cylinder.h
21.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
#ifndef STIM_CYLINDER_H
#define STIM_CYLINDER_H
#include <iostream>
#include <stim/math/circle.h>
#include <stim/biomodels/centerline.h>
#include <stim/visualization/obj.h>
namespace stim
{
template<typename T>
class cylinder : public centerline<T> {
protected:
using stim::centerline<T>::d;
std::vector< stim::vec3<T> > U; //stores the array of U vectors defining the Frenet frame
std::vector< T > R; //stores a list of magnitudes for each point in the centerline (assuming mags[0] is the radius)
using stim::centerline<T>::findIdx;
//calculates the U values for each point to initialize the frenet frame
// this function assumes that the centerline has already been set
void init() {
U.resize(size()); //allocate space for the frenet frame vectors
R.resize(size());
stim::circle<T> c; //create a circle
stim::vec3<T> d0, d1;
for (size_t i = 0; i < size() - 1; i++) { //for each line segment in the centerline
c.rotate(d(i)); //rotate the circle to match that normal
U[i] = c.U; //save the U vector from the circle
}
U[size() - 1] = c.U; //for the last point, duplicate the final frenet frame vector
}
public:
using stim::centerline<T>::size;
using stim::centerline<T>::at;
using stim::centerline<T>::L;
using stim::centerline<T>::length;
cylinder() : centerline<T>(){}
cylinder(centerline<T>c) : centerline<T>(c) {
init();
}
//cylinder(centerline<T>c, T r) : centerline(c) {
// init();
// //add_mag(r);
//}
//initialize a cylinder with a list of points and magnitude values
//cylinder(centerline<T>c, std::vector<T> r) : centerline(c){
// init();
// //add_mag(r);
//}
//copy the original radius
void copy_r(std::vector<T> radius) {
for (unsigned i = 0; i < radius.size(); i++)
R[i] = radius[i];
}
///Returns magnitude i at the given length into the fiber (based on the pvalue).
///Interpolates the position along the line.
///@param l: the location of the in the cylinder.
///@param idx: integer location of the point closest to l but prior to it.
T r(T l, int idx) {
T a = (l - L[idx]) / (L[idx + 1] - L[idx]);
T v2 = (R[idx] + (R[idx + 1] - R[idx])*a);
return v2;
}
///Returns the ith magnitude at the given p-value (p value ranges from 0 to 1).
///interpolates the radius along the line.
///@param pvalue: the location of the in the cylinder, from 0 (beginning to 1).
T rl(T pvalue) {
if (pvalue <= 0.0) return R[0];
if (pvalue >= 1.0) return R[size() - 1];
T l = pvalue*L[L.size() - 1];
int idx = findIdx(l);
return r(l, idx);
}
/// Returns the magnitude at the given index
/// @param i is the index of the desired point
/// @param r is the index of the magnitude value
T r(unsigned i) {
return R[i];
}
///adds a magnitude to each point in the cylinder
/*void add_mag(V val = 0) {
if (M.size() == 0) M.resize(size()); //if the magnitude vector isn't initialized, resize it to match the centerline
for (size_t i = 0; i < size(); i++) //for each point
R[i].push_back(val); //add this value to the magnitude vector at each point
