);
		if(!sdf)
			result = min(result, near_value + (float)m_voxel_size.y);
		else
		{
			if(near_value<0) sign = -1; else sign = 1;	//determine if the value is inside or outside
			possible_value = sign*(fabs(near_value) + m_voxel_size.y);
			if(fabs(possible_value) < fabs(result))
				result = possible_value;
		}
	}
	if(y!=function->DimY()-1)
	{
		near_value = (*function)(x, y+1, z);
		if(!sdf)
			result = min(result, near_value + (float)m_voxel_size.y);
		else
		{
			if(near_value<0) sign = -1; else sign = 1;	//determine if the value is inside or outside
			possible_value = sign*(fabs(near_value) + m_voxel_size.y);
			if(fabs(possible_value) < fabs(result))
				result = possible_value;
		}
	}
	if(z!=0)
	{
		near_value = (*function)(x, y, z-1);
		if(!sdf)
			result = min(result, near_value + (float)m_voxel_size.z);
		else
		{
			if(near_value<0) sign = -1; else sign = 1;	//determine if the value is inside or outside
			possible_value = sign*(fabs(near_value) + m_voxel_size.z);
			if(fabs(possible_value) < fabs(result))
				result = possible_value;
		}
	}
	if(z!=function->DimZ()-1)
	{
		near_value = (*function)(x, y, z+1);
		if(!sdf)
			result = min(result, near_value + (float)m_voxel_size.z);
		else
		{
			if(near_value<0) sign = -1; else sign = 1;	//determine if the value is inside or outside
			possible_value = sign*(fabs(near_value) + m_voxel_size.z);
			if(fabs(possible_value) < fabs(result))
				result = possible_value;
		}
	}
	return result;
}

template <class T>
inline float rtsImplicit3D<T>::isosurface_distance(point3D<double> p0, point3D<double> p1, T isovalue)
{
	/*This function computes the distance from p0 to the surface, given two points p0 and p1
	on either side of the surface.  isovalue specifies
	the value at the surface.  Right now, this function returns a float.  I'll have to think
	of something better to do in the future.
	*/

	//compute the normalized position of the surface between p0 and p1
	float val0 = ijk(p0.x, p0.y, p0.z);
	float val1 = ijk(p1.x, p1.y, p1.z);
	float isovalue_norm_pos = (isovalue - val0) / (val1 - val0);
	//compute the actual position of the surface
	point3D<double> s_pos = p0 + isovalue_norm_pos * (p1 - p0);
	//compute the distance from p0 to the surface
	float result = (s_pos - p0).Length();
	//cout<<"distance: "<<result<<endl;
	return result;
}

template <class T>
void rtsImplicit3D<T>::compute_distance_function_boundary(T isovalue, 
														  rtsImplicit3D<float>* &result, 
														  rtsImplicit3D<bool>* &mask, bool sdf)
{
	/*This function creates an initial signed distance function from a threshold image.
	All voxels adjacent to the surface specified by the threshold are initialized with a
	distance value.  Low values are inside, high values are outside.
	*/
	//current and neighboring voxel flags (false = inside, true = outside)
	bool c, x_p, x_n, y_p, y_n, z_p, z_n;
	float d_xp, d_xn, d_yp, d_yn, d_zp, d_zn;
	float in_out = 1;

	//boundary condition function and the mask
	result = new rtsImplicit3D<float>(m_resolution.x, m_resolution.y, m_resolution.z);
	//get the parameterization
	result->Parameterize(m_domain_min.x, m_domain_max.x, m_domain_min.y, m_domain_max.y, m_domain_min.z, m_domain_max.z);
	(*result) = DIST_MAX;
	result->setBoundary(DIST_MAX);	
	//create a mask
	mask = new rtsImplicit3D<bool>(m_resolution.x, m_resolution.y, m_resolution.z);
	(*mask) = false;

	cout<<"done making boundary condition function"<<endl;
	//for each voxel
	int x, y, z;
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				//reset flags
				c=x_p=x_n=y_p=y_n=z_p=z_n=true;
				in_out = 1.0;
				//look at the current voxel
				if(xyz(x, y, z) < isovalue)
					c=false;
				else c=true;
				//if the voxel is outside the domain, assume that it is equal to the current voxel
				if(x-1 < 0) x_n = c;	//X
				else if(xyz(x-1, y, z) < isovalue) x_n = false;
				if(x+1 >= m_resolution.x) x_p = c;
				else if(xyz(x+1, y, z) < isovalue) x_p = false;
				if(y-1 < 0) y_n = c;	//Y
				else if(xyz(x, y-1, z) < isovalue) y_n = false;
				if(y+1 >= m_resolution.y) y_p = c;
				else if(xyz(x, y+1, z) < isovalue) y_p = false;
				if(z-1 < 0) z_n = c;	//Z
				else if(xyz(x, y, z-1) < isovalue) z_n = false;
				if(z+1 >= m_resolution.z) z_p = c;
				else if(xyz(x, y, z+1) < isovalue) z_p = false;

