rtsFunction3D.h 29.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
#ifndef RTSFUNCTION3D_H
#define RTSFUNCTION3D_H

#define DIST_MAX	255

#include "rtsLinearAlgebra.h"
//#include "rtsDTGrid3D.h"
#include <fstream>
//#include <iostream>
//#include <math.h>
//#include <queue>
//#include <algorithm>
using namespace std;

typedef int indextype;

///This class represents a 3D implicit function as a grid.  It provides methods for accessing values, interpolation, and several utilities.

template <class T> class rtsFunction3D
{
private:
	//pointer to store the data
	T* m_data;
	//resolution of the data (x, y, z) dimensional extents
	vector3D<indextype> m_resolution;
	T m_boundary;			//boundary condition
	point3D<double> m_domain_min;	//min and max range values (used for parametric access)
	point3D<double> m_domain_max;
	vector3D<double> m_voxel_size;
	
	//bit-blit function copies 3D data quickly from source to dest
	void blit3D(const T* source,
				   indextype s_px, indextype s_py, indextype s_pz,
				   indextype s_sx, indextype s_sy, indextype s_sz,
				   T* dest,
				   indextype d_px, indextype d_py, indextype d_pz,
				   indextype d_sx, indextype d_sy, indextype d_sz,
				   indextype blit_size_x, indextype blit_size_y, indextype blit_size_z);

	void shallow_copy(const rtsFunction3D<T> source, rtsFunction3D<T> &dest);
	inline point3D<double> getParameter(indextype i);
	void initialize_empty(indextype res_x, indextype res_y, indextype res_z);

public:
	//construct an implicit function with a size of 1
	rtsFunction3D();			///<Create an empty implicit function
	//construct an implicit function of the specified resolution
	rtsFunction3D(indextype res_x, indextype res_y, indextype res_z);	///<Create an implicit function with the specified resolution
	//construct an implicit function from sample data and a specified size
	rtsFunction3D(T* data, indextype res_x, indextype res_y, indextype res_z);	///<Create an implicit function from previous data at the specified resolution
	//shallow-copy constructor, defines all shallow variables
	rtsFunction3D(vector3D<int> resolution, T boundary, point3D<double> min_domain, point3D<double> max_domain);
	//full copy constructor, defines all variables
	rtsFunction3D(T* data, vector3D<int> resolution, T boundary, point3D<double> min_domain, point3D<double> max_domain);
	rtsFunction3D(const rtsFunction3D<T> &original);	//copy constructor
	~rtsFunction3D();		//destructor
	void Init(indextype res_x, indextype res_y, indextype res_z);

	//overloaded operators
	rtsFunction3D<T>& operator=(const rtsFunction3D<T>& original);		///<Overloaded operator creates a copy of an implicit function
	rtsFunction3D<T>& operator=(const T constant);						///<Overloaded operator sets all points in an implicit function to the given constant value
	inline T& operator()(indextype x, indextype y, indextype z);		///<Allows access to the sample point indexed by x, y, and z using the parenthesis operator
	inline T operator()(double i, double j, double k);					///<Allows access to the implicit function (based on the domain boundaries) at the position (i, j, k).  This class uses linear interpolation.
	rtsFunction3D<T>& operator*=(const T constant);						///<Multiplies the values at all sample points by a constant.
	rtsFunction3D<T>& operator+=(const T constant);						///<Adds a constant to the values at all sample points.
	rtsFunction3D<T>& operator-=(const T constant);						///<Subtracts a constant from the values at all sample points.
	rtsFunction3D<T>& operator/=(const T constant);						///<Divides all values by a constant.
	const rtsFunction3D<T> operator+(const T constant);					///<Adds a constant to an implicit function and returns a new function.
	const rtsFunction3D<T> operator-(const T constant);					///<Subtracts a constant from an implicit function and returns a new function.
	const rtsFunction3D<T> operator*(const T constant);					///<Multiplies an implicit function by a constant and returns a new function.
	const rtsFunction3D<T> operator/(const T constant);					///<Divides an implicit function by a constant and returns a new function.

	//casting operator
	//template <class U> friend class rtsFunction3D<U>;
	template <class U> operator rtsFunction3D<U>();						///<Casts between data types.

