rtsDTGrid2D.h 25.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

#ifndef _RTS_DTGRID2D_H
#define _RTS_DTGRID2D_H

#include <vector>
#include <iostream>
using namespace std;

#include "rtsDTGrid1D.h"



struct IndexPair
{
	//int toValue;
	int toConn;
	int numConn;
};


struct Coord2D
{
	int x1;
	int x2;
};

#include <list>
using namespace std;

class ColumnUnion
{
private:
	list<IndexPair> Q;
	vector<ConnectedComponent>* toConn;

public:
	void InsertColumn(IndexPair col)
	{
		Q.push_back(col);
	}
	void RemoveColumn()
	{
		Q.pop_front();
	}
	vector<ConnectedComponent> MergeColumns(vector<ConnectedComponent> *Pc,
											vector<ConnectedComponent> *n,
											int H)
	{
		int i_Pc = 0;
		int i_n = 0;
		int smallest_column;
		ConnectedComponent smallest_cc;
		vector<ConnectedComponent> result;

		//iterate while there are remaining connected components in each column
		while(i_Pc < Pc->size() || i_n < n->size())
		{
			//find the smallest coordMin value at the two index locations

			//if the index is at the end of the primary array
			if(i_Pc == Pc->size())
			{
				smallest_cc = n->at(i_n);
				smallest_cc.coordMin -= H;
				smallest_cc.coordMax += H;
				i_n++;
			}
			//if n is at the end of the array
			else if(i_n == n->size())
			{
				smallest_cc = Pc->at(i_Pc);
				i_Pc++;
			}
			else if(n->at(i_n).coordMin - H < Pc->at(i_Pc).coordMin)
			{
				smallest_cc = n->at(i_n);
				smallest_cc.coordMin -= H;
				smallest_cc.coordMax += H;
				i_n++;
			}
			else
			{
				smallest_cc = Pc->at(i_Pc);
				i_Pc++;
			}

			//merge the connected component into result
			//if the result array is empty or the last connected component doesn't overlap with smallest_cc
			if(result.size() == 0 || result.back().coordMax + 1 < smallest_cc.coordMin)
				result.push_back(smallest_cc);
			else if(result.back().coordMax < smallest_cc.coordMax)
				result.back().coordMax = smallest_cc.coordMax;
		}
		return result;

	}

	vector<ConnectedComponent> ComputeUnion(int H)
	{
		//create a vector to store the result
		vector<ConnectedComponent> result;

		//for each column in the list, merge it with the result vector
		list<IndexPair>::iterator i;
		vector<ConnectedComponent>::iterator start;
		vector<ConnectedComponent>::iterator end;
		for(i = Q.begin(); i != Q.end(); i++)
		{
			start = toConn->begin() + (*i).toConn;
			end = start + (*i).numConn;
			vector<ConnectedComponent> column(start, end);
			result = MergeColumns(&result, &column, H);
		}

		//output result
		//for(int i=0; i<result.size(); i++)
		//	cout<<i<<": "<<result[i].coordMin<<"--"<<result[i].coordMax<<endl;

		return result;
	}
	void ConnectToGrid(vector<ConnectedComponent> *cc_list)
	{
		toConn = cc_list;
	}
};


/*vector<ConnectedComponent> ColumnUnion::MergeColumns(vector<ConnectedComponent> *Pc, vector<ConnectedComponent> *n, int H)
{
	int i_Pc = 0;
	int i_n = 0;
	int smallest_column;
	ConnectedComponent smallest_cc;
	vector<ConnectedComponent> result;

	//iterate while there are remaining connected components in each column
	while(i_Pc < Pc->size() || i_n < n->size())
	{
		//find the smallest coordMin value at the two index locations

		//if the index is at the end of the primary array
		if(i_Pc == Pc->size())
		{
			smallest_cc = n->at(i_n);
			smallest_cc.coordMin -= H;
			smallest_cc.coordMax += H;
			i_n++;
		}
		//if n is at the end of the array
		else if(i_n == n->size())
		{
			smallest_cc = Pc->at(i_Pc);
			i_Pc++;
		}
		else if(n->at(i_n).coordMin - H < Pc->at(i_Pc).coordMin)
		{
			smallest_cc = n->at(i_n);
			smallest_cc.coordMin -= H;
			smallest_cc.coordMax += H;
			i_n++;
		}
		else
		{
			smallest_cc = Pc->at(i_Pc);
			i_Pc++;
		}