}*/
//adds a magnitude based on a list of magnitudes for each point
/*void add_mag(std::vector<T> val) {
if (M.size() == 0) M.resize(size()); //if the magnitude vector isn't initialized, resize it to match the centerline
for (size_t i = 0; i < size(); i++) //for each point
R[i].push_back(val[i]); //add this value to the magnitude vector at each point
}*/
//sets the value of magnitude m at point i
void set_r(size_t i, T r) {
R[i] = r;
}
/*size_t nmags() {
if (M.size() == 0) return 0;
else return R[0].size();
}*/
///Returns a circle representing the cylinder cross section at point i
stim::circle<T> circ(size_t i) {
return stim::circle<T>(at(i), R[i], d(i), U[i]);
}
///Returns an OBJ object representing the cylinder with a radial tesselation value of N using magnitude m
stim::obj<T> OBJ(size_t N) {
stim::obj<T> out; //create an OBJ object
stim::circle<T> c0, c1;
std::vector< stim::vec3<T> > p0, p1; //allocate space for the point sets representing the circles bounding each cylinder segment
T u0, u1, v0, v1; //allocate variables to store running texture coordinates
for (size_t i = 1; i < size(); i++) { //for each line segment in the cylinder
c0 = circ(i - 1); //get the two circles bounding the line segment
c1 = circ(i);
p0 = c0.points(N); //get t points for each of the end caps
p1 = c1.points(N);
u0 = L[i - 1] / length(); //calculate the texture coordinate (u, v) where u runs along the cylinder length
u1 = L[i] / length();
for (size_t n = 1; n < N; n++) { //for each point in the circle
v0 = (double)(n-1) / (double)(N - 1); //v texture coordinate runs around the cylinder
v1 = (double)(n) / (double)(N - 1);
out.Begin(OBJ_FACE); //start a face (quad)
out.TexCoord(u0, v0);
out.Vertex(p0[n - 1][0], p0[n - 1][1], p0[n - 1][2]); //output the points composing a strip of quads wrapping the cylinder segment
out.TexCoord(u1, v0);
out.Vertex(p1[n - 1][0], p1[n - 1][1], p1[n - 1][2]);
out.TexCoord(u0, v1);
out.Vertex(p1[n][0], p1[n][1], p1[n][2]);
out.TexCoord(u1, v1);
out.Vertex(p0[n][0], p0[n][1], p0[n][2]);
out.End();
}
v0 = (double)(N - 2) / (double)(N - 1); //v texture coordinate runs around the cylinder
v1 = 1.0;
out.Begin(OBJ_FACE);
out.TexCoord(u0, v0);
out.Vertex(p0[N - 1][0], p0[N - 1][1], p0[N - 1][2]); //output the points composing a strip of quads wrapping the cylinder segment
out.TexCoord(u1, v0);
out.Vertex(p1[N - 1][0], p1[N - 1][1], p1[N - 1][2]);
out.TexCoord(u0, v1);
out.Vertex(p1[0][0], p1[0][1], p1[0][2]);
out.TexCoord(u1, v1);
out.Vertex(p0[0][0], p0[0][1], p0[0][2]);
out.End();
}
return out;
}
std::string str() {
std::stringstream ss;
size_t N = std::vector< stim::vec3<T> >::size();
ss << "---------[" << N << "]---------" << std::endl;
for (size_t i = 0; i < N; i++)
ss << std::vector< stim::vec3<T> >::at(i) << " r = " << R[i] << " u = " << U[i] << std::endl;
ss << "--------------------" << std::endl;
return ss.str();
}
/// Integrates a magnitude value along the cylinder.