	//friend classes for overloading "backwards" operations (like 3*function)
	friend rtsFunction3D<T> operator*(const T lhs, rtsFunction3D<T> rhs){return rhs*lhs;}	///<Allows associative multiplication.
	friend rtsFunction3D<T> operator+(const T lhs, rtsFunction3D<T> rhs){return rhs+lhs;}	///<Allows associative addition.
	friend rtsFunction3D<T> operator-(const T lhs, rtsFunction3D<T> rhs)					///<Allows associative subtraction.
	{
		rtsFunction3D<T> result;
		rhs.shallow_copy(rhs, result);	//make a copy of all of the shallow variables and allocate memory
		indextype size = rhs.m_resolution.x * rhs.m_resolution.y * rhs.m_resolution.z;
		//iterate and subtract
		for(indextype i=0; i<size; i++)
			result.m_data[i] = lhs - rhs.m_data[i];

		return result;
	}
	//friend rtsFunction3D<T> operator/(const T lhs, rtsFunction3D<T> rhs);

	//loading/saving data to disk
	void LoadRAW(indextype header_size, indextype data_x, indextype data_y, indextype data_z, const char* filename);	///<Loads RAW data from a file with the specified header size and data size.
	void SaveRAW(const char* filename);							///<Save the data as RAW data to disk.
	void LoadVOL(const char* filename);							///<Load a VOL file from disk.
	void SaveVOL(const char* filename);							///<Save a VOL file to disk.

	rtsFunction3D<T> Project2D();			//<Projects the data along the z-axis using a maximum-intensity projection.

	//data access methods
	inline T& xyz(indextype x, indextype y, indextype z);
	inline T ijk(double i, double j, double k);
	void Parameterize(double x_min, double x_max, double y_min, double y_max, double z_min, double z_max);
	void setBoundary(T boundary){m_boundary = boundary;}
	T getBoundary(){return m_boundary;}
	T* GetBits();
	indextype DimX(){return m_resolution.x;}
	indextype DimY(){return m_resolution.y;}
	indextype DimZ(){return m_resolution.z;}
	inline point3D<double> getParameter(indextype x, indextype y, indextype z);
	inline point3D<indextype> getNearestIndex(double i, double j, double k);
	inline point3D<double> getFractionalIndex(double i, double j, double k);
	inline point3D<indextype> getNearestIndex(indextype i);
	point3D<double> getMinDomain(){return m_domain_min;}
	point3D<double> getMaxDomain(){return m_domain_max;}

	//data input methods
	void Insert(rtsFunction3D<T>* source, indextype x, indextype y, indextype z);

	//data massaging
	
	void Scale(T min, T max);
	void Crop(indextype x, indextype y, indextype z, indextype size_x, indextype size_y, indextype size_z);
	void Binary(T threshold, T true_value);		///<Turns the image into a binary image based on a threshold value T.  All values below T are set to 0, all values above are set to true_value.
	void Threshold(T min, T value);
	void Threshold(T min, T max, T value);
	void Threshold(T min, T max, T inside, T outside);
	void ClampMax(T max);		///<Clamps the function to the given maximum value.
	void ClampMin(T min);
	T getMin();
	T getMax();

	//create new data
	rtsFunction3D<T>* Resample(indextype newres_x, indextype newres_y, indextype newres_z);

	//output functions
	void toConsole();

};

template <class T>
void rtsFunction3D<T>::blit3D(const T* source,
				   indextype s_px, indextype s_py, indextype s_pz,
				   indextype s_sx, indextype s_sy, indextype s_sz,
				   T* dest,
				   indextype d_px, indextype d_py, indextype d_pz,
				   indextype d_sx, indextype d_sy, indextype d_sz,
				   indextype blit_size_x, indextype blit_size_y, indextype blit_size_z)
{
	indextype ps, pd;		//stores the mapping for the source point to the dest point
	//find the maximum points that can be blit to (in case source overlaps the edges of dest)
	blit_size_x = min(blit_size_x, min(s_sx - s_px, d_sx - d_px));
	blit_size_y = min(blit_size_y, min(s_sy - s_py, d_sy - d_py));
	blit_size_z = min(blit_size_z, min(s_sz - s_pz, d_sz - d_pz));

	indextype source_z_offset = s_sx * s_sy;
	indextype dest_z_offset = d_sx * d_sy;

