rtsSkeletonizer.h 21.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
#ifndef RTSSKELETONIZER_H
#define RTSSKELETONIZER_H

#include "rts_itkVolume.h"
#include "objJedi.h"
#include <vector>
#include <queue>

using namespace std;

typedef vector<point3D<double>> filament;
typedef unsigned int indextype;

#define BACKGROUND_NODE	0
#define SKELETON_NODE	255
#define ENDPOINT_NODE	128
#define VISITED_NODE	64

class rtsSkeletonizer
{
private:
	rts_itkVolume<unsigned char> implicit_skeleton;
	/*Key:
	0 - background node
	255 - skeleton node
	128 - endpoint node
	*/

	vector<filament> explicit_filaments;
	vector<point3D<unsigned int>> explicit_endpoints;



public:
	rtsSkeletonizer(rts_itkVolume<unsigned char> input);
	unsigned int BackgroundComponents6(rts_itkVolume<unsigned char>* function,
									   indextype x, 
									   indextype y, 
									   indextype z, 
									   unsigned char threshold);
	unsigned int rtsSkeletonizer::Peel(unsigned char isovalue);
	int Neighbors26(rts_itkVolume<unsigned char>* function, 
					indextype x, 
					indextype y, 
					indextype z, 
					unsigned char isovalue);
	vector<point3D<unsigned int>> FloodFill6(rts_itkVolume<unsigned char>* function, indextype x, indextype y, indextype z, unsigned char target_value);
	void FloodFill26(rts_itkVolume<unsigned char>* function, int x, int y, int z, unsigned char target_value);
	unsigned int Neighbors6(rts_itkVolume<unsigned char>* function, indextype x, indextype y, indextype z, unsigned char threshold);
	rts_itkVolume<unsigned char> getImplicitResult(){return implicit_skeleton;}
	unsigned int NumConnectedComponents(indextype x, indextype y, indextype z, unsigned char threshold);

	void ComputeEndPoints();	//find all of the filament end points
	void TraceFilament(point3D<unsigned int> p0, point3D<unsigned int> p1);
	rts_itkVolume<unsigned char> getLocalRegion(unsigned int x, unsigned int y, unsigned int z);

	void ConstructExplicitSkeleton();
	void SmoothExplicitSkeleton(int iterations);
	void SaveExplicitSkeleton(const char* filename);


};

void rtsSkeletonizer::SmoothExplicitSkeleton(int iterations)
{
	/*This function smooths the vessels by repeatedly taking the dual of the skeleton.
	Branch points and end points are constrained to their initial positions.
	*/

	vector<filament>::iterator f;
	int num_verts, end_vert;
	int v;
	point3D<double> new_vert;

	for(int i = 0; i<iterations; i++)
	{
		for(f=explicit_filaments.begin(); f!=explicit_filaments.end(); f++)
		{
			filament new_filament;
			
			//find the number of vertices in the filament
			num_verts = f->size();
			end_vert = num_verts - 1;

			//take care of the first vertex
			new_filament.push_back((*f)[0]);

			for(v=1; v<end_vert; v++)
			{
				//find the position of the next vertex (midpoint between the last and current vertices)
				new_vert = (*f)[v-1] + ((*f)[v] - (*f)[v-1])*0.5;
				new_filament.push_back(new_vert);			
			}

			//take care of the last vertex
			new_filament.push_back((*f)[end_vert]);

			//delete the old filament and add the new one
			(*f) = new_filament;
		}
	}
		
}

void rtsSkeletonizer::SaveExplicitSkeleton(const char* filename)
{
	/*Save the filament file as an OBJ*/
	//create the OBJ object
	rtsOBJ output;

	unsigned int num_filaments = explicit_filaments.size();
	//cout<<"Number of filaments:  "<<num_filaments<<endl;
	vector<filament>::iterator i;
	filament::iterator f;
	for(i=explicit_filaments.begin(); i!=explicit_filaments.end(); i++)
	{
		output.objBegin(OBJ_LINE_STRIP);
		//cout<<"start filament"<<endl;
		for(f=i->begin(); f!=i->end(); f++)
		{
			output.objVertex3f((*f).x, (*f).y, (*f).z);
			//f->print();
		}
		//cout<<"end filament"<<endl<<endl;
		output.objEnd();
	}

	output.SaveFile(filename);
		