				//set the distance from the isosurface
				if(c == false && sdf)
					in_out = -1.0;
				if(x_n != c)
					(*result)(x, y, z) = min((*result)(x,y,z),
										 isosurface_distance(getParameter(x, y, z), 
													  getParameter(x-1, y, z),
													  isovalue) * in_out);
				if(x_p != c)
					(*result)(x, y, z) = min((*result)(x,y,z),
											isosurface_distance(getParameter(x, y, z), 
													  getParameter(x+1, y, z),
													  isovalue) * in_out);
				if(y_n != c)
					(*result)(x, y, z) = min((*result)(x,y,z),
											isosurface_distance(getParameter(x, y, z), 
													  getParameter(x, y-1, z),
													  isovalue) * in_out);
				if(y_p != c)
					(*result)(x, y, z) = min((*result)(x,y,z),
											isosurface_distance(getParameter(x, y, z), 
													  getParameter(x, y+1, z),
													  isovalue) * in_out);
				if(z_n != c)
					(*result)(x, y, z) = min((*result)(x,y,z),
											isosurface_distance(getParameter(x, y, z-1), 
													  getParameter(x, y, z),
													  isovalue) * in_out);
				if(z_p != c)
					(*result)(x, y, z) = min((*result)(x,y,z),
											isosurface_distance(getParameter(x, y, z), 
													  getParameter(x, y, z+1),
													  isovalue) * in_out);

				//set the mask to 1 if the voxel is on an edge node
				if(x_n != c || x_p != c || y_n != c || y_p != c || z_n != c || z_p != c)
					(*mask)(x, y, z) = true;
			}
				

	//if a line between the two voxels crosses the surface
		//find the distance between the voxel center and the surface


			cout<<"done computing boundary conditions"<<endl;
}

template <class T>
rtsImplicit3D<float>* rtsImplicit3D<T>::EstimateAmbient(T threshold)
{
	rtsImplicit3D<float>* result = new rtsImplicit3D<float>(m_resolution.x, m_resolution.y, m_resolution.z);		//create a new implicit function
	(*result) = 0.0f;
	rtsImplicit3D<float>* temp = new rtsImplicit3D<float>(m_resolution.x, m_resolution.y, m_resolution.z);	//temp buffer for current lighting iteration
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	
	cout<<"first iteration..."<<endl;
	int x,y,z;
	float ambient;
	
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				ambient = 0.0;
				if(xyz(x-1, y, z) < threshold)
					ambient += (*temp)(x-1, y, z);
				if(xyz(x, y-1, z) < threshold)
					ambient += (*temp)(x, y-1, z);
				if(xyz(x, y-1, z) < threshold)
					ambient += (*temp)(x, y, z-1);

				(*temp)(x, y, z) += ambient/3.0;
				(*result)(x, y, z) += ambient/3.0;
				if(ambient > 3.0)
					cout<<"error"<<endl;
			}
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	cout<<"done."<<endl;

	cout<<"second iteration..."<<endl;
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=m_resolution.z-1; z>=0; z--)
			{
				ambient = 0.0;
				if(xyz(x-1, y, z) < threshold)
					ambient += (*temp)(x-1, y, z);
				if(xyz(x, y-1, z) < threshold)
					ambient += (*temp)(x, y-1, z);
				if(xyz(x, y, z+1) < threshold)
					ambient += (*temp)(x, y, z+1);

				(*temp)(x, y, z) += ambient/3.0;
				(*result)(x, y, z) += ambient/3.0;
				if(ambient > 3.0)
					cout<<"error"<<endl;
			}
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	cout<<"done."<<endl;

	cout<<"third iteration..."<<endl;
	for(x=0; x<m_resolution.x; x++)
		for(y=m_resolution.y-1; y>=0; y--)
			for(z=0; z<m_resolution.z; z++)
			{
				ambient = 0.0;
				if(xyz(x-1, y, z) < threshold)
					ambient += (*temp)(x-1, y, z);
				if(xyz(x, y+1, z) < threshold)
					ambient += (*temp)(x, y+1, z);
				if(xyz(x, y, z-1) < threshold)
					ambient += (*temp)(x, y, z-1);

				(*temp)(x, y, z) += ambient/3.0;
				(*result)(x, y, z) += ambient/3.0;
				if(ambient > 3.0)
					cout<<"error"<<endl;
			}
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	cout<<"done."<<endl;

	cout<<"fourth iteration..."<<endl;
	for(x=0; x<m_resolution.x; x++)
		for(y=m_resolution.y-1; y>=0; y--)
			for(z=m_resolution.z-1; z>=0; z--)
			{
				ambient = 0.0;
				if(xyz(x-1, y, z) < threshold)
					ambient += (*temp)(x-1, y, z);
				if(xyz(x, y+1, z) < threshold)
					ambient += (*temp)(x, y+1, z);
				if(xyz(x, y, z+1) < threshold)
					ambient += (*temp)(x, y, z+1);

				(*temp)(x, y, z) += ambient/3.0;
				(*result)(x, y, z) += ambient/3.0;
				if(ambient > 3.0)
					cout<<"error"<<endl;
			}
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	cout<<"done."<<endl;

	cout<<"fifth iteration..."<<endl;
	for(x=m_resolution.x-1; x>=0; x--)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				ambient = 0.0;
				if(xyz(x+1, y, z) < threshold)
					ambient += (*temp)(x+1, y, z);
				if(xyz(x, y-1, z) < threshold)
					ambient += (*temp)(x, y-1, z);
				if(xyz(x, y, z-1) < threshold)
					ambient += (*temp)(x, y, z-1);

				(*temp)(x, y, z) += ambient/3.0;
				(*result)(x, y, z) += ambient/3.0;
				if(ambient > 3.0)
					cout<<"error"<<endl;
			}
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	cout<<"done."<<endl;

	cout<<"sixth iteration..."<<endl;
	for(x=m_resolution.x-1; x>=0; x--)
		for(y=0; y<m_resolution.y; y++)
			for(z=m_resolution.z-1; z>=0; z--)
			{
				ambient = 0.0;
				if(xyz(x+1, y, z) < threshold)
					ambient += (*temp)(x+1, y, z);
				if(xyz(x, y-1, z) < threshold)
					ambient += (*temp)(x, y-1, z);
				if(xyz(x, y, z+1) < threshold)
					ambient += (*temp)(x, y, z+1);