	indextype z,y;
	for(z=0; z<blit_size_z; z++)
		for(y=0; y<blit_size_y; y++)
		{
			ps = (z + s_pz) * source_z_offset + (y + s_py) * s_sx + s_px;
			pd = (z + d_pz) * dest_z_offset + (y + d_py) * d_sx + d_px;
			memcpy((void*)(&dest[pd]), (void*)(&source[ps]), sizeof(T)*blit_size_x);
		}
}

template <class T>
void rtsFunction3D<T>::shallow_copy(const rtsFunction3D<T> source, rtsFunction3D<T> &dest)
{
	dest = rtsFunction3D<T>(source.m_resolution.x, source.m_resolution.y, source.m_resolution.z);
	dest.m_boundary = source.m_boundary;
	dest.m_domain_max = source.m_domain_max;
	dest.m_domain_min = source.m_domain_max;
	dest.m_voxel_size = source.m_voxel_size;
}

template <class T>
rtsFunction3D<T>::rtsFunction3D(vector3D<int> resolution, T boundary, point3D<double> domain_min, point3D<double> domain_max)
{
	//This function creates an implicit function based on all of the shallow variables
	m_resolution = resolution;
	m_boundary = boundary;
	m_domain_min = domain_min;
	m_domain_max = domain_max;
	m_voxel_size = domain_max - domain_min;
	m_voxel_size.x /= m_resolution.x;
	m_voxel_size.y /= m_resolution.y;
	m_voxel_size.z /= m_resolution.z;

	//allocate the data
	m_data = new T[m_resolution.x * m_resolution.y * m_resolution.z];
}

template <class T>
rtsFunction3D<T>::rtsFunction3D(T* data, vector3D<int> resolution, T boundary, point3D<double> domain_min, point3D<double> domain_max)
{
	//This function creates an implicit function based on ALL of the variables
	m_resolution = resolution;
	m_boundary = boundary;
	m_domain_min = domain_min;
	m_domain_max = domain_max;
	m_voxel_size = domain_max - domain_min;
	m_voxel_size.x /= m_resolution.x;
	m_voxel_size.y /= m_resolution.y;
	m_voxel_size.z /= m_resolution.z;

	//allocate the data
	indextype size = m_resolution.x * m_resolution.y * m_resolution.z;
	m_data = new T[size];
	memcpy(m_data, data, sizeof(T)*size);
	//for(int i=0; i<size; i++)
	//	m_data[i] = data[i];
}



template <class T>
rtsFunction3D<T>::rtsFunction3D()
{
	m_resolution.x = 1;
	m_resolution.y = 1;
	m_resolution.z = 1;
	m_data = new T[1];
	memset(&m_boundary, 0, sizeof(T));							//initialize boundary condition
	m_domain_min = point3D<double>(0.0, 0.0, 0.0);	//set range parameters
	m_domain_max = point3D<double>(1.0, 1.0, 1.0);
	m_voxel_size = vector3D<double>(1.0, 1.0, 1.0);
}

template <class T>
void rtsFunction3D<T>::initialize_empty(indextype res_x, indextype res_y, indextype res_z)
{
	m_resolution.x = res_x;					//set resolution vector
	m_resolution.y = res_y;
	m_resolution.z = res_z;
	m_data = (T*)calloc(res_x*res_y*res_z, sizeof(T));		//allocate data
}

template <class T>
rtsFunction3D<T>::rtsFunction3D(indextype res_x, indextype res_y, indextype res_z)
{
	initialize_empty(res_x, res_y, res_z);
	memset(&m_boundary, 0, sizeof(T));							//initialize boundary condition
	m_domain_min = point3D<double>(0.0, 0.0, 0.0);	//set range parameters
	m_domain_max = point3D<double>(1.0, 1.0, 1.0);

	m_voxel_size = m_domain_max - m_domain_min;
	m_voxel_size.x /= m_resolution.x;
	m_voxel_size.y /= m_resolution.y;
	m_voxel_size.z /= m_resolution.z;
}

template <class T>
void rtsFunction3D<T>::Init(indextype res_x, indextype res_y, indextype res_z)
{
	initialize_empty(res_x, res_y, res_z);
	m_domain_min = point3D<double>(0.0, 0.0, 0.0);	//set range parameters
	m_domain_max = point3D<double>(1.0, 1.0, 1.0);
	memset(&m_boundary, 0, sizeof(T));							//initialize boundary condition