}

rts_itkVolume<unsigned char> rtsSkeletonizer::getLocalRegion(unsigned int x, unsigned int y, unsigned int z)
{
	rts_itkVolume<unsigned char> local(3, 3, 3);
	point3D<indextype> corner;
	indextype u, v, w;
	corner = point3D<indextype>(x-1, y-1, z-1);
	for(u=0; u<3; u++)
		for(v=0; v<3; v++)
			for(w=0; w<3; w++)
				local.SetPixel(u, v, w, implicit_skeleton.GetPixel(corner.x + u, corner.y + v, corner.z + w));
	return local;
}


void rtsSkeletonizer::TraceFilament(point3D<unsigned int> p0, point3D<unsigned int> p1)
{
	//create the new filament and start it with the two given points
	filament result;
	result.push_back(p0);
	result.push_back(p1);

	//if(p0 == point3D<unsigned int>(156, 433, 254))
	//	cout<<"Stop here"<<endl;

	//if p1 is an endpoint, go ahead and end the filament right away
	if(implicit_skeleton.GetPixel(p1.x, p1.y, p1.z) == ENDPOINT_NODE)
	{
		explicit_filaments.push_back(result);
		return;
	}

	rts_itkVolume<unsigned char> local;
	point3D<unsigned int> current = p1;
	point3D<unsigned int> next;
	point3D<unsigned int> possible_end;
	int x, y, z;
	int c;		//possible connections

	while(1)	//continue tracing until the next endpoint
	{
		c=0;
		local = getLocalRegion(current.x, current.y, current.z);
		//cout<<"Local Region at ("<<current.x<<","<<current.y<<","<<current.z<<")"<<endl;
		//local.toConsole();
		local.SetPixel(1, 1, 1, 0);
		for(x=0; x<3; x++)
			for(y=0; y<3; y++)
				for(z=0; z<3; z++)
				{
					//if the node is a skeleton node, store it as the next point
					if(local(x, y, z) == SKELETON_NODE)
					{
						c++;
						next = current - vector3D<unsigned int>(1, 1, 1) + vector3D<unsigned int>(x, y, z);
					}
					//if it is an endpoint node, check for a termination
					if(local(x, y, z) == ENDPOINT_NODE)
					{
						//if we are not backtracking to the start node
						possible_end = current - vector3D<unsigned int>(1, 1, 1) + vector3D<unsigned int>(x, y, z);
						if(possible_end != p0 || result.size() > 2)
						{
							//terminate the fiber
							result.push_back(current - vector3D<unsigned int>(1, 1, 1) + vector3D<unsigned int>(x, y, z));
							explicit_filaments.push_back(result);
							implicit_skeleton.SetPixel(current.x, current.y, current.z, VISITED_NODE);
							return;
						}
					}
				}
		//return when there is nowhere to go
		if(c == 0)
			return;
		//now we have the next node in the filament, go ahead and label the current
		//one as traversed
		implicit_skeleton.SetPixel(current.x, current.y, current.z, VISITED_NODE);
		//now insert it into the fiber and move to the next node
		result.push_back(next);
		if(current == next)
		{
			//cout<<"I've been waiting for you Obi-Wan"<<endl;
			local = getLocalRegion(current.x, current.y, current.z);
			//cout<<"Local Region at ("<<current.x<<","<<current.y<<","<<current.z<<")"<<endl;
			//local.toConsole();

			//cout<<"Number of neighbors: "<<Neighbors26(&implicit_skeleton, current.x, current.y, current.z, 1);
		}
		current = next;
	}
	
	
}

void rtsSkeletonizer::ConstructExplicitSkeleton()
{
	/*The implicit skeleton is constructed as follows:
	1)  Label all branch nodes.
	2)  For each branch, find the number of fibers connected to that branch.
		a)  Create each fiber as a seperate structure and store them in a queue.
		b)  Iteratively track each fiber.
	*/
	ComputeEndPoints();	//compute the endpoints for the explicit skeleton and
						//label them in the implicit skeleton
	
