matrix.h 13.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
#ifndef STIM_MATRIX_H
#define STIM_MATRIX_H

//#include "rts/vector.h"
#include <string.h>
#include <iostream>
#include <fstream>
#include <stim/math/vector.h>
#include <stim/math/vec3.h>
//#include <stim/cuda/cudatools/callable.h>

namespace stim{

	enum mat4Format {
		mat4_float64,
		mat4_float32,
		mat4_int32,
		mat4_int16,
		mat4_uint16,
		mat4_uint8,
		mat4_float						//floating point type, determined automatically
	};

	static size_t mat4Format_size(mat4Format f){
		switch(f){
			case mat4_float64: return 8;
			case mat4_float32:
			case mat4_int32:   return 4;
			case mat4_int16:
			case mat4_uint16:  return 2;
			case mat4_uint8:   return 1;
			default:           return 0;
		}
	}

	//class encapsulates a mat4 file, and can be used to write multiple matrices to a single mat4 file
	class mat4file {
		std::ofstream matfile;

	public:
		/// Constructor opens a mat4 file for writing
		mat4file(std::string filename) {
			matfile.open(filename.c_str(), std::ios::binary);
		}

		bool is_open() {
			return matfile.is_open();
		}

		void close() {
			matfile.close();
		}

		bool writemat(char* data, std::string varname, size_t sx, size_t sy, mat4Format format) {
			//save the matrix file here (use the mat4 function above)
			//data format: https://maxwell.ict.griffith.edu.au/spl/matlab-page/matfile_format.pdf (page 32)

			int MOPT = 0;									//initialize the MOPT type value to zero
			int m = 0;										//little endian
			int o = 0;										//reserved, always 0
			int p = format;
			int t = 0;
			MOPT = m * 1000 + o * 100 + p * 10 + t;			//calculate the type value
			int mrows = (int)sx;
			int ncols = (int)sy;
			int imagf = 0;									//assume real (for now)
			varname.push_back('\0');									//add a null to the string
			int namlen = (int)varname.size();						//calculate the name size

			size_t bytes = sx * sy * mat4Format_size(format);
			matfile.write((char*)&MOPT, 4);
			matfile.write((char*)&mrows, 4);
			matfile.write((char*)&ncols, 4);
			matfile.write((char*)&imagf, 4);
			matfile.write((char*)&namlen, 4);
			matfile.write((char*)&varname[0], namlen);
			matfile.write((char*)data, bytes);				//write the matrix data
			return is_open();
		}
	};

	static void save_mat4(char* data, std::string filename, std::string varname, size_t sx, size_t sy, mat4Format format){
		mat4file outfile(filename);									//create a mat4 file object
		if (outfile.is_open()) {									//if the file is open
			outfile.writemat(data, varname, sx, sy, format);		//write the matrix
			outfile.close();										//close the file
		}		
	}

template <class T>
class matrix {
	//the matrix will be stored in column-major order (compatible with OpenGL)
	T* M;								//pointer to the matrix data
	size_t R;							//number of rows
	size_t C;							//number of colums

	size_t bytes() {
		return R * C * sizeof(T);		//return the number of bytes of matrix data
	}
	/*void init(size_t rows, size_t cols){
		R = rows;
		C = cols;
		if (R == 0 || C == 0) M = NULL;
		else
			M = (T*)malloc(R * C * sizeof(T));	//allocate space for the matrix
	}*/

	T get(const size_t row, const size_t col) const {
		if (row >= R || col >= C) {
			std::cout << "ERROR: row or column out of range." << std::endl;
			exit(1);
		}
		return M[col * R + row];
	}

	T& at(size_t row, size_t col){
		if (row >= R || col >= C) {
			std::cout << "ERROR: row or column out of range." << std::endl;
			exit(1);
		}
		return M[col * R + row];
	}

public:
	matrix() {
		R = 0;
		C = 0;
		M = NULL;
	}

	matrix(size_t rows, size_t cols) {
		R = rows;
		C = cols;
		M = NULL;
		if (R * C > 0) 
			M = (T*) malloc(R * C * sizeof(T));
	}

	matrix(size_t rows, size_t cols, const T* data) {
		R = rows;
		C = cols;
		M = NULL;
		if (R * C > 0)
			M = (T*)malloc(R * C * sizeof(T));
		memcpy(M, data, R * C * sizeof(T));
	}

	matrix(const matrix<T>& cpy){
		M = NULL;
		if (cpy.R * cpy.C > 0)
			M = (T*)malloc(cpy.R * cpy.C * sizeof(T));
		memcpy(M, cpy.M, cpy.R * cpy.C * sizeof(T));