		//merge the connected component into result
		//if the result array is empty or the last connected component doesn't overlap with smallest_cc
		if(result.size() == 0 || result.back().coordMax + 1 < smallest_cc.coordMin)
			result.push_back(smallest_cc);
		else if(result.back().coordMax < smallest_cc.coordMax)
			result.back().coordMax = smallest_cc.coordMax;
	}
	return result;
}*/

/*vector<ConnectedComponent> ColumnUnion::ComputeUnion(int H)
{

	//create a vector to store the result
	vector<ConnectedComponent> result;

	//for each column in the list, merge it with the result vector
	list<IndexPair>::iterator i;
	vector<ConnectedComponent>::iterator start;
	vector<ConnectedComponent>::iterator end;
	for(i = Q.begin(); i != Q.end(); i++)
	{
		start = toConn->begin() + (*i).toConn;
		end = start + (*i).numConn;
		vector<ConnectedComponent> column(start, end);
		result = MergeColumns(&result, &column, H);
	}

	//output result
	//for(int i=0; i<result.size(); i++)
	//	cout<<i<<": "<<result[i].coordMin<<"--"<<result[i].coordMax<<endl;

	return result;
}
*/


template<typename T>
class rtsDTGrid2D
{
private:
	//main arrays
	vector<T> value;
	vector<ConnectedComponent> conn;
	rtsDTGrid1D<IndexPair> proj1D;
	bool randomIndex(rtsDTGrid1D<IndexPair>::iterator &iter1D, int &v_i, int &c_i, int x1, int x2);

	

	//variables to keep track of insertion
	int max_coord;
	bool grid_insertion_started;
	bool column_insertion_started;


public:
	rtsDTGrid2D<T>()
	{
		grid_insertion_started = false;
		column_insertion_started = false;
		proj1D.background.toConn = -1;
		max_coord = 0;
	}

	bool push(int x1, int x2, T v);
	T random(int x1, int x2);
	T& back();
	T background;
	void print();

	friend class ColumnUnion;
	void dilate(int H);
	void insert(rtsDTGrid2D<T> toInsert);
	void operator=(T rhs);
	void getBounds(int &min_x1, int &min_x2, int &max_x1, int &max_x2);

	void dumpValue();
	void dumpConn();

	//iterator
	class iterator;
	friend class iterator;
	class stencil_iterator;
	iterator randomIterator(int x1, int x2);
	iterator begin();
	iterator before();
	iterator end();
	iterator after();

	//other types of iteration
	iterator begin_pn();
	iterator end_pn();
	iterator begin_np();
	iterator end_np();
};

/**********ITERATOR***********************/
template<typename T>
class rtsDTGrid2D<T>::iterator
{
	friend class rtsDTGrid2D;
	rtsDTGrid2D<T>* parent;
	rtsDTGrid1D<IndexPair>::iterator loc1D;
	int iv;
	int ic;
	int x2;

public:
	

	T Value(){return parent->value[iv];}
	int X1(){return loc1D.X1();}
	int X2(){return x2;}
	iterator(){parent = NULL;}
	void SetValue(T value){parent->value[iv] = value;}
	

	void pp()
	{
		//increment the value
		iv++;
		//if this exceeds the length of the value array, we are at the end of the grid
		if(iv == parent->value.size())
		{
			(*this) = parent->after();
			return;
		}

		//increment the current coordinate
		x2++;
		//if we are outside of the current connected component
		if(x2 > parent->conn[ic].coordMax)
		{
			//move to the next connected component
			ic++;
			//if this is the last connected component in the column
			if(ic == loc1D.Value().toConn + loc1D.Value().numConn)
				loc1D++;
			//if there are no more connected components
			if(ic == parent->conn.size())
			{
				//we're at the end, return end
				(*this) = parent->end();
				return;
			}
			x2 = parent->conn[ic].coordMin;
		}
	}

	void nn()
	{
		//decrement the value
		iv--;
		//if this is less than 0, we are at the beginning of the grid
		if(iv < 0)
		{
			(*this) = parent->before();
			return;
		}