				(*temp)(x, y, z) += ambient/3.0;
				(*result)(x, y, z) += ambient/3.0;
				if(ambient > 3.0)
					cout<<"error"<<endl;
			}
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	cout<<"done."<<endl;

	cout<<"seventh iteration..."<<endl;
	for(x=m_resolution.x-1; x>=0; x--)
		for(y=m_resolution.y-1; y>=0; y--)
			for(z=0; z<m_resolution.z; z++)
			{
				ambient = 0.0;
				if(xyz(x+1, y, z) < threshold)
					ambient += (*temp)(x+1, y, z);
				if(xyz(x, y+1, z) < threshold)
					ambient += (*temp)(x, y+1, z);
				if(xyz(x, y, z-1) < threshold)
					ambient += (*temp)(x, y, z-1);

				(*temp)(x, y, z) += ambient/3.0;
				(*result)(x, y, z) += ambient/3.0;
				if(ambient > 3.0)
					cout<<"error"<<endl;
			}
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	cout<<"done."<<endl;

	cout<<"eighth iteration..."<<endl;
	for(x=m_resolution.x-1; x>=0; x--)
		for(y=m_resolution.y-1; y>=0; y--)
			for(z=m_resolution.z-1; z>=0; z--)
			{
				ambient = 0.0;
				if(xyz(x+1, y, z) < threshold)
					ambient += (*temp)(x+1, y, z);
				if(xyz(x, y+1, z) < threshold)
					ambient += (*temp)(x, y+1, z);
				if(xyz(x, y, z+1) < threshold)
					ambient += (*temp)(x, y, z+1);

				(*temp)(x, y, z) += ambient/3.0;
				(*result)(x, y, z) += ambient/3.0;
				if(ambient > 3.0)
					cout<<"error"<<endl;
			}
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	cout<<"done."<<endl;

	(*result)/=8.0;
	
	return result;
}


template <class T>
rtsImplicit3D<float>* rtsImplicit3D<T>::EstimateAttenuatedAmbient(T threshold, T transparent, float attenuation)
{
	rtsImplicit3D<float>* result = new rtsImplicit3D<float>(m_resolution.x, m_resolution.y, m_resolution.z);		//create a new implicit function
	(*result) = 0.0f;
	rtsImplicit3D<float>* temp = new rtsImplicit3D<float>(m_resolution.x, m_resolution.y, m_resolution.z);	//temp buffer for current lighting iteration
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	
	cout<<"first iteration..."<<endl;
	int x,y,z;
	float ambient;
	
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				ambient = 0.0;
				if(xyz(x-1, y, z) < threshold)
					ambient += (*temp)(x-1, y, z)*(1.0 - (xyz(x-1, y, z)/255.0)*attenuation);
				if(xyz(x, y-1, z) < threshold)
					ambient += (*temp)(x, y-1, z)*(1.0 - (xyz(x, y-1, z)/255.0)*attenuation);
				if(xyz(x, y-1, z) < threshold)
					ambient += (*temp)(x, y, z-1)*(1.0 - (xyz(x, y, z-1)/255.0)*attenuation);

				(*temp)(x, y, z) += ambient/3.0;
				(*result)(x, y, z) += min(1.0, ambient/3.0);
				//if(ambient > 3.0)
				//	cout<<"error"<<endl;
			}
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	cout<<"done."<<endl;

	cout<<"second iteration..."<<endl;
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=m_resolution.z-1; z>=0; z--)
			{
				ambient = 0.0;
				if(xyz(x-1, y, z) < threshold)
					ambient += (*temp)(x-1, y, z)*(1.0 - (xyz(x-1, y, z)/255.0)*attenuation);
				if(xyz(x, y-1, z) < threshold)
					ambient += (*temp)(x, y-1, z)*(1.0 - (xyz(x, y-1, z)/255.0)*attenuation);
				if(xyz(x, y, z+1) < threshold)
					ambient += (*temp)(x, y, z+1)*(1.0 - (xyz(x, y, z+1)/255.0)*attenuation);

				(*temp)(x, y, z) += ambient/3.0;
				(*result)(x, y, z) += ambient/3.0;
				if(ambient > 3.0)
					cout<<"error"<<endl;
			}
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	cout<<"done."<<endl;

	cout<<"third iteration..."<<endl;
	for(x=0; x<m_resolution.x; x++)
		for(y=m_resolution.y-1; y>=0; y--)
			for(z=0; z<m_resolution.z; z++)
			{
				ambient = 0.0;
				if(xyz(x-1, y, z) < threshold)
					ambient += (*temp)(x-1, y, z)*(1.0 - (xyz(x-1, y, z)/255.0)*attenuation);
				if(xyz(x, y+1, z) < threshold)
					ambient += (*temp)(x, y+1, z)*(1.0 - (xyz(x, y+1, z)/255.0)*attenuation);
				if(xyz(x, y, z-1) < threshold)
					ambient += (*temp)(x, y, z-1)*(1.0 - (xyz(x, y, z-1)/255.0)*attenuation);

