mie.h 18.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
#ifndef STIM_MIE_H
#define STIM_MIE_H

#include "scalarwave.h"
#include "../math/bessel.h"
#include "../cuda/cudatools/devices.h"
#include <cmath>

namespace stim{


/// Calculate the scattering coefficients for a spherical scatterer
template<typename T>
void B_coefficients(stim::complex<T>* B, T a, T k, stim::complex<T> n, int Nl){

	//temporary variables
	double vm;															//allocate space to store the return values for the bessel function calculation
	double* j_ka = (double*) malloc( (Nl + 1) * sizeof(double) );
	double* y_ka = (double*) malloc( (Nl + 1) * sizeof(double) );
	double* dj_ka= (double*) malloc( (Nl + 1) * sizeof(double) );
	double* dy_ka= (double*) malloc( (Nl + 1) * sizeof(double) );

	stim::complex<double>* j_kna = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
	stim::complex<double>* y_kna = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
	stim::complex<double>* dj_kna= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
	stim::complex<double>* dy_kna= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );

	double ka = k * a;													//store k*a (argument for spherical bessel and Hankel functions)
	stim::complex<double> kna = k * n * a;								//store k*n*a (argument for spherical bessel functions and derivatives)

	stim::bessjyv_sph<double>(Nl, ka, vm, j_ka, y_ka, dj_ka, dy_ka);			//calculate bessel functions and derivatives for k*a
	stim::cbessjyva_sph<double>(Nl, kna, vm, j_kna, y_kna, dj_kna, dy_kna);		//calculate complex bessel functions for k*n*a

	stim::complex<double> h_ka, dh_ka;
	stim::complex<double> numerator, denominator;
	stim::complex<double> i(0, 1);
	for(int l = 0; l <= Nl; l++){
		h_ka.r = j_ka[l];
		h_ka.i = y_ka[l];
		dh_ka.r = dj_ka[l];
		dh_ka.i = dy_ka[l];

		numerator = j_ka[l] * dj_kna[l] * (stim::complex<double>)n - j_kna[l] * dj_ka[l];
		denominator = j_kna[l] * dh_ka - h_ka * dj_kna[l] * (stim::complex<double>)n;
		B[l] = (2 * l + 1) * pow(i, l) * numerator / denominator;
		std::cout<<B[l]<<std::endl;
	}
}

template<typename T>
void A_coefficients(stim::complex<T>* A, T a, T k, stim::complex<T> n, int Nl){
	//temporary variables
	double vm;															//allocate space to store the return values for the bessel function calculation
	double* j_ka = (double*) malloc( (Nl + 1) * sizeof(double) );
	double* y_ka = (double*) malloc( (Nl + 1) * sizeof(double) );
	double* dj_ka= (double*) malloc( (Nl + 1) * sizeof(double) );
	double* dy_ka= (double*) malloc( (Nl + 1) * sizeof(double) );

	stim::complex<double>* j_kna = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
	stim::complex<double>* y_kna = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
	stim::complex<double>* dj_kna= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
	stim::complex<double>* dy_kna= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );

	double ka = k * a;													//store k*a (argument for spherical bessel and Hankel functions)
	stim::complex<double> kna = k * n * a;								//store k*n*a (argument for spherical bessel functions and derivatives)

	stim::bessjyv_sph<double>(Nl, ka, vm, j_ka, y_ka, dj_ka, dy_ka);			//calculate bessel functions and derivatives for k*a
	stim::cbessjyva_sph<double>(Nl, kna, vm, j_kna, y_kna, dj_kna, dy_kna);		//calculate complex bessel functions for k*n*a

	stim::complex<double> h_ka, dh_ka;
	stim::complex<double> numerator, denominator;
	stim::complex<double> i(0, 1);
	for(size_t l = 0; l <= Nl; l++){
		h_ka.r = j_ka[l];
		h_ka.i = y_ka[l];
		dh_ka.r = dj_ka[l];
		dh_ka.i = dy_ka[l];

		numerator = j_ka[l] * dh_ka - dj_ka[l] * h_ka;
		denominator = j_kna[l] * dh_ka - h_ka * dj_kna[l] * (stim::complex<double>)n;
		A[l] = (2 * l + 1) * pow(i, l) * numerator / denominator;
	}
}