		//decrement the current coordinate
		x2--;
		//if we are outside of the current connected component
		if(x2 < parent->conn[ic].coordMin)
		{
			//move to the previous connected component
			ic--;
			//if this is the first connected component in the column
			if(ic < loc1D.Value().toConn)
				loc1D--;
			//if there are no more connected components
			if(ic < 0)
			{
				//we're at the beginning, return begin
				(*this) = parent->before();
				return;
			}
			x2 = parent->conn[ic].coordMax;
		}

	}

	void pn()
	{
		//for the most part we will be going backwards through the array
		//so first decrement iv
		iv--;
		x2--;
		//if iv is less than the current connected component
		if(iv < parent->conn[ic].toValue)
		{
			//go to the previous connected component
			ic--;
			//if we are before the first connected component in the column
			if(ic < loc1D.Value().toConn)
			{
				//increment the 1D iterator
				loc1D++;
				//reset ic to the last component of the new column
				ic = loc1D.Value().toConn + loc1D.Value().numConn - 1;
				//find the new value identifier
				iv = parent->conn[ic].toValue + (parent->conn[ic].coordMax - parent->conn[ic].coordMin);
			}
			//compute the currect coordinate
			x2 = parent->conn[ic].coordMax;
		}
	}

	void np()
	{
		//for the most part we will be going forward through the grid
		//increment iv
		iv++;
		x2++;
		
		//if we are outside of the current connected component
		if(x2 > parent->conn[ic].coordMax)
		{
			//move to the next connected component
			ic++;
			//if this is the last connected component in the column
			if(ic == loc1D.Value().toConn + loc1D.Value().numConn)
			{
				loc1D--;
				ic = loc1D.Value().toConn;
				iv = parent->conn[ic].toValue;
			}

			x2 = parent->conn[ic].coordMin;
		}

	}

	//boolean operators for comparing iterators
	bool operator==(iterator &rhs)
	{
		if(parent == rhs.parent && iv == rhs.iv)
			return true;
		//if(loc1D == rhs.loc1D && x2 == rhs.x2)
		//	return true;
		return false;
	}
	bool operator!=(iterator &rhs){return !((*this) == rhs);}

	bool operator<(iterator &rhs)
	{
		if(parent == rhs.parent && iv < rhs.iv)
			return true;
		//if(loc1D < rhs.loc1D)
		//	return true;
		//else if(loc1D == rhs.loc1D && x2 < rhs.x2)
		//	return true;
		return false;
	}
	bool operator<=(iterator &rhs)
	{
		if(parent == rhs.parent && iv <= rhs.iv)
			return true;
		//if(loc1D <= rhs.loc1D)
		//	return true;
		//else if(loc1D == rhs.loc1D && x2 <= rhs.x2)
		//	return true;
		return false;
	}
	void operator++(){pp();}
	void operator--(){nn();}
	void increment_until(int p1, int p2)
	{
		while((*this) != parent->end())
		{
			if(X1() > p1)
				return;
			else if(X1() == p1 && X2() >= p2)
				return;

			pp();
		}
	}
};

/********STENCIL ITERATOR*****************/
template<typename T>
class rtsDTGrid2D<T>::stencil_iterator : public iterator
{
private:
	//list of iterators that make up the template
	vector<iterator> iterator_list;
	//iterator positions (relative to the position of the stencil iterator)
	vector<Coord2D> position_list;
	//list containing the values for each position in the stencil
	vector<T> value_list;

	void refresh_iterators();
	void set_values();
	void increment_all();

public:
	typename rtsDTGrid2D<T>::stencil_iterator operator=(const iterator rhs);
	void addPosition(int p1, int p2);
	void increment();
	void operator++()
	{
		increment();
	}
	T getValue(int id){return value_list[id];}
	bool exists(int id);
	
};

template<typename T>
void rtsDTGrid2D<T>::stencil_iterator::increment_all()
{
	//run through each iterator and increment to the correct position
	int i;
	Coord2D dest;
	for(i=0; i<iterator_list.size(); i++)
	{
		//determine the appropriate position for the iterator
		dest.x1 = X1() + position_list[i].x1;
		dest.x2 = X2() + position_list[i].x2;
		//iterate until that position is reached
		iterator_list[i].increment_until(dest.x1, dest.x2);
	}
	set_values();