	//iterate through each end point
	vector<point3D<unsigned int>>::iterator i;
	rts_itkVolume<unsigned char> local;
	unsigned int x, y, z;
	for(i = explicit_endpoints.begin(); i != explicit_endpoints.end(); i++)
	{
		//cout<<"Tracing Filament..."<<endl;
		//i->print();
		local = getLocalRegion(i->x, i->y, i->z);
		local.SetPixel(1, 1, 1, 0);
		//local.toConsole();
		for(x=0; x<3; x++)
			for(y=0; y<3; y++)
				for(z=0; z<3; z++)
					if(local.GetPixel(x, y, z) > VISITED_NODE)
					{
						//cout<<(int)local.xyz(x, y, z)<<endl;
						//cout<<(int)implicit_skeleton.xyz(i->x - 1 + x,
						//							  i->y - 1 + y,
						//							  i->z - 1 + z)<<endl;
						TraceFilament((*i), point3D<unsigned int>(i->x - 1 + x,
																  i->y - 1 + y,
																  i->z - 1 + z));
					}
		//since we have tracked all filaments attached to an endpoint
		//set the endpoint as visited
		implicit_skeleton.SetPixel(i->x, i->y, i->z, VISITED_NODE);
	}

	//cout<<"Tracing complete"<<endl;


}


rtsSkeletonizer::rtsSkeletonizer(rts_itkVolume<unsigned char> input)
{
	implicit_skeleton = input;
}

void rtsSkeletonizer::ComputeEndPoints()
{
	/*This function finds all of the filament end points in the implicit skeleton.
	The end points are stored in the explicit_endpoints vector.
	An end point is defined as a node with (n == 1) or (n > 2) connected components.
	*/

	unsigned int max_x = implicit_skeleton.DimX();
	unsigned int max_y = implicit_skeleton.DimY();
	unsigned int max_z = implicit_skeleton.DimZ();
	unsigned int conn;

	indextype x, y, z;
	for(x=0; x<max_x; x++)		//go through each voxel in the data set
		for(y=0; y<max_y; y++)
			for(z=0; z<max_z; z++)
			{
				if(implicit_skeleton(x, y, z) == SKELETON_NODE)	//if the voxel is part of the skeleton
				{
					conn = Neighbors26(&implicit_skeleton, x, y, z, 1);	//test the number of connected components
					if(conn == 1 || conn > 2)	//if the number of connected components meets the
												//criteria, store the node in the explicit_endpoints vector.
					{
						explicit_endpoints.push_back(point3D<unsigned int>(x, y, z));
					}
				}

			}

	//tag the endpoints in the implicit function
	vector<point3D<unsigned int>>::iterator i;
	for(i=explicit_endpoints.begin(); i!=explicit_endpoints.end(); i++)
		implicit_skeleton.SetPixel(i->x, i->y, i->z, ENDPOINT_NODE);

			//cout<<"Number of end points:  "<<explicit_endpoints.size()<<endl;
}



unsigned int rtsSkeletonizer::NumConnectedComponents(indextype x, indextype y, indextype z, unsigned char threshold)
{
	unsigned int result = 0;

	rts_itkVolume<unsigned char> local(3, 3, 3);
	

	local = getLocalRegion(x, y, z);
//	local.toConsole();
	local.SetPixel(1, 1, 1, 0);
//	local.toConsole();

	indextype xi, yi, zi;
	//iterate through each voxel
	for(xi=0; xi<3; xi++)
		for(yi=0; yi<3; yi++)
			for(zi=0; zi<3; zi++)
				if(local(xi, yi, zi) >= threshold)
				{
					FloodFill6(&local, xi, yi, zi, 0);
					result++;
				}
	/*
	if(result == 1 || result > 2)
	{
		cout<<result<<endl;
		local = getLocalRegion(x, y, z);
		local.toConsole();
	}
	*/
	return result;


