update_dir_threshold_global.cuh
5.03 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#ifndef STIM_CUDA_UPDATE_DIR_THRESHOLD_GLOBALD_H
#define STIM_CUDA_UPDATE_DIR_THRESHOLD_GLOBAL_H
# include <iostream>
# include <cuda.h>
#include <stim/cuda/cudatools.h>
#include <stim/cuda/sharedmem.cuh>
#include "cpyToshare.cuh"
namespace stim{
namespace cuda{
// this kernel calculates the voting direction for the next iteration based on the angle between the location of this voter and the maximum vote value in its voting area.
template<typename T>
__global__ void cuda_update_dir(T* gpuDir, T* gpuVote, T* gpuTh, T* gpuTable, T phi, int rmax, int th_size, int x, int y){
// calculate the coordinate for this current thread.
int xi = blockIdx.x * blockDim.x + threadIdx.x;
// calculate the voting direction based on the grtadient direction
float theta = gpuTh[3*xi];
//calculate the position and x, y coordinations of this voter in the original image
unsigned int i_v = gpuTh[3*xi+2];
unsigned int y_v = i_v/x;
unsigned int x_v = i_v - (y_v*x);
//initialize the vote direction to zero
gpuDir[xi] = 0;
// define a local variable to maximum value of the vote image in the voting area for this voter
float max = 0;
// define two local variables for the x and y coordinations where the maximum happened
int id_x = 0;
int id_y = 0;
// compute the size of window which will be checked for finding the voting area for this voter
int x_table = 2*rmax +1;
int rmax_sq = rmax * rmax;
int tx_rmax = threadIdx.x + rmax;
if(xi < th_size){
for(int yr = -rmax; yr <= rmax; yr++){
for(int xr = -rmax; xr <= rmax; xr++){
unsigned int ind_t = (rmax - yr) * x_table + rmax - xr;
// find the angle between the voter and the current pixel in x and y directions
float atan_angle = gpuTable[ind_t];
// check if the current pixel is located in the voting area of this voter.
if (((xr * xr + yr *yr)< rmax_sq) && (abs(atan_angle - theta) <phi)){
// find the vote value for the current counter
float vote_c = gpuVote[(y_v+yr)*x + (x_v+xr)];
// compare the vote value of this pixel with the max value to find the maxima and its index.
if (vote_c>max) {
max = vote_c;
id_x = xr;
id_y = yr;
}
}
}
}
unsigned int ind_m = (rmax - id_y) * x_table + (rmax - id_x);
float new_angle = gpuTable[ind_m];
gpuDir[xi] = new_angle;
}
}
// this kernel updates the gradient direction by the calculated voting direction.
template<typename T>
__global__ void cuda_update_grad(T* gpuTh, T* gpuDir, int th_size, int x, int y){
// calculate the coordinate for this current thread.
int xi = blockIdx.x * blockDim.x + threadIdx.x;
//update the gradient image with the vote direction
gpuTh[3*xi] = gpuDir[xi];
}
template<typename T>
void gpu_update_dir(T* gpuVote, T* gpuTh, T* gpuTable, T phi, unsigned int rmax, unsigned int th_size, unsigned int x, unsigned int y){
//calculate the number of bytes in the array
unsigned int bytes_th = th_size* sizeof(T);
unsigned int max_threads = stim::maxThreadsPerBlock();
dim3 threads(max_threads);
dim3 blocks(th_size/threads.x+1);
// allocate space on the GPU for the updated vote direction
T* gpuDir;
cudaMalloc(&gpuDir, bytes_th);
//call the kernel to calculate the new voting direction
cuda_update_dir <<< blocks, threads>>>(gpuDir, gpuVote, gpuTh, gpuTable, phi, rmax, th_size, x , y);
//call the kernel to update the gradient direction
cuda_update_grad <<< blocks, threads >>>(gpuTh, gpuDir, th_size, x , y);
//free allocated memory
cudaFree(gpuDir);
}
template<typename T>
void cpu_update_dir(T* cpuVote, T* cpuGrad,T* cpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){
//calculate the number of bytes in the array
unsigned int bytes = x * y * sizeof(T);
//calculate the number of bytes in the atan2 table
unsigned int bytes_table = (2*rmax+1) * (2*rmax+1) * sizeof(T);
//allocate space on the GPU for the Vote Image
T* gpuVote;
cudaMalloc(&gpuVote, bytes);
//copy the input vote image to the GPU
HANDLE_ERROR(cudaMemcpy(gpuVote, cpuVote, bytes, cudaMemcpyHostToDevice));
//allocate space on the GPU for the input Gradient image
T* gpuGrad;
HANDLE_ERROR(cudaMalloc(&gpuGrad, bytes*2));
//copy the Gradient data to the GPU
HANDLE_ERROR(cudaMemcpy(gpuGrad, cpuGrad, bytes*2, cudaMemcpyHostToDevice));
//allocate space on the GPU for the atan2 table
T* gpuTable;
HANDLE_ERROR(cudaMalloc(&gpuTable, bytes_table));
//copy the atan2 values to the GPU
HANDLE_ERROR(cudaMemcpy(gpuTable, cpuTable, bytes_table, cudaMemcpyHostToDevice));
//call the GPU version of the update direction function
gpu_update_dir<T>(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y);
//copy the new gradient image back to the CPU
cudaMemcpy(cpuGrad, gpuGrad, bytes*2, cudaMemcpyDeviceToHost) ;
//free allocated memory
cudaFree(gpuTable);
cudaFree(gpuVote);
cudaFree(gpuGrad);
}
}
}
#endif