#define LOCAL_NL	16
template<typename T>
__global__ void cuda_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::complex<T>* hB, T kr_min, T dkr, size_t N_hB, int Nl){
	extern __shared__ stim::complex<T> shared_hB[];		//declare the list of waves in shared memory

	size_t i = blockIdx.x * blockDim.x + threadIdx.x;				//get the index into the array
	if(i >= N) return;													//exit if this thread is outside the array
	stim::vec3<T> p;
	(x == NULL) ? p[0] = 0 : p[0] = x[i];								// test for NULL values and set positions
	(y == NULL) ? p[1] = 0 : p[1] = y[i];
	(z == NULL) ? p[2] = 0 : p[2] = z[i];
	
	T r = p.len();														//calculate the distance from the sphere
	if(r < a) return;													//exit if the point is inside the sphere (we only calculate the internal field)
	T k = W[0].kmag();
	size_t NC = Nl + 1;													//calculate the number of coefficients to be used
	T kr = r * k;														//calculate the thread value for k*r
	T fij = (kr - kr_min)/dkr;											//FP index into the spherical bessel LUT
	size_t ij = (size_t) fij;											//convert to an integral index
	T alpha = fij - ij;													//calculate the fractional portion of the index
	size_t n0j = ij * (NC);												//start of the first entry in the LUT
	size_t n1j = (ij+1) * (NC);											//start of the second entry in the LUT

	T cos_phi;	
	T Pl_2, Pl_1, Pl;														//declare registers to store the previous two Legendre polynomials
	
	stim::complex<T> hBl;
	stim::complex<T> Ei = 0;											//create a register to store the result
	int l;

	stim::complex<T> hlBl[LOCAL_NL+1];
	int shared_start = threadIdx.x * (Nl - LOCAL_NL);

	#pragma unroll LOCAL_NL+1
	for(l = 0; l <= LOCAL_NL; l++)
		hlBl[l] = clerp<T>( hB[n0j + l], hB[n1j + l], alpha );
	
	for(l = LOCAL_NL+1; l <= Nl; l++)
		shared_hB[shared_start + (l - (LOCAL_NL+1))] = clerp<T>( hB[n0j + l], hB[n1j + l], alpha );

	for(size_t w = 0; w < nW; w++){
		cos_phi = p.norm().dot(W[w].kvec().norm());						//calculate the cosine of the angle between the k vector and the direction from the sphere
		Pl_2 = 1;
		Pl_1 = cos_phi;
		Ei += W[w].E() * hlBl[0] * Pl_2;
		Ei += W[w].E() * hlBl[1] * Pl_1;		

		#pragma unroll LOCAL_NL-1
		for(l = 2; l <= LOCAL_NL; l++){
			Pl = ( (2 * l + 1) * cos_phi * Pl_1 - (l) * Pl_2 ) / (l+1);
			Ei += W[w].E() * hlBl[l] * Pl;
			Pl_2 = Pl_1;												//shift Pl_1 -> Pl_2 and Pl -> Pl_1
			Pl_1 = Pl;
		}

		for(l = LOCAL_NL+1; l <= Nl; l++){
			Pl = ( (2 * l + 1) * cos_phi * Pl_1 - (l) * Pl_2 ) / (l+1);
			Ei += W[w].E() * shared_hB[shared_start + (l - (LOCAL_NL+1))] * Pl;
			Pl_2 = Pl_1;												//shift Pl_1 -> Pl_2 and Pl -> Pl_1
			Pl_1 = Pl;
			