}

template<typename T>
void rtsDTGrid2D<T>::stencil_iterator::increment()
{
	//increment the current position
	rtsDTGrid2D<T>::iterator::pp();

	increment_all();
}

template<typename T>
void rtsDTGrid2D<T>::stencil_iterator::refresh_iterators()
{
	//make sure that the iterator position has been set
	if(parent == NULL)
	{
		cout<<"Iterator location not set."<<endl;
		return;
	}
	
	//initialize all of the other iterators
	int i;
	for(i=0; i<iterator_list.size(); i++)
	{
		//for each iterator, set the iterator to the beginning of the grid
		//iterator_list[i] = parent->begin();
		iterator_list[i] = parent->randomIterator(X1() + position_list[i].x1,
												  X2() + position_list[i].x2);
	}
	//increment_all();
	//set the values for all of the iterators
	set_values();
}

template<typename T>
void rtsDTGrid2D<T>::stencil_iterator::set_values()
{
	int i;
	Coord2D dest;
	for(i=0; i<iterator_list.size(); i++)
	{
		//determine the appropriate position for the iterator
		dest.x1 = X1() + position_list[i].x1;
		dest.x2 = X2() + position_list[i].x2;
		//now add the value to the value list
		if(iterator_list[i].X1() == dest.x1 && iterator_list[i].X2() == dest.x2)
			value_list[i] = iterator_list[i].Value();
		else
			value_list[i] = parent->background;
	}


}

template<typename T>
typename rtsDTGrid2D<T>::stencil_iterator rtsDTGrid2D<T>::stencil_iterator::operator=(const iterator rhs)
{
	parent = rhs.parent;
	loc1D = rhs.loc1D;
	iv = rhs.iv;
	ic = rhs.ic;
	x2 = rhs.x2;

	refresh_iterators();

	return (*this);
}

template<typename T>
void rtsDTGrid2D<T>::stencil_iterator::addPosition(int p1, int p2)
{
	//add a position to the position list and add a new iterator to the iterator list
	Coord2D p;
	p.x1 = p1;
	p.x2 = p2;
	position_list.push_back(p);
	rtsDTGrid2D<T>::iterator new_iter;


	iterator_list.push_back(new_iter);
	T empty;
	value_list.push_back(empty);
}

template<typename T>
bool rtsDTGrid2D<T>::stencil_iterator::exists(int id)
{
	int i;
	Coord2D dest;

	//determine the appropriate position for the iterator
	dest.x1 = X1() + position_list[id].x1;
	dest.x2 = X2() + position_list[id].x2;
	//now add the value to the value list
	if(iterator_list[id].X1() == dest.x1 && iterator_list[id].X2() == dest.x2)
		return true;
	else
		return false;
	
}

/**************ITERATOR METHODS IN DT GRID*******************/
template<typename T>
typename rtsDTGrid2D<T>::iterator rtsDTGrid2D<T>::begin()
{
	//if the grid is empty, return an iterator to "after"
	if(value.size() == 0)
		return after();

	iterator result;
	result.parent = this;
	result.ic = 0;
	result.iv = 0;
	result.x2 = conn[0].coordMin;
	result.loc1D = proj1D.begin();

	return result;
}
template<typename T>
typename rtsDTGrid2D<T>::iterator rtsDTGrid2D<T>::before()
{
	if(value.size() == 0)
		return after();

	iterator result;
	result.parent = this;
	result.ic = 0;
	result.iv = -1;
	//result.x2 = conn[0].coordMin;
	result.loc1D = proj1D.before();

	return result;
}

template<typename T>
typename rtsDTGrid2D<T>::iterator rtsDTGrid2D<T>::end()
{
	//if the grid is empty, return after()
	if(value.size() == 0)
		return after();
	iterator result;
	result.parent = this;
	result.ic = conn.size() - 1;
	result.iv = value.size() - 1;
	result.x2 = conn[result.ic].coordMax;
	result.loc1D = proj1D.end();
	return result;
}

template<typename T>
typename rtsDTGrid2D<T>::iterator rtsDTGrid2D<T>::randomIterator(int x1, int x2)
{
	rtsDTGrid2D<T>::iterator result;
	result.parent = this;

	//perform the random search
	int v_i, c_i;
	rtsDTGrid1D<IndexPair>::iterator iter1D;