/// @param m is the magnitude value to be integrated (this is usually the radius)
T integrate() {
T sum = 0; //initialize the integral to zero
if (L.size() == 1)
return sum;
else {
T m0, m1; //allocate space for both magnitudes in a single segment
m0 = R[0]; //initialize the first point and magnitude to the first point in the cylinder
T len = L[1]; //allocate space for the segment length
for (unsigned p = 1; p < size(); p++) { //for every consecutive point in the cylinder
m1 = R[p];
if (p > 1) len = (L[p] - L[p - 1]); //calculate the segment length using the L array
sum += (m0 + m1) / (T)2.0 * len; //add the average magnitude, weighted by the segment length
m0 = m1; //move to the next segment by shifting points
}
return sum; //return the integral
}
}
/// Resamples the cylinder to provide a maximum distance of "spacing" between centerline points. All current
/// centerline points are guaranteed to exist in the new cylinder
/// @param spacing is the maximum spacing allowed between sample points
cylinder<T> resample(T spacing) {
cylinder<T> c = stim::centerline<T>::resample(spacing); //resample the centerline and use it to create a new cylinder
//size_t nm = nmags(); //get the number of magnitude values in the current cylinder
//if (nm > 0) { //if there are magnitude values
// std::vector<T> magvec(nm, 0); //create a magnitude vector for a single point
// c.M.resize(c.size(), magvec); //allocate space for a magnitude vector at each point of the new cylinder
//}
T l, t;
for (size_t i = 0; i < c.size(); i++) { //for each point in the new cylinder
l = c.L[i]; //get the length along the new cylinder
t = l / length(); //calculate the parameter value along the new cylinder
//for (size_t mag = 0; mag < nm; mag++) { //for each magnitude value
c.R[i] = r(t); //retrieve the interpolated magnitude from the current cylinder and store it in the new one
//}
}
return c;
}
std::vector< stim::cylinder<T> > split(unsigned int idx) {
unsigned N = size();
std::vector< stim::centerline<T> > LL;
LL.resize(2);
LL = (*this).centerline<T>::split(idx);
std::vector< stim::cylinder<T> > C(LL.size());
unsigned i = 0;
C[0] = LL[0];
//C[0].R.resize(idx);
for (; i < idx + 1; i++) {
//for(unsigned d = 0; d < 3; d++)
//C[0][i][d] = LL[0].c[i][d];
C[0].R[i] = R[i];
//C[0].R[i].resize(1);
}
if (C.size() == 2) {
C[1] = LL[1];
i--;
//C[1].M.resize(N - idx);
for (; i < N; i++) {
//for(unsigned d = 0; d < 3; d++)
//C[1][i - idx][d] = LL[1].c[i - idx][d];
C[1].R[i - idx] = R[i];
//C[1].M[i - idx].resize(1);
}
}
return C;
}
/*
///inits the cylinder from a list of points (std::vector of stim::vec3 --inP) and magnitudes (inM)
void
init(centerline inP, std::vector< std::vector<T> > inM) {
M = inM; //the magnitude vector can be copied directly
(*this) = inP; //the centerline can be copied to this class directly
stim::vec3<float> v1;
stim::vec3<float> v2;
e.resize(inP.size());
norms.resize(inP.size());
Us.resize(inP.size());
if(inP.size() < 2)
return;
//calculate each L.
L.resize(inP.size()); //the number of precomputed lengths will equal the number of points
T temp = (T)0; //length up to that point
L[0] = temp;
for(size_t i = 1; i < L.size(); i++)
{
temp += (inP[i-1] - inP[i]).len();
L[i] = temp;
}
stim::vec3<T> dr = (inP[1] - inP[0]).norm();
s = stim::circle<T>(inP[0], inR[0][0], dr, stim::vec3<T>(1,0,0));
norms[0] = s.N;
e[0] = s;
Us[0] = e[0].U;
for(size_t i = 1; i < inP.size()-1; i++)
{
s.center(inP[i]);
v1 = (inP[i] - inP[i-1]).norm();
v2 = (inP[i+1] - inP[i]).norm();
dr = (v1+v2).norm();
s.normal(dr);
norms[i] = s.N;
s.scale(inR[i][0]/inR[i-1][0]);
e[i] = s;
Us[i] = e[i].U;
}
int j = inP.size()-1;
s.center(inP[j]);
dr = (inP[j] - inP[j-1]).norm();
s.normal(dr);
norms[j] = s.N;
s.scale(inR[j][0]/inR[j-1][0]);
e[j] = s;
Us[j] = e[j].U;
}
///returns the direction vector at point idx.