				(*temp)(x, y, z) += ambient/3.0;
				(*result)(x, y, z) += ambient/3.0;
				if(ambient > 3.0)
					cout<<"error"<<endl;
			}
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	cout<<"done."<<endl;

	cout<<"fourth iteration..."<<endl;
	for(x=0; x<m_resolution.x; x++)
		for(y=m_resolution.y-1; y>=0; y--)
			for(z=m_resolution.z-1; z>=0; z--)
			{
				ambient = 0.0;
				if(xyz(x-1, y, z) < threshold)
					ambient += (*temp)(x-1, y, z)*(1.0 - (xyz(x-1, y, z)/255.0)*attenuation);
				if(xyz(x, y+1, z) < threshold)
					ambient += (*temp)(x, y+1, z)*(1.0 - (xyz(x, y+1, z)/255.0)*attenuation);
				if(xyz(x, y, z+1) < threshold)
					ambient += (*temp)(x, y, z+1)*(1.0 - (xyz(x, y, z+1)/255.0)*attenuation);

				(*temp)(x, y, z) += ambient/3.0;
				(*result)(x, y, z) += ambient/3.0;
				if(ambient > 3.0)
					cout<<"error"<<endl;
			}
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	cout<<"done."<<endl;

	cout<<"fifth iteration..."<<endl;
	for(x=m_resolution.x-1; x>=0; x--)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				ambient = 0.0;
				if(xyz(x+1, y, z) < threshold)
					ambient += (*temp)(x+1, y, z)*(1.0 - (xyz(x+1, y, z)/255.0)*attenuation);
				if(xyz(x, y-1, z) < threshold)
					ambient += (*temp)(x, y-1, z)*(1.0 - (xyz(x, y-1, z)/255.0)*attenuation);
				if(xyz(x, y, z-1) < threshold)
					ambient += (*temp)(x, y, z-1)*(1.0 - (xyz(x, y, z-1)/255.0)*attenuation);

				(*temp)(x, y, z) += ambient/3.0;
				(*result)(x, y, z) += ambient/3.0;
				if(ambient > 3.0)
					cout<<"error"<<endl;
			}
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	cout<<"done."<<endl;

	cout<<"sixth iteration..."<<endl;
	for(x=m_resolution.x-1; x>=0; x--)
		for(y=0; y<m_resolution.y; y++)
			for(z=m_resolution.z-1; z>=0; z--)
			{
				ambient = 0.0;
				if(xyz(x+1, y, z) < threshold)
					ambient += (*temp)(x+1, y, z)*(1.0 - (xyz(x+1, y, z)/255.0)*attenuation);
				if(xyz(x, y-1, z) < threshold)
					ambient += (*temp)(x, y-1, z)*(1.0 - (xyz(x, y-1, z)/255.0)*attenuation);
				if(xyz(x, y, z+1) < threshold)
					ambient += (*temp)(x, y, z+1)*(1.0 - (xyz(x, y, z+1)/255.0)*attenuation);

				(*temp)(x, y, z) += ambient/3.0;
				(*result)(x, y, z) += ambient/3.0;
				if(ambient > 3.0)
					cout<<"error"<<endl;
			}
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	cout<<"done."<<endl;

	cout<<"seventh iteration..."<<endl;
	for(x=m_resolution.x-1; x>=0; x--)
		for(y=m_resolution.y-1; y>=0; y--)
			for(z=0; z<m_resolution.z; z++)
			{
				ambient = 0.0;
				if(xyz(x+1, y, z) < threshold)
					ambient += (*temp)(x+1, y, z)*(1.0 - (xyz(x+1, y, z)/255.0)*attenuation);
				if(xyz(x, y+1, z) < threshold)
					ambient += (*temp)(x, y+1, z)*(1.0 - (xyz(x, y+1, z)/255.0)*attenuation);
				if(xyz(x, y, z-1) < threshold)
					ambient += (*temp)(x, y, z-1)*(1.0 - (xyz(x, y, z-1)/255.0)*attenuation);

				(*temp)(x, y, z) += ambient/3.0;
				(*result)(x, y, z) += ambient/3.0;
				if(ambient > 3.0)
					cout<<"error"<<endl;
			}
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	cout<<"done."<<endl;

	cout<<"eighth iteration..."<<endl;
	for(x=m_resolution.x-1; x>=0; x--)
		for(y=m_resolution.y-1; y>=0; y--)
			for(z=m_resolution.z-1; z>=0; z--)
			{
				ambient = 0.0;
				if(xyz(x+1, y, z) < threshold)
					ambient += (*temp)(x+1, y, z)*(1.0 - (xyz(x+1, y, z)/255.0)*attenuation);
				if(xyz(x, y+1, z) < threshold)
					ambient += (*temp)(x, y+1, z)*(1.0 - (xyz(x, y+1, z)/255.0)*attenuation);
				if(xyz(x, y, z+1) < threshold)
					ambient += (*temp)(x, y, z+1)*(1.0 - (xyz(x, y, z+1)/255.0)*attenuation);

				(*temp)(x, y, z) += ambient/3.0;
				(*result)(x, y, z) += ambient/3.0;
				if(ambient > 3.0)
					cout<<"error"<<endl;
			}
	(*temp) = 0.0f;
	temp->setBoundary(1.0);
	cout<<"done."<<endl;

	(*result)/=8.0;
	
	return result;
}

template <class T>
rtsImplicit3D<float>* rtsImplicit3D<T>::Isodistance_Manhattan(T isovalue, bool sdf)
{
	rtsImplicit3D<float>* function;
	rtsImplicit3D<bool>* mask;
	compute_distance_function_boundary(isovalue, function, mask, sdf);