	//if the value exists in the grid, create the iterator and return
	if(randomIndex(iter1D, v_i, c_i, x1, x2))
	{
		result.loc1D = iter1D;
		result.iv = v_i;
		result.ic = c_i;
		int offset = v_i - conn[c_i].toValue;
		result.x2 = conn[c_i].coordMin + offset;
	}
	//if the value doesn't exist
	else
	{
		//if the 1D iterator is at the end of the grid, return after()
		if(iter1D == proj1D.after())
			return after();
		
		//if the value lies before the current column
		if(x1 < iter1D.X1() || (x1 == iter1D.X1() && x2 < conn[c_i].coordMin) )
		{
			result.ic = c_i;
		}
		//else if the value lies after the current column
		else
		{
			//increment the 1D iterator
			iter1D++;
			//if this is the last connected component
			if(c_i >= conn.size() - 1)
				return after();
			else
			{
				c_i++;
				result.ic = c_i;
			}
		}
		

		result.loc1D = iter1D;
		result.iv = conn[c_i].toValue;
		result.x2 = conn[c_i].coordMin;
	}
	return result;


}
template<typename T>
typename rtsDTGrid2D<T>::iterator rtsDTGrid2D<T>::after()
{
	iterator result;
	result.parent = this;
	result.ic = conn.size() - 1;
	result.iv = value.size();
	//result.x2 = conn[result.ic].coordMax;
	result.loc1D = proj1D.after();
	return result;
}
template<typename T>
typename rtsDTGrid2D<T>::iterator rtsDTGrid2D<T>::begin_pn()
{
	if(value.size() == 0)
		return after();

	iterator result;
	result.parent = this;
	result.loc1D = proj1D.begin();
	result.ic = result.loc1D.Value().toConn + result.loc1D.Value().numConn - 1;
	result.iv = conn[result.ic].toValue + (conn[result.ic].coordMax - conn[result.ic].coordMin);
	result.x2 = conn[result.ic].coordMax;

	return result;
}
template<typename T>
typename rtsDTGrid2D<T>::iterator rtsDTGrid2D<T>::begin_np()
{
	//this is the opposite corner of pn
	return end_pn();
}
template<typename T>
typename rtsDTGrid2D<T>::iterator rtsDTGrid2D<T>::end_pn()
{
	if(value.size() == 0)
		return after();
	iterator result;
	result.parent = this;
	result.loc1D = proj1D.end();
	result.ic = result.loc1D.Value().toConn;
	result.iv = conn[result.ic].toValue;
	result.x2 = conn[result.ic].coordMin;
	
	return result;
}
template<typename T>
typename rtsDTGrid2D<T>::iterator rtsDTGrid2D<T>::end_np()
{
	//this is the opposite corner of pn
	return begin_pn();
}

template<typename T>
void rtsDTGrid2D<T>::print()
{
	rtsDTGrid2D<T>::iterator i;
	i = begin();
	while(i!=end())
	{
		cout<<i.X1()<<","<<i.X2()<<":"<<i.Value()<<endl;
		i.increment();
	}
	

}

/**************DT GRID**************************/
template<typename T>
bool rtsDTGrid2D<T>::push(int x1, int x2, T v)
{
	//run this code if we have to start a new column in X1.  This happens when:
	//(a) we have just inserted the first value into the grid
	//(b) the value of x1 is greater than the last value of x1	
	if(grid_insertion_started == false || x1 != proj1D.getMaxX1())
	{
		//assume that a new column is being created
		//create the column in proj1D
		IndexPair newPair;
		newPair.toConn = conn.size();
		//newPair.toValue = value.size();
		newPair.numConn = 0;

		//if this insertion throws an error, the value was inserted incorrectly
		//the error will get thrown by DTGrid1D, so just return
		if(!proj1D.push(x1, newPair))
		{
			cout<<"Out-of-order insertion in D = 2: X1 = "<<x1<<" X2 = "<<x2<<endl;
			return false;
		}

		column_insertion_started = false;
		grid_insertion_started = true;
	}
	//If there is no new column, we still have to check to make sure the value is inserted
	//in the correct order in X2:
	else
	{
		if(column_insertion_started && x2 <= max_coord)
		{
			cout<<"Out-of-order insertion in D = 2: X1 = "<<x1<<" X2 = "<<x2<<endl;
			return false;
		}
	}
	

