update_dir_threshold_global.cuh 5.03 KB
#ifndef STIM_CUDA_UPDATE_DIR_THRESHOLD_GLOBALD_H
#define STIM_CUDA_UPDATE_DIR_THRESHOLD_GLOBAL_H

# include <iostream>
# include <cuda.h>
#include <stim/cuda/cudatools.h>
#include <stim/cuda/sharedmem.cuh>
#include "cpyToshare.cuh"   

namespace stim{
	namespace cuda{
	
		// this kernel calculates the voting direction for the next iteration based on the angle between the location of this voter and the maximum vote value in its voting area.
		template<typename T>
		__global__ void cuda_update_dir(T* gpuDir, T* gpuVote, T* gpuTh, T* gpuTable, T phi, int rmax, int th_size, int x,  int y){

			
			
			// calculate the coordinate for this current thread.
			int xi = blockIdx.x * blockDim.x + threadIdx.x;
			// calculate the voting direction based on the grtadient direction
			float theta = gpuTh[3*xi];
			
			//calculate the position and x, y coordinations of this voter in the original image
			unsigned int i_v = gpuTh[3*xi+2];
			unsigned int y_v = i_v/x;
			unsigned int x_v = i_v - (y_v*x);
			
			//initialize the vote direction to zero
			gpuDir[xi] = 0;

			// define a local variable to maximum value of the vote image in the voting area for this voter
			float max = 0;

			// define two local variables for the x and y coordinations where the maximum happened
			int id_x = 0;
			int id_y = 0;

			// compute the size of window which will be checked for finding the voting area for this voter
			int x_table = 2*rmax +1;
			int rmax_sq = rmax * rmax;
			int tx_rmax = threadIdx.x + rmax;
			if(xi < th_size){
				
				for(int yr = -rmax; yr <= rmax; yr++){
					
					for(int xr = -rmax; xr <= rmax; xr++){

						unsigned int ind_t = (rmax - yr) * x_table + rmax - xr;

						// find the angle between the voter and the current pixel in x and y directions
						float atan_angle = gpuTable[ind_t];
										
						// check if the current pixel is located in the voting area of this voter.
						if (((xr * xr + yr *yr)< rmax_sq) && (abs(atan_angle - theta) <phi)){
							// find the vote value for the current counter
							float vote_c = gpuVote[(y_v+yr)*x + (x_v+xr)];
							// compare the vote value of this pixel with the max value to find the maxima and its index.
							if  (vote_c>max) {

								max = vote_c;
								id_x =  xr;
								id_y =  yr;
							}
						}
					}
				}
			
							
				unsigned int ind_m = (rmax - id_y) * x_table + (rmax - id_x);
				float new_angle = gpuTable[ind_m];
				gpuDir[xi] = new_angle;
			}

		}

		// this kernel updates the gradient direction by the calculated voting direction.
		template<typename T>
		__global__ void cuda_update_grad(T* gpuTh, T* gpuDir, int th_size, int x, int y){

			// calculate the coordinate for this current thread.
			int xi = blockIdx.x * blockDim.x + threadIdx.x;
			
		
			//update the gradient image with the vote direction
			gpuTh[3*xi] = gpuDir[xi];
		}
		
		template<typename T>
		void gpu_update_dir(T* gpuVote, T* gpuTh, T* gpuTable, T phi, unsigned int rmax, unsigned int th_size, unsigned int x, unsigned int y){

			//calculate the number of bytes in the array
			unsigned int bytes_th = th_size* sizeof(T);

			unsigned int max_threads = stim::maxThreadsPerBlock();
			dim3 threads(max_threads);
			dim3 blocks(th_size/threads.x+1);
			
			// allocate space on the GPU for the updated vote direction
			T* gpuDir;
			cudaMalloc(&gpuDir, bytes_th);	

			//call the kernel to calculate the new voting direction
			cuda_update_dir <<< blocks, threads>>>(gpuDir, gpuVote, gpuTh, gpuTable, phi, rmax, th_size, x , y);

			//call the kernel to update the gradient direction
			cuda_update_grad <<< blocks, threads >>>(gpuTh, gpuDir, th_size, x , y);
			
			//free allocated memory
			cudaFree(gpuDir);

		}
		
		template<typename T>
		void cpu_update_dir(T* cpuVote, T* cpuGrad,T* cpuTable, T phi, unsigned int rmax, unsigned int x, unsigned int y){

			//calculate the number of bytes in the array
			unsigned int bytes = x * y * sizeof(T);

			//calculate the number of bytes in the atan2 table
			unsigned int bytes_table = (2*rmax+1) * (2*rmax+1) * sizeof(T);

			//allocate space on the GPU for the Vote Image
			T* gpuVote;
			cudaMalloc(&gpuVote, bytes);

			//copy the input vote image to the GPU
			HANDLE_ERROR(cudaMemcpy(gpuVote, cpuVote, bytes, cudaMemcpyHostToDevice));	

			//allocate space on the GPU for the input Gradient image
			T* gpuGrad;
			HANDLE_ERROR(cudaMalloc(&gpuGrad, bytes*2));

			//copy the Gradient data to the GPU
			HANDLE_ERROR(cudaMemcpy(gpuGrad, cpuGrad, bytes*2, cudaMemcpyHostToDevice));

			//allocate space on the GPU for the atan2 table
			T* gpuTable;
			HANDLE_ERROR(cudaMalloc(&gpuTable, bytes_table));

			//copy the atan2 values to the GPU
			HANDLE_ERROR(cudaMemcpy(gpuTable, cpuTable, bytes_table, cudaMemcpyHostToDevice));
						
			//call the GPU version of the update direction function
			gpu_update_dir<T>(gpuVote, gpuGrad, gpuTable, phi, rmax, x , y);
							
			//copy the new gradient image back to the CPU
			cudaMemcpy(cpuGrad, gpuGrad, bytes*2, cudaMemcpyDeviceToHost) ;

			//free allocated memory
			cudaFree(gpuTable);
			cudaFree(gpuVote);
			cudaFree(gpuGrad);
		}
		
	}
}

#endif