stim::vec3<T>
d(int idx)
{
if(idx == 0)
{
stim::vec3<T> temp(
c[idx+1][0]-c[idx][0],
c[idx+1][1]-c[idx][1],
c[idx+1][2]-c[idx][2]
);
// return (e[idx+1].P - e[idx].P).norm();
return (temp.norm());
}
else if(idx == N-1)
{
stim::vec3<T> temp(
c[idx][0]-c[idx+1][0],
c[idx][1]-c[idx+1][1],
c[idx][2]-c[idx+1][2]
);
// return (e[idx].P - e[idx-1].P).norm();
return (temp.norm());
}
else
{
// return (e[idx+1].P - e[idx].P).norm();
// stim::vec3<float> v1 = (e[idx].P-e[idx-1].P).norm();
stim::vec3<T> v1(
c[idx][0]-c[idx-1][0],
c[idx][1]-c[idx-1][1],
c[idx][2]-c[idx-1][2]
);
// stim::vec3<float> v2 = (e[idx+1].P-e[idx].P).norm();
stim::vec3<T> v2(
c[idx+1][0]-c[idx][0],
c[idx+1][1]-c[idx][1],
c[idx+1][2]-c[idx][2]
);
return (v1.norm()+v2.norm()).norm();
}
// return e[idx].N;
}
stim::vec3<T>
d(T l, int idx)
{
if(idx == 0 || idx == N-1)
{
return norms[idx];
// return e[idx].N;
}
else
{
T rat = (l-L[idx])/(L[idx+1]-L[idx]);
return( norms[idx] + (norms[idx+1] - norms[idx])*rat);
// return( e[idx].N + (e[idx+1].N - e[idx].N)*rat);
}
}
///finds the index of the point closest to the length l on the lower bound.
///binary search.
int
findIdx(T l)
{
unsigned int i = L.size()/2;
unsigned int max = L.size()-1;
unsigned int min = 0;
while(i > 0 && i < L.size()-1)
{
// std::cerr << "Trying " << i << std::endl;
// std::cerr << "l is " << l << ", L[" << i << "]" << L[i] << std::endl;
if(l < L[i])
{
max = i;
i = min+(max-min)/2;
}
else if(L[i] <= l && L[i+1] >= l)
{
break;
}
else
{
min = i;
i = min+(max-min)/2;
}
}
return i;
}
public:
///default constructor
cylinder()
// : centerline<T>()
{
}
///constructor to create a cylinder from a set of points, radii, and the number of sides for the cylinder.
///@param inP: Vector of stim vec3 composing the points of the centerline.
///@param inM: Vector of stim vecs composing the radii of the centerline.
cylinder(std::vector<stim::vec3<T> > inP, std::vector<stim::vec<T> > inM)
: centerline<T>(inP)
{
init(inP, inM);
}
///constructor to create a cylinder from a set of points, radii, and the number of sides for the cylinder.
///@param inP: Vector of stim vec3 composing the points of the centerline.
///@param inM: Vector of stim vecs composing the radii of the centerline.
cylinder(std::vector<stim::vec3<T> > inP, std::vector< T > inM)
: centerline<T>(inP)
{
std::vector<stim::vec<T> > temp;
stim::vec<T> zero(0.0,0.0);
temp.resize(inM.size(), zero);
for(int i = 0; i < inM.size(); i++)
temp[i][0] = inR[i];
init(inP, temp);
}
///Constructor defines a cylinder with centerline inP and magnitudes of zero
///@param inP: Vector of stim vec3 composing the points of the centerline
cylinder(std::vector< stim::vec3<T> > inP)
: centerline<T>(inP)
{
std::vector< stim::vec<T> > inM; //create an array of arbitrary magnitudes
stim::vec<T> zero;
zero.push_back(0);
inM.resize(inP.size(), zero); //initialize the magnitude values to zero
init(inP, inM);
}
//assignment operator creates a cylinder from a centerline (default radius is zero)
cylinder& operator=(stim::centerline<T> c) {
init(c);
}
///Returns the number of points on the cylinder centerline
unsigned int size(){
return N;
}
///Returns a position vector at the given p-value (p value ranges from 0 to 1).