	//compute the manhattan distance for the entire function
	//use fast sweeping to compute the manhattan distance
	//0:X  0:Y  0:Z
	cout<<"first iteration..."<<endl;
	int x,y,z;
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
				//if the current point is not a boundary value
				if(!(*mask)(x, y, z))
					(*function)(x,y,z) = manhattan_distance(function, point3D<indextype>(x, y, z), sdf);
	cout<<"done."<<endl;
	cout<<"second iteration..."<<endl;
	//0:X 0:Y Z:0
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=m_resolution.z-1; z>=0; z--)
				//if the current point is not a boundary value
				if(!(*mask)(x, y, z))
					(*function)(x,y,z) = manhattan_distance(function, point3D<indextype>(x, y, z), sdf);
	cout<<"done."<<endl;
	cout<<"third iteration..."<<endl;
	//0:X Y:0 0:Z
	for(x=0; x<m_resolution.x; x++)
		for(y=m_resolution.y-1; y>=0; y--)
			for(z=0; z<m_resolution.z; z++)
				//if the current point is not a boundary value
				if(!(*mask)(x, y, z))
					(*function)(x,y,z) = manhattan_distance(function, point3D<indextype>(x, y, z), sdf);
	cout<<"done."<<endl;
	cout<<"fourth iteration..."<<endl;
	//0:X Y:0 Z:0
	for(x=0; x<m_resolution.x; x++)
		for(y=m_resolution.y-1; y>=0; y--)
			for(z=m_resolution.z-1; z>=0; z--)
				//if the current point is not a boundary value
				if(!(*mask)(x, y, z))
					(*function)(x,y,z) = manhattan_distance(function, point3D<indextype>(x, y, z), sdf);
	cout<<"done."<<endl;
	cout<<"fifth iteration..."<<endl;
	//X:0 0:Y 0:Z
	for(x=m_resolution.x-1; x>=0; x--)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
				//if the current point is not a boundary value
				if(!(*mask)(x, y, z))
					(*function)(x,y,z) = manhattan_distance(function, point3D<indextype>(x, y, z), sdf);
	cout<<"done."<<endl;
	cout<<"sixth iteration..."<<endl;
	//X:0 0:Y Z:0
	for(x=m_resolution.x-1; x>=0; x--)
		for(y=0; y<m_resolution.y; y++)
			for(z=m_resolution.z-1; z>=0; z--)
				//if the current point is not a boundary value
				if(!(*mask)(x, y, z))
					(*function)(x,y,z) = manhattan_distance(function, point3D<indextype>(x, y, z), sdf);
	cout<<"done."<<endl;
	cout<<"seventh iteration..."<<endl;
	//X:0 Y:0 0:Z
	for(x=m_resolution.x-1; x>=0; x--)
		for(y=m_resolution.y-1; y>=0; y--)
			for(z=0; z<m_resolution.z; z++)
				//if the current point is not a boundary value
				if(!(*mask)(x, y, z))
					(*function)(x,y,z) = manhattan_distance(function, point3D<indextype>(x, y, z), sdf);
	cout<<"done."<<endl;
	cout<<"eighth iteration..."<<endl;
	//X:0 Y:0 Z:0
	for(x=m_resolution.x-1; x>=0; x--)
		for(y=m_resolution.y-1; y>=0; y--)
			for(z=m_resolution.z-1; z>=0; z--)
				//if the current point is not a boundary value
				if(!(*mask)(x, y, z))
					(*function)(x,y,z) = manhattan_distance(function, point3D<indextype>(x, y, z), sdf);
	cout<<"done."<<endl;
	

	return function;
}

//computes the gradient along all three dimensions and returns a vector field
template <class T>
rtsImplicit3D<vector3D<T>>* rtsImplicit3D<T>::Gradient()
{
	int x, y, z;
	rtsImplicit3D<vector3D<T>>* result = new rtsImplicit3D<vector3D<T>>(m_resolution.x, m_resolution.y, m_resolution.z);
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				result->xyz(x, y, z).x = xyz(x-1, y, z) - xyz(x, y, z);
				result->xyz(x, y, z).y = xyz(x, y-1, z) - xyz(x, y, z);
				result->xyz(x, y, z).z = xyz(x, y, z-1) - xyz(x, y, z);
			}
	return result;
}


template <class T>
int rtsImplicit3D<T>::Neighbors26(indextype x, indextype y, indextype z, T isovalue)
{
	int neighbors = 0;
	int u,v,w;

	for(u=-1; u<=1; u++)
		for(v=-1; v<=1; v++)
			for(w=-1; w<=1; w++)
				if(xyz(x+u, y+v, z+w) >= isovalue)
					neighbors++;
	if(xyz(x, y, z) > isovalue)
		neighbors--;

	return neighbors;
}

template <class T>
unsigned int rtsImplicit3D<T>::Neighbors6(indextype x, indextype y, indextype z, T threshold)
{

	unsigned int neighbors = 0;
	if(xyz(x+1, y, z) >= threshold)
		neighbors++;
	if(xyz(x-1, y, z) >= threshold)
		neighbors++;
	if(xyz(x, y+1, z) >= threshold)
		neighbors++;
	if(xyz(x, y-1, z) >= threshold)
		neighbors++;
	if(xyz(x, y, z+1) >= threshold)
		neighbors++;
	if(xyz(x, y, z-1) >= threshold)
		neighbors++;

	return neighbors;
}

template <class T>
bool rtsImplicit3D<T>::TestTopology(T isovalue, unsigned int x, unsigned int y, unsigned int z)
{
	if(xyz(x,y,z) < isovalue)
		return false;
	//This function returns true if a voxel is necessary, otherwise it returns false
	unsigned int neighbors = Neighbors(x, y, z, isovalue);

	if(neighbors == 3)
		return false;
	if(neighbors == 0 || neighbors == 1 || neighbors == 4)
		return true;
	if(neighbors == 2)
	{
		if(xyz(x-1, y, z) >= isovalue && xyz(x+1, y, z) >= isovalue)
			return true;
		if(xyz(x, y-1, z) >= isovalue && xyz(x, y+1, z) >= isovalue)
			return true;
		return false;
	}
	