}

unsigned int rtsSkeletonizer::BackgroundComponents6(rts_itkVolume<unsigned char>* function, 
													   indextype x, 
													   indextype y, 
													   indextype z, 
													   unsigned char threshold)
{
	/**
	This function computes the number of 6-connected background components in the local region of (x, y, z).
	This computation is performed by testing all 6 possible voxels that can connect to the specified node.  If
	a background node is found, the entire background component associated with that node is filled and the counter
	is incremented by 1.  The value n specifies the connectivity domain for the flood fill.
	The definition of background components is that specified by He, Kischell, Rioult and Holmes.
	**/

	//see if there is at least one BG component
	if(Neighbors6(function, x, y, z, threshold) == 6)
		return 0;

	
	//retrieve the local region of the function
	rts_itkVolume<unsigned char> local(3, 3, 3);
	point3D<indextype> corner(x-1, y-1, z-1);
	indextype u, v, w;
	for(u=0; u<3; u++)
		for(v=0; v<3; v++)
			for(w=0; w<3; w++)
				local.SetPixel(u, v, w, function->GetPixel(corner.x + u, corner.y + v, corner.z + w));

	//threshold the background to find inside/outside points
	local.Binary(threshold, 1);
	//fill points that are not in the connectivity domain
	/*if(n == 18)
	{
		local(0, 0, 0) = 1;
		local(0, 0, 2) = 1;
		local(0, 2, 0) = 1;
		local(0, 2, 2) = 1;
		local(2, 0, 0) = 1;
		local(2, 0, 2) = 1;
		local(2, 2, 0) = 1;
		local(2, 2, 2) = 1;
	}*/
	//local.toConsole();

	//search all 6 possible connected points.  If a background node is found, fill the component
	unsigned int components = 0;
	if(local(0, 1, 1) == 0)
	{
		components++;
		FloodFill6(&local, 0, 1, 1, 1);
	}
	if(local(2, 1, 1) == 0)
	{
		components++;
		FloodFill6(&local, 2, 1, 1, 1);
	}
	if(local(1, 0, 1) == 0)
	{
		components++;
		FloodFill6(&local, 1, 0, 1, 1);
	}
	if(local(1, 2, 1) == 0)
	{
		components++;
		FloodFill6(&local, 1, 2, 1, 1);
	}
	if(local(1, 1, 0) == 0)
	{
		components++;
		FloodFill6(&local, 1, 1, 0, 1);
	}
	if(local(1, 1, 2) == 0)
	{
		components++;
		FloodFill6(&local, 1, 1, 2, 1);
	}

	return components;
}

unsigned int rtsSkeletonizer::Neighbors6(rts_itkVolume<unsigned char>* function, indextype x, indextype y, indextype z, unsigned char threshold)
{

	unsigned int neighbors = 0;
	if(function->GetPixel(x+1, y, z) >= threshold)
		neighbors++;
	if(function->GetPixel(x-1, y, z) >= threshold)
		neighbors++;
	if(function->GetPixel(x, y+1, z) >= threshold)
		neighbors++;
	if(function->GetPixel(x, y-1, z) >= threshold)
		neighbors++;
	if(function->GetPixel(x, y, z+1) >= threshold)
		neighbors++;
	if(function->GetPixel(x, y, z-1) >= threshold)
		neighbors++;

	return neighbors;
}

int rtsSkeletonizer::Neighbors26(rts_itkVolume<unsigned char>* function,
									indextype x, 
									indextype y, 
									indextype z, 
									unsigned char isovalue)
{
	int neighbors = 0;
	int u,v,w;

	for(u=-1; u<=1; u++)
		for(v=-1; v<=1; v++)
			for(w=-1; w<=1; w++)
				if(function->GetPixel(x+u, y+v, z+w) >= isovalue)
					neighbors++;
	if(function->GetPixel(x, y, z) > isovalue)
		neighbors--;

	return neighbors;
}

unsigned int rtsSkeletonizer::Peel(unsigned char isovalue)
{
	/**
	Removes one layer of pixels from the specified isosurface.
	**/