	m_voxel_size = m_domain_max - m_domain_min;
	m_voxel_size.x /= m_resolution.x;
	m_voxel_size.y /= m_resolution.y;
	m_voxel_size.z /= m_resolution.z;
}

template <class T>
rtsFunction3D<T>::rtsFunction3D(T* data, indextype res_x, indextype res_y, indextype res_z)
{
	m_resolution.x = res_x;					//set resolution vector
	m_resolution.y = res_y;
	m_resolution.z = res_z;
	m_data = new T[res_x*res_y*res_z];		//allocate data
	//copy the sample data into the data array
	indextype size = res_x*res_y*res_z;
	for(indextype i=0; i<size; i++)
		m_data[i] = data[i];
	memset(&m_boundary, 0, sizeof(T));							//initialize boundary condition
	m_domain_min = point3D<double>(0.0, 0.0, 0.0);	//set range parameters
	m_domain_max = point3D<double>(1.0, 1.0, 1.0);

	m_voxel_size = domain_max - domain_min;
	m_voxel_size.x /= m_resolution.x;
	m_voxel_size.y /= m_resolution.y;
	m_voxel_size.z /= m_resolution.z;
}

template <class T>
rtsFunction3D<T>::rtsFunction3D(const rtsFunction3D<T>& original)
{
	//copy the shallow variables
	m_resolution = original.m_resolution;
	m_boundary = original.m_boundary;
	m_domain_min = original.m_domain_min;
	m_domain_max = original.m_domain_max;
	m_voxel_size = original.m_voxel_size;

	//allocate space for the data
	m_data = new T[m_resolution.x * m_resolution.y * m_resolution.z];
	//copy the data
	blit3D(original.m_data,
		   0, 0, 0,
		   m_resolution.x, m_resolution.y, m_resolution.z,
		   m_data,
		   0, 0, 0,
		   m_resolution.x, m_resolution.y, m_resolution.z,
		   m_resolution.x, m_resolution.y, m_resolution.z);
}

template <class T>
rtsFunction3D<T>::~rtsFunction3D()
{
	delete m_data;
}

template <class T>
typename rtsFunction3D<T>& rtsFunction3D<T>::operator=(const T rhs)
{
	indextype size = m_resolution.x*m_resolution.y*m_resolution.z;
	for(int i=0; i<size; i++)
		m_data[i] = rhs;

	return *this;
}

template <class T>
typename rtsFunction3D<T>& rtsFunction3D<T>::operator=(const rtsFunction3D<T>& rhs)
{
	//check for self-assignment
	if(this == &rhs)
		return *this;

	//deallocate memory
	if(m_data != NULL)
		delete m_data;

	//copy the shallow variables
	m_resolution = rhs.m_resolution;
	m_boundary = rhs.m_boundary;
	m_domain_min = rhs.m_domain_min;
	m_domain_max = rhs.m_domain_max;
	m_voxel_size = rhs.m_voxel_size;

	//allocate and copy memory
	m_data = new T[m_resolution.x * m_resolution.y * m_resolution.z];
	//copy the data
	blit3D(rhs.m_data,
		   0,0,0,
		   m_resolution.x, m_resolution.y, m_resolution.z,
		   m_data, 
		   0, 0, 0, 
		   m_resolution.x, m_resolution.y, m_resolution.z,
		   m_resolution.x, m_resolution.y, m_resolution.z);

	//return the left hand side
	return *this;
}

template <class T>
inline T& rtsFunction3D<T>::operator ()(indextype x, indextype y, indextype z)
{
	return xyz(x, y, z);
}

template <class T>
inline T rtsFunction3D<T>::operator()(double i, double j, double k)
{
	return ijk(i, j, k);
}

template <class T>
rtsFunction3D<T>& rtsFunction3D<T>::operator *=(const T constant)
{
	indextype size = m_resolution.x * m_resolution.y * m_resolution.z;
	for(indextype i = 0; i<size; i++)
		m_data[i] *= constant;

	return *this;
}

template <class T>
rtsFunction3D<T>& rtsFunction3D<T>::operator +=(const T constant)
{
	indextype size = m_resolution.x * m_resolution.y * m_resolution.z;
	for(indextype i = 0; i<size; i++)
		m_data[i] += constant;