	//run this code if we have to start a new connected component.  This happens when:
	//(a) We insert the first value into the column
	//(b) There is empty space between the last insertion and this one
	if(column_insertion_started == false || x2 > (max_coord + 1))
	{
		//start a new connected component
		ConnectedComponent new_conn;
		new_conn.toValue = value.size();
		new_conn.coordMin = x2;
		new_conn.coordMax = x2;
		conn.push_back(new_conn);
		//increment the number of connected components for the column in X1
		proj1D.back().numConn++;
		column_insertion_started = true;
	}

	//insert the value into the grid:
	//(a) Insert the value at the end of the coord array
	//(b) Increment the coordMax value of the current connected component
	//(c) Change the maximum inserted coordinate to the new value
	value.push_back(v);
	conn[conn.size() - 1].coordMax = x2;
	//change max_coord to the new coordinate
	max_coord = x2;
	return true;
}

template<typename T>
bool rtsDTGrid2D<T>::randomIndex(rtsDTGrid1D<IndexPair>::iterator &iter1D, int &v_i, int &c_i, int x1, int x2)
{
	//search along the first dimension
	//get an iterator
	iter1D = proj1D.randomIterator(x1);

	//if the after() iterator is returned, exit
	if(iter1D == proj1D.after())
	{
		c_i = conn.size();
		v_i = value.size();
		return false;
	}

	IndexPair i = iter1D.Value();

	//if the 1D column does not exist
	if(iter1D.X1() != x1)
	{
		//get the appropriate values from the 1D iterator
		//(which points to the next valid column)
		c_i = i.toConn;
		v_i = conn[c_i].toValue;
		return false;
	}
	

	int high, low, mid;
	low = i.toConn;
	high = i.toConn + i.numConn - 1;

	do
	{
		mid = low + (high - low)/2;
		if(x2 > conn[mid].coordMax)
			low = mid + 1;
		else if(x2 < conn[mid].coordMin)
			high = mid - 1;
		else break;
	}
	while(low <= high);

	//at this point, mid is either at the appropriate connected component,
	//or x2 is not in the grid
	if(x2 >= conn[mid].coordMin && x2 <= conn[mid].coordMax)
	{
		int offset = x2 - conn[mid].coordMin;
		c_i = mid;
		v_i = conn[mid].toValue + offset;
		return true;
	}
	else
	{
		c_i = mid;
		v_i = conn[c_i].toValue;
		return false;
	}
}

template<typename T>
T rtsDTGrid2D<T>::random(int x1, int x2)
{
	int v_i, c_i;
	rtsDTGrid1D<IndexPair>::iterator iter1D;
	if(randomIndex(iter1D, v_i, c_i, x1, x2))
		return value[v_i];
	else
		return background;
}

template<typename T>
T& rtsDTGrid2D<T>::back()
{
	return value[value.size()-1];
}

template<typename T>
void rtsDTGrid2D<T>::dilate(int H)
{
	//if the grid is empty, return unchanged
	if(value.size() == 0)
		return;

	ColumnUnion CUqueue;
	CUqueue.ConnectToGrid(&conn);


	//dilate the N-1 DT-Grid constituent
	rtsDTGrid1D<IndexPair> dilated_proj1D = proj1D;
	
	//an empty pair has a number of connected components equal to zero
	//this should not happen in reality and can therefore be used to check for new columns
	IndexPair empty_pair;
	empty_pair.numConn = 0;

	//set the background node to the empty node and dilate the 1D projection
	dilated_proj1D.background = empty_pair;
	dilated_proj1D.dilate(H);

	//create a new DT Grid that will replace this one
	rtsDTGrid2D<T> new_grid;
	new_grid.proj1D = dilated_proj1D;
	new_grid.proj1D.background.toConn = -1;

	//create iteratorDilate that iterates along the dilated N-1 grid
	rtsDTGrid1D<IndexPair>::stencil_iterator iteratorDilate;
	iteratorDilate.addPosition(-H);
	iteratorDilate.addPosition(H);

	//create an iterator to set the new proj1D values
	rtsDTGrid1D<IndexPair>::iterator iteratorNew;