		R = cpy.R;
		C = cpy.C;
	}

	~matrix() {
		if(M) free(M);
		M = NULL;
		R = C = 0;
	}

	size_t rows() const {
		return R;
	}

	size_t cols() const {
		return C;
	}

	T& operator()(size_t row, size_t col) {
		return at(row, col);
	}

	matrix<T>& operator=(const T rhs) {
		//init(R, C);
		size_t N = R * C;
		for(size_t n=0; n<N; n++)
			M[n] = rhs;

		return *this;
	}

	matrix<T>& operator=(const matrix<T>& rhs){
		if (this != &rhs) {											//if the matrix isn't self-assigned
			T* new_matrix = new T[rhs.R * rhs.C];					//allocate new resources
			memcpy(new_matrix, rhs.M, rhs.R * rhs.C * sizeof(T));	//copy the matrix

			delete[] M;												//delete the previous array
			M = new_matrix;
			R = rhs.R;
			C = rhs.C;
		}
		return *this;
	}
	
	//element-wise operations
	matrix<T> operator+(const T rhs) const {
		matrix<T> result(R, C);					//create a result matrix
		size_t N = R * C;

		for(int i=0; i<N; i++)
			result.M[i] = M[i] + rhs;			//calculate the operation and assign to result

		return result;
	}

	matrix<T> operator+(const matrix<T> rhs) const {
		if (R != rhs.R || C != rhs.C) {
			std::cout << "ERROR: addition is only defined for matrices that are the same size." << std::endl;
			exit(1);
		}
		matrix<T> result(R, C);					//create a result matrix
		size_t N = R * C;

		for (int i = 0; i < N; i++)
			result.M[i] = M[i] + rhs.M[i];			//calculate the operation and assign to result

		return result;
	}

	matrix<T> operator-(const T rhs) const {
		return operator+(-rhs);					//add the negative of rhs
	}

	matrix<T> operator-(const matrix<T> rhs) const {
		return operator+(-rhs);
	}

	matrix<T> operator-() const {
		matrix<T> result(R, C);					//create a result matrix
		size_t N = R * C;

		for (int i = 0; i < N; i++)
			result.M[i] = -M[i];			//calculate the operation and assign to result

		return result;
	}

	matrix<T> operator*(const T rhs) const {
		matrix<T> result(R, C);					//create a result matrix
		size_t N = R * C;

		for(int i=0; i<N; i++)
			result.M[i] = M[i] * rhs;			//calculate the operation and assign to result

		return result;
	}

	matrix<T> operator/(const T rhs) const {
		matrix<T> result(R, C);					//create a result matrix
		size_t N = R * C;

		for(int i=0; i<N; i++)
			result.M[i] = M[i] / rhs;			//calculate the operation and assign to result

		return result;
	}

	//matrix multiplication
	matrix<T> operator*(const matrix<T> rhs) const {
		if(C != rhs.R){
			std::cout<<"ERROR: matrix multiplication is undefined for matrices of size ";
			std::cout<<"[ "<<R<<" x "<<C<<" ] and [ "<<rhs.R<<" x "<<rhs.C<<"]"<<std::endl;
			exit(1);
		}

		matrix<T> result(R, rhs.C);				//create the output matrix
		T inner;								//stores the running inner product
		size_t c, r, i;
		for(c = 0; c < rhs.C; c++){
			for(r = 0; r < R; r++){
				inner = (T)0;
				for(i = 0; i < C; i++){
					inner += get(r, i) * rhs.get(i, c);
				}
				result.M[c * R + r] = inner;
			}
		}
		return result;
	}

	//returns a pointer to the raw matrix data (in column major format)
	T* data(){
		return M;
	}

	//return a transposed matrix
	matrix<T> transpose() const {
		matrix<T> result(C, R);
		size_t c, r;
		for(c = 0; c < C; c++){
			for(r = 0; r < R; r++){
				result.M[r * C + c] = M[c * R + r];
			}
		}
		return result;
	}

	// Reshapes the matrix in place
	void reshape(size_t rows, size_t cols) {
		R = rows;
		C = cols;
	}

	///Calculate and return the determinant of the matrix
	T det() const {
		if (R != C) {
			std::cout << "ERROR: a determinant can only be calculated for a square matrix." << std::endl;
			exit(1);
		}
		if (R == 1) return M[0];			//if the matrix only contains one value, return it

		int r, c, ri, cia, cib;
		T a = 0;
		T b = 0;
		for (c = 0; c < (int)C; c++) {
			for (r = 0; r < R; r++) {
				ri = r;
				cia = (r + c) % (int)C;
				cib = ((int)C - 1 - r) % (int)C;
				a += get(ri, cia);
				b += get(ri, cib);
			}
		}
		return a - b;
	}

	/// Sum all elements in the matrix
	T sum() const {
		size_t N = R * C;								//calculate the number of elements in the matrix
		T s = (T)0;										//allocate a register to store the sum
		for (size_t n = 0; n < N; n++) s += M[n];		//perform the summation
		return s;
	}

	/// Sort rows of the matrix by the specified indices
	matrix<T> sort_rows(size_t* idx) const {
		matrix<T> result(C, R);					//create the output matrix
		size_t r, c;
		for (c = 0; c < C; c++) {								//for each column
			for (r = 0; r < R; r++) {							//for each row element
				result.M[c * R + r] = M[c * R + idx[r]];		//copy each element of the row into its new position
			}
		}
		return result;
	}