}

template <class T>
void rtsImplicit3D<T>::FloodFill6(indextype x, indextype y, indextype z, T target_value)
{
	T old_value = xyz(x, y, z);					//find the old value (the value being flood-filled)
	if(target_value == old_value)				//if the target value is the same as the old value, nothing to do
		return;

	queue<point3D<indextype>> Q;				//create a queue for neighboring points
	point3D<indextype> current(x, y, z);		//start with the current point
	xyz(current.x, current.y, current.z) = target_value;
	point3D<indextype> next;
	Q.push(current);
	indextype u, v, w;

	while(!Q.empty())							//continue until the queue is empty
	{
		current = Q.front();					//get the first element from the queue
		Q.pop();							
		
		if(current.x != m_resolution.x - 1)
			if(xyz(current.x + 1, current.y, current.z) == old_value)
			{
				xyz(current.x + 1, current.y, current.z) = target_value;
				Q.push(point3D<indextype>(current.x + 1, current.y, current.z));
			}
		if(current.x != 0)
			if(xyz(current.x - 1, current.y, current.z) == old_value)
			{
				xyz(current.x - 1, current.y, current.z) = target_value;
				Q.push(point3D<indextype>(current.x - 1, current.y, current.z));
			}
		if(current.y != m_resolution.y - 1)
			if(xyz(current.x, current.y +1, current.z) == old_value)
			{
				xyz(current.x, current.y+1, current.z) = target_value;
				Q.push(point3D<indextype>(current.x, current.y+1, current.z));
			}
		if(current.y != 0)
			if(xyz(current.x, current.y-1, current.z) == old_value)
			{
				xyz(current.x, current.y-1, current.z) = target_value;
				Q.push(point3D<indextype>(current.x, current.y-1, current.z));
			}
		if(current.z != m_resolution.z - 1)
			if(xyz(current.x, current.y, current.z+1) == old_value)
			{
				xyz(current.x, current.y, current.z+1) = target_value;
				Q.push(point3D<indextype>(current.x, current.y, current.z+1));
			}
		if(current.z != 0)
			if(xyz(current.x, current.y, current.z-1) == old_value)
			{
				xyz(current.x, current.y, current.z-1) = target_value;
				Q.push(point3D<indextype>(current.x, current.y, current.z-1));
			}

	}

}

template <class T>
void rtsImplicit3D<T>::FloodFill26(int x, int y, int z, T target_value)
{
	T old_value = xyz(x, y, z);
	if(target_value == old_value)
		return;

	queue<point3D<indextype>> Q;
	point3D<indextype> current(x, y, z);
	point3D<indextype> next;
	Q.push(current);
	indextype u, v, w;
	while(!Q.empty())
	{
		current = Q.front();
		if(xyz(current.x, current.y, current.z) == old_value)
			xyz(current.x, current.y, current.z) = target_value;
		Q.pop();
		for(u=-1; u<=1; u++)
			for(v=-1; v<=1; v++)
				for(w=-1; w<=1; w++)
				{
					next.x = current.x + u;
					next.y = current.y + v;
					next.z = current.z + w;

					if(next.x >= 0 && next.x < m_resolution.x &&
						next.y >= 0 && next.y < m_resolution.y &&
						next.z >= 0 && next.z < m_resolution.z &&
						xyz(next.x, next.y, next.z) == old_value)
						{
							xyz(next.x, next.y, next.z) = target_value;
							Q.push(next);
						}
				}
	}

				
}

template <class T>
void rtsImplicit3D<T>::Binary(T threshold, T true_value)
{
	/**
	This function converts an implicit function into a binary or characteristic function describing the solid represented by the level
	set at isovalue "threshold".  All values below threshold are set to zero while all values above threshold are set to the specified
	"true_value".  In order to use this function, the data type T must be able to be set to 0.
	**/
	int max_index = m_resolution.x * m_resolution.y * m_resolution.z;	//find the size of the data array
	int i;
	for(i=0; i<max_index; i++)
		if(m_data[i] >= threshold)
			m_data[i] = true_value;
		else
			m_data[i] = 0;
}

template <class T>
vector<point3D<indextype>> rtsImplicit3D<T>::getEdgeNodes(T isovalue, bool protrusions = true)
{
	vector<point3D<indextype>> result;
	indextype x, y, z;
	int neighbors;
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				if(xyz(x, y, z) >= isovalue)
				{
					neighbors = Neighbors26(x, y, z, isovalue);
					if(protrusions == false && neighbors < 1)
						continue;
					if(neighbors < 26)
						result.push_back(point3D<indextype>(x, y, z));
				}
			}

	return result;

}

template <class T>
unsigned int rtsImplicit3D<T>::BackgroundComponents6(indextype x, indextype y, indextype z, T threshold, int n = 18)
{
	/**
	This function computes the number of 6-connected background components in the local region of (x, y, z).
	This computation is performed by testing all 6 possible voxels that can connect to the specified node.  If
	a background node is found, the entire background component associated with that node is filled and the counter
	is incremented by 1.  The value n specifies the connectivity domain for the flood fill.
	The definition of background components is that specified by He, Kischell, Rioult and Holmes.
	**/

	//see if there is at least one BG component
	if(Neighbors6(x, y, z, threshold) == 6)
		return 0;

	
	//retrieve the local region of the function
	rtsImplicit3D<T> local(3, 3, 3);
	point3D<indextype> corner(x-1, y-1, z-1);
	indextype u, v, w;
	for(u=0; u<3; u++)
		for(v=0; v<3; v++)
			for(w=0; w<3; w++)
				local(u, v, w) = xyz(corner.x + u, corner.y + v, corner.z + w);