	//variables for each iteration
	IndexPair new_pair;
	vector<ConnectedComponent>::iterator ccIterator;
	unsigned int numValues = 0;
	for(iteratorNew = new_grid.proj1D.begin(),
		iteratorDilate = dilated_proj1D.begin();
		iteratorDilate != dilated_proj1D.after();
		iteratorNew++,
		iteratorDilate++)
		{
			//cout<<"1D position: "<<iteratorNew.X1()<<endl;
			//if a column is entering the stencil
			if(iteratorDilate.getValue(1).numConn)
				CUqueue.InsertColumn(iteratorDilate.getValue(1));
			
			//compute the union of all columns in the queue
			vector<ConnectedComponent> result = CUqueue.ComputeUnion(H);

			//compute the new IndexPair representing the column
			new_pair.toConn = new_grid.conn.size();
			new_pair.numConn = result.size();
			//store the index pair
			iteratorNew.SetValue(new_pair);

			//insert each of the connected components
			for(ccIterator = result.begin(); ccIterator!=result.end(); ccIterator++)
			{
				new_grid.conn.push_back(*ccIterator);
				new_grid.conn.back().toValue = numValues;
				numValues += (*ccIterator).coordMax - (*ccIterator).coordMin + 1;
			}

			//if a column is leaving the stencil
			if(iteratorDilate.getValue(0).numConn)
				CUqueue.RemoveColumn();
		}

	//allocate space for the new value array
	new_grid.value.resize(numValues, background);

	//copy the data from this grid into the new grid
	new_grid.insert(*this);

	//replace this grid with the new grid
	conn = new_grid.conn;
	value = new_grid.value;
	proj1D = new_grid.proj1D;

	
}

template<typename T>
void rtsDTGrid2D<T>::insert(rtsDTGrid2D<T> toInsert)
{
	//create source and destination iterators
	rtsDTGrid2D<T>::iterator source = toInsert.begin();
	rtsDTGrid2D<T>::iterator dest = begin();

	for(source = toInsert.begin(); source != toInsert.after(); source++)
	{
		//move the destination iterator to the current source position
		dest.increment_until(source.X1(), source.X2());
		//cout<<"source: "<<source.X1()<<" "<<source.X2()<<": "<<source.Value()<<endl;
		//cout<<"dest: "<<dest.X1()<<" "<<dest.X2()<<": "<<dest.Value()<<endl;
		//if the position exists in dest
		if(dest.X1() == source.X1() && dest.X2() == source.X2())
			dest.SetValue(source.Value());
		//cout<<"dest: "<<dest.X1()<<" "<<dest.X2()<<": "<<dest.Value()<<endl;
	}

}

template<typename T>
void rtsDTGrid2D<T>::getBounds(int &min_x1, int &min_x2, int &max_x1, int &max_x2)
{
	//if the grid is empty, return an empty bounding volume
	if(value.size() == 0)
	{
		min_x1 = min_x2 = max_x1 = max_x2 = 0;
		return;
	}

	//get the min and max values for the 1D grid (x1 coordinate)
	proj1D.getBounds(min_x1, max_x1);

	//initialize the min and max values
	min_x2 = conn[0].coordMin;
	max_x2 = conn.back().coordMax;

	//iterate through all columns finding the smallest and largest coordinate values
	rtsDTGrid1D<IndexPair>::iterator i;
	IndexPair col;
	for(i=proj1D.begin(); i!=proj1D.after(); i++)
	{
		col = i.Value();
		if(conn[col.toConn].coordMin < min_x2)
			min_x2 = conn[col.toConn].coordMin;
		if(conn[col.toConn + col.numConn - 1].coordMax > max_x2)
			max_x2 = conn[col.toConn + col.numConn - 1].coordMax;
	}
		

}
template<typename T>
void rtsDTGrid2D<T>::operator =(T rhs)
{
	for(int i=0; i<value.size(); i++)
		value[i] = rhs;
}


template<typename T>
void rtsDTGrid2D<T>::dumpValue()
{
	for(int i=0; i<value.size(); i++)
		cout<<value[i]<<endl;
}

template<typename T>
void rtsDTGrid2D<T>::dumpConn()
{
	for(int i=0; i<conn.size(); i++)
		cout<<conn[i].toValue<<","<<conn[i].coordMin<<","<<conn[i].coordMax<<endl;


}

#endif