	return *this;
}
template <class T>
rtsFunction3D<T>& rtsFunction3D<T>::operator -=(const T constant)
{
	indextype size = m_resolution.x * m_resolution.y * m_resolution.z;
	for(indextype i = 0; i<size; i++)
		m_data[i] -= constant;

	return *this;
}
template <class T>
rtsFunction3D<T>& rtsFunction3D<T>::operator /=(const T constant)
{
	indextype size = m_resolution.x * m_resolution.y * m_resolution.z;
	for(indextype i = 0; i<size; i++)
		m_data[i] /= constant;

	return *this;
}
template <class T>
const rtsFunction3D<T> rtsFunction3D<T>::operator *(const T constant)
{
	rtsFunction3D<T> result = (*this);
	result *= constant;

	return result;
}

template <class T>
const rtsFunction3D<T> rtsFunction3D<T>::operator +(const T constant)
{
	rtsFunction3D<T> result = (*this);
	result += constant;

	return result;
}

template <class T>
const rtsFunction3D<T> rtsFunction3D<T>::operator -(const T constant)
{
	rtsFunction3D<T> result = (*this);
	result -= constant;

	return result;
}

template <class T>
const rtsFunction3D<T> rtsFunction3D<T>::operator /(const T constant)
{
	rtsFunction3D<T> result = (*this);
	result /= constant;

	return result;
}

template <class T>
template <class U>
rtsFunction3D<T>::operator rtsFunction3D<U>()
{
	//cast one type to another
	//create the data pointer from the current function
	indextype size = m_resolution.x * m_resolution.y * m_resolution.z;
	U* new_data = new U[size];
	for(int i=0; i<size; i++)
		new_data[i] = m_data[i];
	rtsFunction3D<U> cast_result(new_data, m_resolution, m_boundary, m_domain_min, m_domain_max);

	return cast_result;
}

template <class T>
inline T& rtsFunction3D<T>::xyz(indextype x, indextype y, indextype z)
{
	if(x<0 || y<0 || z<0 || x>=m_resolution.x || y>=m_resolution.y || z>=m_resolution.z)
		return m_boundary;
	//return m_data[(z * m_resolution.x * m_resolution.y) + (y * m_resolution.x) + x];
	return m_data[x + m_resolution.x * (y + z * m_resolution.y)];

}

template <class T>
inline point3D<indextype> rtsFunction3D<T>::getNearestIndex(indextype i)
{
	point3D<indextype> result;
	result.z = i/(m_resolution.x*m_resolution.y);
	indextype mod = i%(m_resolution.x*m_resolution.y);
	result.y = mod/m_resolution.x;
	result.x = mod%m_resolution.x;

	return result;

}

template <class T>
void rtsFunction3D<T>::LoadRAW(indextype header_size, indextype size_x,
							   indextype size_y, indextype size_z, const char *filename)
{
	//set the data size
	m_resolution = vector3D<indextype>(size_x, size_y, size_z);
	//delete any previous data
	if(m_data != NULL)
	{
		delete m_data;
		m_data = NULL;
	}

	ifstream infile(filename, ios::in | ios::binary);

	//load the header
	unsigned char* header = new unsigned char[header_size];
	infile.read((char*)header, header_size);

	//load the actual data
	indextype size = m_resolution.x * m_resolution.y * m_resolution.z;
	//m_data = (T*)malloc(size*sizeof(T));
	initialize_empty(m_resolution.x, m_resolution.y, m_resolution.z);
	infile.read((char*)m_data, size*sizeof(T));

	//calculate min and maxes
	infile.close();
}

template <class T>
void rtsFunction3D<T>::LoadVOL(const char *filename)
{
	ifstream infile(filename, ios::in | ios::binary);	//create the files stream
	if(!infile)
		return;

	indextype size_x, size_y, size_z;				//create variables to store the size of the data set
	//load the dimensions of the data set
	infile.read((char*)&size_x, sizeof(int));			//load the file header
	infile.read((char*)&size_y, sizeof(int));
	infile.read((char*)&size_z, sizeof(int));

	//close the file
	infile.close();
	//load the raw data
	LoadRAW(12, size_x, size_y, size_z, filename);
}

template <class T>
void rtsFunction3D<T>::SaveVOL(const char *filename)
{
	ofstream outfile(filename, ios::out | ios::binary);	//create the binary file stream