	//threshold the background to find inside/outside points
	local.Binary(threshold, 1);
	//fill points that are not in the connectivity domain
	if(n == 18)
	{
		local(0, 0, 0) = 1;
		local(0, 0, 2) = 1;
		local(0, 2, 0) = 1;
		local(0, 2, 2) = 1;
		local(2, 0, 0) = 1;
		local(2, 0, 2) = 1;
		local(2, 2, 0) = 1;
		local(2, 2, 2) = 1;
	}
	//local.toConsole();

	//search all 6 possible connected points.  If a background node is found, fill the component
	unsigned int components = 0;
	if(local(0, 1, 1) == 0)
	{
		components++;
		local.FloodFill6(0, 1, 1, 1);
	}
	if(local(2, 1, 1) == 0)
	{
		components++;
		local.FloodFill6(2, 1, 1, 1);
	}
	if(local(1, 0, 1) == 0)
	{
		components++;
		local.FloodFill6(1, 0, 1, 1);
	}
	if(local(1, 2, 1) == 0)
	{
		components++;
		local.FloodFill6(1, 2, 1, 1);
	}
	if(local(1, 1, 0) == 0)
	{
		components++;
		local.FloodFill6(1, 1, 0, 1);
	}
	if(local(1, 1, 2) == 0)
	{
		components++;
		local.FloodFill6(1, 1, 2, 1);
	}

	return components;
}

template <class T>
rtsImplicit3D<T> rtsImplicit3D<T>::Project2D()
{
	/**
	This function projects the entire 3D function onto a 2D function along the z-axis.
	**/
	rtsImplicit3D<T> result(m_resolution.x, m_resolution.y, 1);
	result = 0;
	
	indextype x, y, z;
	for(x = 0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				if(result(x, y, 0) < xyz(x, y, z))
					result(x, y, 0) = xyz(x, y, z);
			}
	return result;
}

template <class T>
void rtsImplicit3D<T>::Erode(T isovalue, T fill_value)
{
	vector<point3D<indextype>> border_nodes;	//get the border nodes for the image
	indextype x, y, z;
	int condition;
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
				if(xyz(x, y, z) >= isovalue && BackgroundComponents6(x, y, z, isovalue) == 1)
				{
					condition = 0;
					//now find the border pairs.  A border point must meet two of the following conditions to be a border pair.
					//south border: s(p) is background
					if(xyz(x, y-1, z) < isovalue)
						condition++;
					//north border: n(p) is background, s(p) and s(s(p)) are foreground
					if(xyz(x, y+1, z) < isovalue && xyz(x, y-1, z) >= isovalue && xyz(x, y-2, z) >= isovalue)
						condition++;
					//west border: w(p) is background
					if(xyz(x-1, y, z) < isovalue)
						condition++;
					//east border: e(p) is background, w(p) and w(w(p)) are foreground
					if(xyz(x+1, y, z) < isovalue && xyz(x-1, y, z) >= isovalue && xyz(x-2, y, z) >= isovalue)
						condition++;
					//up border: u(p) is background
					if(xyz(x, y, z-1) < isovalue)
						condition++;
					//down border: d(p) is background, u(p) and u(u(p)) are foreground
					if(xyz(x, y, z+1) < isovalue && xyz(x, y, z-1) >= isovalue && xyz(x, y, z-2) >= isovalue)
						condition++;
					
					if(condition > 1)
						border_nodes.push_back(point3D<indextype>(x, y, z));
				}
	cout<<"Number of border nodes: "<<border_nodes.size()<<endl;
	
	vector<point3D<indextype>>::iterator i;
	for(i=border_nodes.begin(); i!= border_nodes.end(); i++)
		xyz((*i).x, (*i).y, (*i).z) = fill_value;


}

template <class T>
void rtsImplicit3D<T>::ClampMax(T max)
{
	int i;
	int elements = m_resolution.x * m_resolution.y * m_resolution.z;
	for(i=0; i<elements; i++)
		if(m_data[i] > max)
			m_data[i] = max;
}

template <class T>
void rtsImplicit3D<T>::ClampMin(T min)
{
	int i;
	int elements = m_resolution.x * m_resolution.y * m_resolution.z;
	for(i=0; i<elements; i++)
		if(m_data[i] < min)
			m_data[i] = min;
}

template <class T>
void rtsImplicit3D<T>::ClampMin(T min, T value)
{
	int i;
	int elements = m_resolution.x * m_resolution.y * m_resolution.z;
	for(i=0; i<elements; i++)
		if(m_data[i] < min)
			m_data[i] = value;
}

template <class T>
void rtsImplicit3D<T>::MedianFilter(int dist_x, int dist_y, int dist_z, double factor = 0.5)
{
	rtsImplicit3D<T> result = (*this);
	indextype x, y, z;
	indextype min_x, min_y, min_z;
	indextype max_x, max_y, max_z;
	indextype u, v, w;
	vector<T> region;
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				region.clear();
				min_x = x - dist_x;
				min_y = y - dist_y;
				min_z = z - dist_z;
				max_x = x + dist_x;
				max_y = y + dist_y;
				max_z = z + dist_z;

				for(u=min_x; u<=max_x; u++)
					for(v=min_y; v<=max_y; v++)
						for(w=min_z; w<=max_z; w++)
						{
							region.push_back(xyz(u, v, w));
						}
				sort(region.begin(), region.end());
				result(x, y, z) = region[(int)(region.size()*factor)];
			}
	(*this) = result;
}