	unsigned int res_x = implicit_skeleton.DimX();
	unsigned int res_y = implicit_skeleton.DimY();
	unsigned int res_z = implicit_skeleton.DimZ();
	vector<point3D<indextype>> border_nodes;	//get the border nodes for the image
	indextype x, y, z;
	int condition;
	for(x=0; x<res_x; x++)
	for(y=0; y<res_y; y++)
	for(z=0; z<res_z; z++)
		//find the border nodes
		if(implicit_skeleton(x, y, z) >= isovalue && BackgroundComponents6(&implicit_skeleton, x, y, z, isovalue) == 1 && Neighbors26(&implicit_skeleton, x, y, z, isovalue) != 1)
		{
			condition = 0;
			//now find the border pairs.  A border point must meet two of the following conditions to be a border pair.
			//south border: s(p) is background
			if(implicit_skeleton(x, y-1, z) < isovalue)
				condition++;
			//north border: n(p) is background, s(p) and s(s(p)) are foreground
			if(implicit_skeleton(x, y+1, z) < isovalue && implicit_skeleton(x, y-1, z) >= isovalue && implicit_skeleton(x, y-2, z) >= isovalue)
				condition++;
			//west border: w(p) is background
			if(implicit_skeleton(x-1, y, z) < isovalue)
				condition++;
			//east border: e(p) is background, w(p) and w(w(p)) are foreground
			if(implicit_skeleton(x+1, y, z) < isovalue && implicit_skeleton(x-1, y, z) >= isovalue && implicit_skeleton(x-2, y, z) >= isovalue)
				condition++;
			//up border: u(p) is background
			if(implicit_skeleton(x, y, z-1) < isovalue)
				condition++;
			//down border: d(p) is background, u(p) and u(u(p)) are foreground
			if(implicit_skeleton(x, y, z+1) < isovalue && implicit_skeleton(x, y, z-1) >= isovalue && implicit_skeleton(x, y, z-2) >= isovalue)
				condition++;
			
			if(condition > 1)
				border_nodes.push_back(point3D<indextype>(x, y, z));
		}
	//cout<<"Number of border nodes: "<<border_nodes.size()<<endl;

	//determine if each edge node can be removed without changing the topology of the model
	//declare some initial variables
	rts_itkVolume<unsigned char> local(3, 3, 3);	//store the region local to the current voxel
	int nodes_before, nodes_after;		//number of neighboring nodes before and after the filling operation
	point3D<indextype> fill_start;
	vector<point3D<indextype>>::iterator i;

	/*
	Here we determine if a point can be removed by looking at the number of foreground connected
	components in the local region.  If there is more than one connected component
	*/
	unsigned int removed = 0;
	for(i=border_nodes.begin(); i<border_nodes.end(); i++)
	{
		//get the local region around the current point
		for(x=-1; x<=1; x++)
			for(y=-1; y<=1; y++)
				for(z=-1; z<=1; z++)
					local.SetPixel(x+1, y+1, z+1, implicit_skeleton((*i).x + x, (*i).y + y, (*i).z + z));

		local.SetPixel(1, 1, 1, 0);				//remove the center voxel
		local.Binary(isovalue, 1);
		nodes_before = Neighbors26(&local, 1, 1, 1, 1);


		//find an interior voxel to fill
		for(x=0; x<3; x++)
			for(y=0; y<3; y++)
				for(z=0; z<3; z++)
					if(local(x, y, z) > 0)
						fill_start = point3D<indextype>(x, y, z);

		//fill the local region
		FloodFill26(&local, fill_start.x, fill_start.y, fill_start.z, 2);
		//get the number of filled neighbors
		nodes_after = Neighbors26(&local, 1, 1, 1, 2);
		if(nodes_after == nodes_before)
		{
			implicit_skeleton.SetPixel((*i).x, (*i).y, (*i).z, 0);
			removed++;
		}