	//write the volume size to the file
	vector3D<int> vol_size = m_resolution;
	outfile.write((char*)&vol_size.x, sizeof(int));
	outfile.write((char*)&vol_size.y, sizeof(int));
	outfile.write((char*)&vol_size.z, sizeof(int));

	outfile.write((char*)m_data, sizeof(T)*vol_size.x*vol_size.y*vol_size.z);
}

template <class T>
void rtsFunction3D<T>::SaveRAW(const char *filename)
{
	ofstream outfile(filename, ios::out | ios::binary);	//create the binary file stream

	//write the volume data
	outfile.write((char*)m_data, sizeof(T)*m_resolution.x*m_resolution.y*m_resolution.z);
}

template <class T>
inline T rtsFunction3D<T>::ijk(double i, double j, double k)
{
	/*This function determines the value at the specified parametric points
	defined by the m_domain_min and m_domain_max parameter values.*/

	//if the parameter is outside the range, return the boundary value
	if(i<m_domain_min.x || j<m_domain_min.y || k<m_domain_min.z ||
	   i>m_domain_max.x || j>m_domain_max.y || k>m_domain_max.z)
	   return m_boundary;
	
	point3D<double> index = getFractionalIndex(i, j, k);

	//cout<<index.x<<","<<index.y<<","<<index.z<<endl;

	//interpolate the values
	int f_x = (int)floor(index.x);				//calculate floor and ceiling values
	int f_y = (int)floor(index.y);
	int f_z = (int)floor(index.z);
	int c_x = (int)ceil(index.x);
	int c_y = (int)ceil(index.y);
	int c_z = (int)ceil(index.z);

	double x_d = index.x - f_x;			//find the point within the voxel
	double y_d = index.y - f_y;
	double z_d = index.z - f_z;

	T i_1 = xyz(f_x, f_y, f_z)*(1.0 - z_d) + xyz(f_x, f_y, c_z)*(z_d);	//interpolate along z
	T i_2 = xyz(f_x, c_y, f_z)*(1.0 - z_d) + xyz(f_x, c_y, c_z)*(z_d);
	T j_1 = xyz(c_x, f_y, f_z)*(1.0 - z_d) + xyz(c_x, f_y, c_z)*(z_d);
	T j_2 = xyz(c_x, c_y, f_z)*(1.0 - z_d) + xyz(c_x, c_y, c_z)*(z_d);

	T w_1 = i_1*(1.0 - y_d) + i_2*(y_d);
	T w_2 = j_1*(1.0 - y_d) + j_2*(y_d);

	return w_1*(1.0 - x_d) + w_2*(x_d);
}


template <class T>
void rtsFunction3D<T>::Parameterize(double x_min, double x_max, double y_min, double y_max, double z_min, double z_max)
{
	m_domain_min = point3D<double>(x_min, y_min, z_min);
	m_domain_max = point3D<double>(x_max, y_max, z_max);
	m_voxel_size = m_domain_max - m_domain_min;
	m_voxel_size.x /= m_resolution.x;
	m_voxel_size.y /= m_resolution.y;
	m_voxel_size.z /= m_resolution.z;
}

template <class T>
inline point3D<double> rtsFunction3D<T>::getParameter(indextype x, indextype y, indextype z)
{
	//get the value between 0 and 1
	point3D<double> normalized((double)x / (double)(m_resolution.x) + (1.0/(m_resolution.x*2.0)),
							   (double)y / (double)(m_resolution.y) + (1.0/(m_resolution.y*2.0)),
							   (double)z/(double)(m_resolution.z) + (1.0/(m_resolution.z*2.0)));

	point3D<double> result(normalized.x * (m_domain_max.x - m_domain_min.x) + m_domain_min.x,
						   normalized.y * (m_domain_max.y - m_domain_min.y) + m_domain_min.y,
						   normalized.z * (m_domain_max.z - m_domain_min.z) + m_domain_min.z);

	return result;
}

template <class T>
inline point3D<indextype> rtsFunction3D<T>::getNearestIndex(double i, double j, double k)
{
	//this function returns the index of the voxel containing the specified parameter point
	point3D<double> normalized((i - m_domain_min.x)/(m_domain_max.x-m_domain_min.x),
							   (j - m_domain_min.y)/(m_domain_max.y-m_domain_min.y),
							   (k - m_domain_min.z)/(m_domain_max.z-m_domain_min.z));
	