///interpolates the position along the line.
///@param pvalue: the location of the in the cylinder, from 0 (beginning to 1).
stim::vec3<T>
p(T pvalue)
{
if(pvalue < 0.0 || pvalue > 1.0)
{
return stim::vec3<float>(-1,-1,-1);
}
T l = pvalue*L[L.size()-1];
int idx = findIdx(l);
return (p(l,idx));
}
///Returns a position vector at the given length into the fiber (based on the pvalue).
///Interpolates the radius along the line.
///@param l: the location of the in the cylinder.
///@param idx: integer location of the point closest to l but prior to it.
stim::vec3<T>
p(T l, int idx)
{
T rat = (l-L[idx])/(L[idx+1]-L[idx]);
stim::vec3<T> v1(
c[idx][0],
c[idx][1],
c[idx][2]
);
stim::vec3<T> v2(
c[idx+1][0],
c[idx+1][1],
c[idx+1][2]
);
// return( e[idx].P + (e[idx+1].P-e[idx].P)*rat);
return( v1 + (v2-v1)*rat);
// return(
// return (pos[idx] + (pos[idx+1]-pos[idx])*((l-L[idx])/(L[idx+1]- L[idx])));
}
///Returns a radius at the given p-value (p value ranges from 0 to 1).
///interpolates the radius along the line.
///@param pvalue: the location of the in the cylinder, from 0 (beginning to 1).
T
r(T pvalue)
{
if(pvalue < 0.0 || pvalue > 1.0){
std::cerr<<"Error, value "<<pvalue<<" is outside of [0 1]."<<std::endl;
exit(1);
}
T l = pvalue*L[L.size()-1];
int idx = findIdx(l);
return (r(l,idx));
}
///Returns a radius at the given length into the fiber (based on the pvalue).
///Interpolates the position along the line.
///@param l: the location of the in the cylinder.
///@param idx: integer location of the point closest to l but prior to it.
T
r(T l, int idx)
{
T rat = (l-L[idx])/(L[idx+1]-L[idx]);
T v1 = (e[idx].U.len() + (e[idx+1].U.len() - e[idx].U.len())*rat);
T v3 = (Us[idx].len() + (Us[idx+1].len() - Us[idx].len())*rat);
T v2 = (mags[idx][0] + (mags[idx+1][0]-mags[idx][0])*rat);
// std::cout << (float)v1 = (float) v2 << std::endl;
if(abs(v3 - v1) >= 10e-6)
{
std::cout << "-------------------------" << std::endl;
std::cout << e[idx].str() << std::endl << std::endl;
std::cout << Us[idx].str() << std::endl;
std::cout << (float)v1 - (float) v2 << std::endl;
std::cout << "failed" << std::endl;
}
// std::cout << e[idx].U.len() << " " << mags[idx][0] << std::endl;
// std::cout << v2 << std::endl;
return(v2);
// return (mags[idx][0] + (mags[idx+1][0]-mags[idx][0])*rat);
// (
}
/// Returns the magnitude at the given index
/// @param i is the index of the desired point
/// @param m is the index of the magnitude value
T ri(unsigned i, unsigned m = 0){
return mags[i][m];
}
/// Adds a new magnitude value to all points
/// @param m is the starting value for the new magnitude
void add_mag(T m = 0){
for(unsigned int p = 0; p < N; p++)
mags[p].push_back(m);
}
/// Sets a magnitude value
/// @param val is the new value for the magnitude
/// @param p is the point index for the magnitude to be set
/// @param m is the index for the magnitude
void set_mag(T val, unsigned p, unsigned m = 0){
mags[p][m] = val;
}
/// Returns the number of magnitude values at each point
unsigned nmags(){
return mags[0].size();
}
///returns the position of the point with a given pvalue and theta on the surface
///in x, y, z coordinates. Theta is in degrees from 0 to 360.