	/// Sort columns of the matrix by the specified indices
	matrix<T> sort_cols(size_t* idx, size_t data_type = mat4_float) const {
		matrix<T> result(C, R);
		size_t c;
		for (c = 0; c < C; c++) {											//for each column
			memcpy(&result.M[c * R], &M[idx[c] * R], sizeof(T) * R);		//copy the entire column from this matrix to the appropriate location
		}
		return result;
	}

	/// Return the column specified by index i
	matrix<T> col(size_t i) {
		matrix<T> c(R, 1);										//create a single column matrix
		memcpy(c.data(), &data()[R*i], C * sizeof(T));				//copy the column
		return c;
	}

	/// Return the row specified by index i
	matrix<T> row(size_t i) {
		matrix<T> r(1, C);										//create a single row matrix
		for (size_t c = 0; c < C; c++)
			r(0, c) = at(i, c);
		return r;
	}

	std::string toStr() const {
		std::stringstream ss;

		for(int r = 0; r < R; r++) {
			ss << "| ";
			for(int c=0; c<C; c++) {
				ss << M[c * R + r] << " ";
			}
			ss << "|" << std::endl;
		}
		return ss.str();
	}

	void csv(std::ostream& out) const {
		//std::stringstream csvss;
		for (size_t i = 0; i < R; i++) {
			out << std::fixed << M[i];
			for (size_t j = 1; j < C; j++)
				out << ", " << std::fixed << M[j * R + i];
			out << std::endl;
		}
		//return csvss.str();
	}

	std::string csv() const {
		std::stringstream csvss;
		int digits = std::numeric_limits<double>::max_digits10;
		csvss.precision(digits);
		csv(csvss);
		return csvss.str();
	}



	//save the data as a CSV file
	void csv(std::string filename) const {
		std::ofstream basisfile(filename.c_str());
		basisfile << csv();
		basisfile.close();
	}

	static matrix<T> I(size_t N) {
		matrix<T> result(N, N);							//create the identity matrix
		memset(result.M, 0, N * N * sizeof(T));			//set the entire matrix to zero
		for (size_t n = 0; n < N; n++) {
			result(n, n) = (T)1;						//set the diagonal component to 1
		}
		return result;
	}

	//loads a matrix from a stream in CSV format
	void csv(std::istream& in) {
		size_t c, r;
		T v;
		for (r = 0; r < R; r++) {
			for (c = 0; c < C; c++) {
				in >> v;
				if (in.peek() == ',') in.seekg(1, std::ios::cur);
				at(r, c) = v;;
			}
		}
	}

	void raw(std::string filename) {
		std::ofstream out(filename, std::ios::binary);
		if (out) {
			out.write((char*)data(), rows() * cols() * sizeof(T));
			out.close();
		}
	}

	void mat4(stim::mat4file& file, std::string name = std::string("unknown"), mat4Format format = mat4_float) {
		//make sure the matrix name is valid (only numbers and letters, with a letter at the beginning
		for (size_t c = 0; c < name.size(); c++) {
			if (name[c] < 48 ||												//if the character isn't a number or letter, replace it with '_'
				(name[c] > 57 && name[c] < 65) ||
				(name[c] > 90 && name[c] < 97) ||
				(name[c] > 122)) {
				name[c] = '_';
			}
		}
		if (name[0] < 65 ||
			(name[0] > 91 && name[0] < 97) ||
			name[0] > 122) {
			name = std::string("m") + name;
		}
		if (format == mat4_float) {
			if (sizeof(T) == 4) format = mat4_float32;
			else if (sizeof(T) == 8) format = mat4_float64;
			else {
				std::cout << "stim::matrix ERROR - incorrect format specified" << std::endl;
				exit(1);
			}
		}
		//the name is now valid

		//if the size of the array is more than 100,000,000 elements, the matrix isn't supported
		if (rows() * cols() > 100000000) {											//break the matrix up into multiple parts
			//mat4file out(filename);													//create a mat4 object to write the matrix
			if (file.is_open()) {
				if (rows() < 100000000) {												//if the size of the row is less than 100,000,000, split the matrix up by columns
					size_t ncols = 100000000 / rows();									//calculate the number of columns that can fit in one matrix
					size_t nmat = (size_t)std::ceil((double)cols() / (double)ncols);			//calculate the number of matrices required
					for (size_t m = 0; m < nmat; m++) {									//for each matrix
						std::stringstream ss;
						ss << name << "_part_" << m + 1;
						if (m == nmat - 1)
							file.writemat((char*)(data() + m * ncols * rows()), ss.str(), rows(), cols() - m * ncols, format);
						else
							file.writemat((char*)(data() + m * ncols * rows()), ss.str(), rows(), ncols, format);
					}
				}
			}
		}
		//call the mat4 subroutine
		else
			//stim::save_mat4((char*)M, filename, name, rows(), cols(), format);
			file.writemat((char*)data(), name, rows(), cols(), format);
	}

	// saves the matrix as a Level-4 MATLAB file
	void mat4(std::string filename, std::string name = std::string("unknown"), mat4Format format = mat4_float) {
		stim::mat4file matfile(filename);

		if (matfile.is_open()) {
			mat4(matfile, name, format);
			matfile.close();
		}
	}
};

}	//end namespace rts


#endif