	point3D<indextype> result((normalized.x - (1.0/(m_resolution.x*2.0)))*(double)m_resolution.x+0.5,
							  (normalized.y - (1.0/(m_resolution.y*2.0)))*(double)m_resolution.y+0.5,
							  (normalized.z - (1.0/(m_resolution.z*2.0)))*(double)m_resolution.z+0.5);

	return result;
}

template <class T>
inline point3D<double> rtsFunction3D<T>::getFractionalIndex(double i, double j, double k)
{
	//this function returns the index of the voxel containing the specified parameter point
	point3D<double> normalized((i - m_domain_min.x)/(m_domain_max.x-m_domain_min.x),
							   (j - m_domain_min.y)/(m_domain_max.y-m_domain_min.y),
							   (k - m_domain_min.z)/(m_domain_max.z-m_domain_min.z));
	
	point3D<double> result((normalized.x - (1.0/(m_resolution.x*2.0)))*(double)m_resolution.x,
							  (normalized.y - (1.0/(m_resolution.y*2.0)))*(double)m_resolution.y,
							  (normalized.z - (1.0/(m_resolution.z*2.0)))*(double)m_resolution.z);
	return result;
}


template <class T>
T* rtsFunction3D<T>::GetBits()
{
	/*Returns bit data in lexocographical order (possibly for 3D texture mapping)*/
	return m_data;
}

template <class T>
rtsFunction3D<T>* rtsFunction3D<T>::Resample(indextype newres_x, indextype newres_y, indextype newres_z)
{
	/*This function resamples the current function at the specified resolution.
	No convolution is done for reducing he resolution.
	*/

	rtsFunction3D<T>* result = new rtsFunction3D<T>(vector3D<indextype>(newres_x, newres_y, newres_z),
						    m_boundary, m_domain_min, m_domain_max);

	//run through the entire resolution of the new function, sampling the current function
	int x, y, z;
	point3D<double> parametric;
	for(x = 0; x<newres_x; x++)
		for(y=0; y<newres_y; y++)
			for(z=0; z<newres_z; z++)
			{
				//compute the parametric point for the sample point
				parametric = result->getParameter(x, y, z);
				(*result)(x, y, z) = ijk(parametric.x, parametric.y, parametric.z);
			}

	return result;
}

template <class T>
void rtsFunction3D<T>::Scale(T new_min, T new_max)
{
	/*This function scales all values of the implicit function to within a specified range
	*/

	//find the minimum and maximum values in this function
	indextype data_size = m_resolution.x * m_resolution.y * m_resolution.z;
	T min = m_data[0];
	T max = m_data[0];
	for(indextype i=0; i<data_size; i++)
	{
		if(m_data[i] < min)
			min = m_data[i];
		if(m_data[i] > max)
			max = m_data[i];
	}

	//scale all values to the specified range
	T current_range = max - min;
	T new_range = new_max - new_min;
	for(indextype i=0; i<data_size; i++)
		m_data[i] = ((m_data[i] - min)/current_range)*(new_range) + new_min;
}

template <class T>
void rtsFunction3D<T>::Crop(indextype x, indextype y, indextype z, 
							indextype size_x, indextype size_y, indextype size_z)
{
	/*This function crops the implicit function at the specified nodes
	*/
	//create a pointer for the new data
	T* new_data = new T[size_x*size_y*size_z];

	//blit from the old data to the new data
	blit3D(m_data,
			x, y, z,
			m_resolution.x, m_resolution.y, m_resolution.z,
			new_data,
			0, 0, 0,
			size_x, size_y, size_z,
			size_x, size_y, size_z);

	//change the shallow variables
	vector3D<indextype> new_resolution = vector3D<indextype>(size_x, size_y, size_z);
	vector3D<double> voxel_size = getParameter(0,0,0) - getParameter(1,1,1);
	point3D<double> new_domain_min = getParameter(x, y, z) - 0.5*voxel_size;
	point3D<double> new_domain_max = getParameter(size_x-1, size_y - 1, size_z-1) + 0.5*voxel_size;
	//copy new shallow variables
	m_resolution = new_resolution;
	m_domain_min = new_domain_min;
	m_domain_max = new_domain_max;

	//copy data
	delete m_data;
	m_data = new_data;