///@param pvalue: the location of the in the cylinder, from 0 (beginning to 1).
///@param theta: the angle to the point of a circle.
stim::vec3<T>
surf(T pvalue, T theta)
{
if(pvalue < 0.0 || pvalue > 1.0)
{
return stim::vec3<float>(-1,-1,-1);
} else {
T l = pvalue*L[L.size()-1];
int idx = findIdx(l);
stim::vec3<T> ps = p(l, idx);
T m = r(l, idx);
s = e[idx];
s.center(ps);
s.normal(d(l, idx));
s.scale(m/e[idx].U.len());
return(s.p(theta));
}
}
///returns a vector of points necessary to create a circle at every position in the fiber.
///@param sides: the number of sides of each circle.
std::vector<std::vector<vec3<T> > >
getPoints(int sides)
{
std::vector<std::vector <vec3<T> > > points;
points.resize(N);
for(int i = 0; i < N; i++)
{
points[i] = e[i].getPoints(sides);
}
return points;
}
///returns the total length of the line at index j.
T
getl(int j)
{
return (L[j]);
}
/// Allows a point on the centerline to be accessed using bracket notation
vec3<T> operator[](unsigned int i){
return e[i].P;
}
/// Returns the total length of the cylinder centerline
T length(){
return L.back();
}
/// Integrates a magnitude value along the cylinder.
/// @param m is the magnitude value to be integrated (this is usually the radius)
T integrate(unsigned m = 0){
T M = 0; //initialize the integral to zero
T m0, m1; //allocate space for both magnitudes in a single segment
//vec3<T> p0, p1; //allocate space for both points in a single segment
m0 = mags[0][m]; //initialize the first point and magnitude to the first point in the cylinder
//p0 = pos[0];
T len = L[0]; //allocate space for the segment length
//for every consecutive point in the cylinder
for(unsigned p = 1; p < N; p++){
//p1 = pos[p]; //get the position and magnitude for the next point
m1 = mags[p][m];
if(p > 1) len = (L[p-1] - L[p-2]); //calculate the segment length using the L array
//add the average magnitude, weighted by the segment length
M += (m0 + m1)/(T)2.0 * len;
m0 = m1; //move to the next segment by shifting points
}
return M; //return the integral
}
/// Averages a magnitude value across the cylinder
/// @param m is the magnitude value to be averaged (this is usually the radius)
T average(unsigned m = 0){
//return the average magnitude
return integrate(m) / L.back();
}
/// Resamples the cylinder to provide a maximum distance of "spacing" between centerline points. All current
/// centerline points are guaranteed to exist in the new cylinder
/// @param spacing is the maximum spacing allowed between sample points
cylinder<T> resample(T spacing){
std::vector< vec3<T> > result;
vec3<T> p0 = e[0].P; //initialize p0 to the first point on the centerline
vec3<T> p1;
unsigned N = size(); //number of points in the current centerline
//for each line segment on the centerline
for(unsigned int i = 1; i < N; i++){
p1 = e[i].P; //get the second point in the line segment
vec3<T> v = p1 - p0; //calculate the vector between these two points
T d = v.len(); //calculate the distance between these two points (length of the line segment)
size_t nsteps = (size_t)std::ceil(d / spacing); //calculate the number of steps to take along the segment to meet the spacing criteria
T stepsize = (T)1.0 / nsteps; //calculate the parametric step size between new centerline points
//for each step along the line segment
for(unsigned s = 0; s < nsteps; s++){
T alpha = stepsize * s; //calculate the fraction of the distance along the line segment covered
result.push_back(p0 + alpha * v); //push the point at alpha position along the line segment
}
p0 = p1; //shift the points to move to the next line segment
}
result.push_back(e[size() - 1].P); //push the last point in the centerline
return cylinder<T>(result);
}*/
};
}
#endif