	}
	return removed;
}

vector<point3D<unsigned int>> rtsSkeletonizer::FloodFill6(rts_itkVolume<unsigned char>* function, indextype x, indextype y, indextype z, unsigned char target_value)
{
	//create a vector containing all of the filled nodes
	vector<point3D<unsigned int>> result;

	unsigned char old_value = function->GetPixel(x, y, z);					//find the old value (the value being flood-filled)
	if(target_value == old_value)				//if the target value is the same as the old value, nothing to do
		return result;

	queue<point3D<indextype>> Q;				//create a queue for neighboring points
	point3D<indextype> current(x, y, z);		//start with the current point
	function->SetPixel(current.x, current.y, current.z, target_value);
	point3D<indextype> next;
	Q.push(current);
	indextype u, v, w;


	while(!Q.empty())							//continue until the queue is empty
	{
		current = Q.front();					//get the first element from the queue
		Q.pop();							
		
		if(current.x != function->DimY() - 1)
			if(function->GetPixel(current.x + 1, current.y, current.z) == old_value)
			{
				function->SetPixel(current.x + 1, current.y, current.z, target_value);
				result.push_back(point3D<unsigned int>(current.x + 1, current.y, current.z));
				Q.push(point3D<indextype>(current.x + 1, current.y, current.z));
			}
		if(current.x != 0)
			if(function->GetPixel(current.x - 1, current.y, current.z) == old_value)
			{
				function->SetPixel(current.x - 1, current.y, current.z, target_value);
				result.push_back(point3D<unsigned int>(current.x - 1, current.y, current.z));
				Q.push(point3D<indextype>(current.x - 1, current.y, current.z));
			}
		if(current.y != function->DimY() - 1)
			if(function->GetPixel(current.x, current.y +1, current.z) == old_value)
			{
				function->SetPixel(current.x, current.y+1, current.z, target_value);
				result.push_back(point3D<unsigned int>(current.x, current.y+1, current.z));
				Q.push(point3D<indextype>(current.x, current.y+1, current.z));
			}
		if(current.y != 0)
			if(function->GetPixel(current.x, current.y-1, current.z) == old_value)
			{
				function->SetPixel(current.x, current.y-1, current.z, target_value);
				result.push_back(point3D<unsigned int>(current.x, current.y-1, current.z));
				Q.push(point3D<indextype>(current.x, current.y-1, current.z));
			}
		if(current.z != function->DimZ() - 1)
			if(function->GetPixel(current.x, current.y, current.z+1) == old_value)
			{
				function->SetPixel(current.x, current.y, current.z+1, target_value);
				result.push_back(point3D<unsigned int>(current.x, current.y, current.z+1));
				Q.push(point3D<indextype>(current.x, current.y, current.z+1));
			}
		if(current.z != 0)
			if(function->GetPixel(current.x, current.y, current.z-1) == old_value)
			{
				function->SetPixel(current.x, current.y, current.z-1, target_value);
				result.push_back(point3D<unsigned int>(current.x, current.y, current.z-1));
				Q.push(point3D<indextype>(current.x, current.y, current.z-1));
			}

	}

	return result;

}

void rtsSkeletonizer::FloodFill26(rts_itkVolume<unsigned char>* function, int x, int y, int z, unsigned char target_value)
{
	unsigned char old_value = function->GetPixel(x, y, z);
	if(target_value == old_value)
		return;

	queue<point3D<indextype>> Q;
	point3D<indextype> current(x, y, z);
	point3D<indextype> next;
	Q.push(current);
	indextype u, v, w;
	while(!Q.empty())
	{
		current = Q.front();
		if(function->GetPixel(current.x, current.y, current.z) == old_value)
			function->SetPixel(current.x, current.y, current.z, target_value);
		Q.pop();

		unsigned int res_x = function->DimX();
		unsigned int res_y = function->DimY();
		unsigned int res_z = function->DimZ();
		for(u=-1; u<=1; u++)
		for(v=-1; v<=1; v++)
		for(w=-1; w<=1; w++)
		{
			next.x = current.x + u;
			next.y = current.y + v;
			next.z = current.z + w;

			if(next.x >= 0 && next.x < res_x &&
				next.y >= 0 && next.y < res_y &&
				next.z >= 0 && next.z < res_z &&
				function->GetPixel(next.x, next.y, next.z) == old_value)
				{
					function->SetPixel(next.x, next.y, next.z, target_value);
					Q.push(next);
				}
		}
	}

				
}







#endif