}

template <class T>
void rtsFunction3D<T>::Threshold(T min, T value)
{
	/*This function sets all values between min and max to value.
	*/
	int x, y, z;
	T test_value;
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				test_value = xyz(x, y, z);
				if(test_value >= min)
					xyz(x, y, z) = value;
			}
}

template <class T>
void rtsFunction3D<T>::Threshold(T min, T max, T value)
{
	/*This function sets all values between min and max to value.
	*/
	int x, y, z;
	T test_value;
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				test_value = xyz(x, y, z);
				if(test_value >= min && test_value <= max)
					xyz(x, y, z) = value;
			}
}

template <class T>
void rtsFunction3D<T>::Threshold(T min, T max, T inside, T outside)
{
	/*This function sets all values between min and max to value.
	*/
	int x, y, z;
	T test_value;
	for(x=0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				test_value = xyz(x, y, z);
				if(test_value >= min && test_value <= max)
					xyz(x, y, z) = inside;
				else
					xyz(x, y, z) = outside;
			}
}

template <class T>
void rtsFunction3D<T>::Insert(rtsFunction3D<T>* source, indextype x, indextype y, indextype z)
{
	blit3D(source->m_data, 0, 0, 0, source->m_resolution.x, source->m_resolution.y, source->m_resolution.z,
			m_data, x, y, z, m_resolution.x, m_resolution.y, m_resolution.z,
			source->m_resolution.x, source->m_resolution.y, source->m_resolution.z);
}




template <class T>
void rtsFunction3D<T>::Binary(T threshold, T true_value)
{
	/**
	This function converts an implicit function into a binary or characteristic function describing the solid represented by the level
	set at isovalue "threshold".  All values below threshold are set to zero while all values above threshold are set to the specified
	"true_value".  In order to use this function, the data type T must be able to be set to 0.
	**/
	int max_index = m_resolution.x * m_resolution.y * m_resolution.z;	//find the size of the data array
	int i;
	for(i=0; i<max_index; i++)
		if(m_data[i] >= threshold)
			m_data[i] = true_value;
		else
			m_data[i] = 0;
}



template <class T>
void rtsFunction3D<T>::ClampMax(T max)
{
	int i;
	int elements = m_resolution.x * m_resolution.y * m_resolution.z;
	for(i=0; i<elements; i++)
		if(m_data[i] > max)
			m_data[i] = max;
}

template <class T>
void rtsFunction3D<T>::ClampMin(T min)
{
	int i;
	int elements = m_resolution.x * m_resolution.y * m_resolution.z;
	for(i=0; i<elements; i++)
		if(m_data[i] < min)
			m_data[i] = min;
}

template <class T>
T rtsFunction3D<T>::getMin()
{
	int i;
	int elements = m_resolution.x * m_resolution.y * m_resolution.z;
	T current = m_data[0];
	for(i=1; i<elements; i++)
		if(m_data[i] < current)
			current = m_data[i];
	return current;
}

template <class T>
T rtsFunction3D<T>::getMax()
{
	int i;
	int elements = m_resolution.x * m_resolution.y * m_resolution.z;
	T current = m_data[0];
	for(i=1; i<elements; i++)
		if(m_data[i] > current)
			current = m_data[i];
	return current;
}


template <class T>
void rtsFunction3D<T>::toConsole()
{
	cout<<endl;
	int x, y, z;
	for(z=0; z<m_resolution.z; z++)
	{
		for(y=0; y<m_resolution.y; y++)
		{
			for(x=0; x<m_resolution.x; x++)
			{
				cout.width(7);
				cout.precision(3);
				cout<<(double)xyz(x, y, z);
			}
			cout<<endl;
		}
		cout<<"-----------------------------"<<endl;
	}

}

template <class T>
rtsFunction3D<T> rtsFunction3D<T>::Project2D()
{
	/**
	This function projects the entire 3D function onto a 2D function along the z-axis.
	**/
	rtsFunction3D<T> result(m_resolution.x, m_resolution.y, 1);
	result = 0;
	
	indextype x, y, z;
	for(x = 0; x<m_resolution.x; x++)
		for(y=0; y<m_resolution.y; y++)
			for(z=0; z<m_resolution.z; z++)
			{
				if(result(x, y, 0) < xyz(x, y, z))
					result(x, y, 0) = xyz(x, y, z);
			}
	return result;
}


#endif