template <class T>
unsigned int rtsImplicit3D<T>::Thin(T isovalue)
{
	/**
	This function computes the skeleton of an isosurface embedded in the implicit function and
	described by the "isovalue" parameter.
	**/

	vector<point3D<indextype>> border_nodes;	//get the border nodes for the image
	indextype x, y, z;
	int condition;
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
				//find the border nodes
				if(xyz(x, y, z) >= isovalue && BackgroundComponents6(x, y, z, isovalue) == 1 && Neighbors26(x, y, z, isovalue) != 1)
				{
					condition = 0;
					//now find the border pairs.  A border point must meet two of the following conditions to be a border pair.
					//south border: s(p) is background
					if(xyz(x, y-1, z) < isovalue)
						condition++;
					//north border: n(p) is background, s(p) and s(s(p)) are foreground
					if(xyz(x, y+1, z) < isovalue && xyz(x, y-1, z) >= isovalue && xyz(x, y-2, z) >= isovalue)
						condition++;
					//west border: w(p) is background
					if(xyz(x-1, y, z) < isovalue)
						condition++;
					//east border: e(p) is background, w(p) and w(w(p)) are foreground
					if(xyz(x+1, y, z) < isovalue && xyz(x-1, y, z) >= isovalue && xyz(x-2, y, z) >= isovalue)
						condition++;
					//up border: u(p) is background
					if(xyz(x, y, z-1) < isovalue)
						condition++;
					//down border: d(p) is background, u(p) and u(u(p)) are foreground
					if(xyz(x, y, z+1) < isovalue && xyz(x, y, z-1) >= isovalue && xyz(x, y, z-2) >= isovalue)
						condition++;
					
					if(condition > 1)
						border_nodes.push_back(point3D<indextype>(x, y, z));
				}
	cout<<"Number of border nodes: "<<border_nodes.size()<<endl;

	//determine if each edge node can be removed without changing the topology of the model
	//declare some initial variables
	rtsImplicit3D<T> local(3, 3, 3);	//store the region local to the current voxel
	int nodes_before, nodes_after;		//number of neighboring nodes before and after the filling operation
	point3D<indextype> fill_start;
	vector<point3D<indextype>>::iterator i;

	/*
	Here we determine if a point can be removed by looking at the number of foreground connected
	components in the local region.  If there is more than one connected component
	*/
	unsigned int removed = 0;
	for(i=border_nodes.begin(); i<border_nodes.end(); i++)
	{
		//get the local region around the current point
		for(x=-1; x<=1; x++)
			for(y=-1; y<=1; y++)
				for(z=-1; z<=1; z++)
					local(x+1, y+1, z+1) = xyz((*i).x + x, (*i).y + y, (*i).z + z);

		//deal with the degenerate case of all four sides being internal
		//if(local(0, 1, 0) >= isovalue && local(1, 0, 0) >= isovalue && local(1, 2, 0) >= isovalue && local(2, 1, 0) >= isovalue)
		//	continue;
		local(1, 1, 1) = 0;				//remove the center voxel
		local.Binary(isovalue, 1);
		nodes_before = local.Neighbors26(1, 1, 1, 1);
		//if(nodes_before == 1)			//prevent reducing ends
		//	continue;

		//find an interior voxel to fill
		for(x=0; x<3; x++)
			for(y=0; y<3; y++)
				for(z=0; z<3; z++)
					if(local(x, y, z) > 0)
						fill_start = point3D<indextype>(x, y, z);

		//fill the local region
		local.FloodFill26(fill_start.x, fill_start.y, fill_start.z, 2);
		//get the number of filled neighbors
		nodes_after = local.Neighbors26(1, 1, 1, 2);
		if(nodes_after == nodes_before)
		{
			xyz((*i).x, (*i).y, (*i).z) = 0;
			removed++;
			//cout<<"removed"<<endl;
		}
		//else
		//{
			/*for(x=-1; x<=1; x++)
			for(y=-1; y<=1; y++)
				for(z=-1; z<=1; z++)
					local(x+1, y+1, z+1) = xyz((*i).x + x, (*i).y + y, (*i).z + z);
			local.toConsole();
			cout<<"not removed:  "<<nodes_before<<"  "<<nodes_after<<endl;
			xyz((*i).x, (*i).y, (*i).z) = 100;
			char c;
			cin>>c;*/
		//}
	}
	return removed;
}

/*Shape functions*/
/*These functions create implicit shapes in the function.
Generally, the shape is based on the parameterization.*/
template <class T>
void rtsImplicit3D<T>::Sphere(double center_i, double center_j, double center_k, double radius, T in_value)
{
	point3D<double> center(center_i, center_j, center_k);
	//for each point in the function
	indextype x, y, z;
	double radius_squared = radius*radius;
	vector3D<double> point_to_point;
	point3D<double> result;
	double distance_squared;

	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				//get the parameterized value
				result = getParameter(x, y, z);
				//find the distance between the center of the sphere and the resulting point
				//double distance = (result - center).Length();
				point_to_point = result - center;
				distance_squared = point_to_point*point_to_point;
				//if the distance is less than the radius, the point is inside the sphere
				if(distance_squared < radius_squared)
					xyz(x, y, z) = in_value;
			}
			
}


template <class T>
void rtsImplicit3D<T>::toConsole()
{
	cout<<endl;
	int x, y, z;
	for(z=0; z<m_resolution.z; z++)
	{
		for(y=0; y<m_resolution.y; y++)
		{
			for(x=0; x<m_resolution.x; x++)
			{
				cout.width(7);
				cout.precision(3);
				cout<<(double)xyz(x, y, z);
			}
			cout<<endl;
		}
		cout<<"-----------------------------"<<endl;
	}

}


#endif