		}
	}
	E[i] += Ei;															//copy the result to device memory
}

template<typename T>
void gpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::complex<T>* hB, T kr_min, T dkr, size_t N_hB, size_t Nl){
	
	size_t max_shared_mem = stim::sharedMemPerBlock();	
	int hBl_array = sizeof(stim::complex<T>) * (Nl + 1);
	std::cout<<"hl*Bl array size:  "<<hBl_array<<std::endl;
	std::cout<<"shared memory:     "<<max_shared_mem<<std::endl;
	int threads = (max_shared_mem / hBl_array) / 32 * 32;
	std::cout<<"threads per block: "<<threads<<std::endl;
	dim3 blocks((unsigned)(N / threads + 1));										//calculate the optimal number of blocks

	size_t shared_mem;
	if(Nl <= LOCAL_NL) shared_mem = 0;
	else shared_mem = threads * sizeof(stim::complex<T>) * (Nl - LOCAL_NL);				//amount of shared memory to allocate
	std::cout<<"shared memory allocated: "<<shared_mem<<std::endl;
	cuda_scalar_mie_scatter<T><<< blocks, threads, shared_mem >>>(E, N, x, y, z, W, nW, a, n, hB, kr_min, dkr, N_hB, (int)Nl);	//call the kernel

}

template<typename T>
__global__ void cuda_dist(T* r, T* x, T* y, T* z, size_t N){
	size_t i = blockIdx.x * blockDim.x + threadIdx.x;				//get the index into the array
	if(i >= N) return;													//exit if this thread is outside the array

	stim::vec3<T> p;
	(x == NULL) ? p[0] = 0 : p[0] = x[i];								// test for NULL values and set positions
	(y == NULL) ? p[1] = 0 : p[1] = y[i];
	(z == NULL) ? p[2] = 0 : p[2] = z[i];

	r[i] = p.len();
}
/// Calculate the scalar Mie solution for the scattered field produced by a single plane wave

/// @param E is a pointer to the destination field values
/// @param N is the number of points used to calculate the field
/// @param x is an array of x coordinates for each point, specified relative to the sphere (x = NULL assumes all zeros)
/// @param y is an array of y coordinates for each point, specified relative to the sphere (y = NULL assumes all zeros)
/// @param z is an array of z coordinates for each point, specified relative to the sphere (z = NULL assumes all zeros)
/// @param W is an array of planewaves that will be scattered
/// @param a is the radius of the sphere
/// @param n is the complex refractive index of the sphere
template<typename T>
void cpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, std::vector<stim::scalarwave<T>> W, T a, stim::complex<T> n, T r_spacing = 0.1){
	//calculate the necessary number of orders required to represent the scattered field
	T k = W[0].kmag();

	int Nl = (int)ceil(k*a + 4 * cbrt( k * a ) + 2);
	if(Nl < LOCAL_NL) Nl = LOCAL_NL;							//always do at least the minimum number of local operations (kernel optimization)
	std::cout<<"Nl: "<<Nl<<std::endl;

	//calculate the scattering coefficients for the sphere
	stim::complex<T>* B = (stim::complex<T>*) malloc( sizeof(stim::complex<T>) * (Nl + 1) );	//allocate space for the scattering coefficients
	B_coefficients(B, a, k, n, Nl);

#ifdef CUDA_FOUND
	stim::complex<T>* dev_E;										//allocate space for the field
	cudaMalloc(&dev_E, N * sizeof(stim::complex<T>));
	cudaMemcpy(dev_E, E, N * sizeof(stim::complex<T>), cudaMemcpyHostToDevice);
	//cudaMemset(dev_F, 0, N * sizeof(stim::complex<T>));				//set the field to zero (necessary because a sum is used)

	//	COORDINATES
	T* dev_x = NULL;												//allocate space and copy the X coordinate (if specified)
	if(x != NULL){
		HANDLE_ERROR(cudaMalloc(&dev_x, N * sizeof(T)));
		HANDLE_ERROR(cudaMemcpy(dev_x, x, N * sizeof(T), cudaMemcpyHostToDevice));
	}
	T* dev_y = NULL;												//allocate space and copy the Y coordinate (if specified)
	if(y != NULL){
		HANDLE_ERROR(cudaMalloc(&dev_y, N * sizeof(T)));
		HANDLE_ERROR(cudaMemcpy(dev_y, y, N * sizeof(T), cudaMemcpyHostToDevice));
	}
	T* dev_z = NULL;												//allocate space and copy the Z coordinate (if specified)
	if(z != NULL){
		HANDLE_ERROR(cudaMalloc(&dev_z, N * sizeof(T)));
		HANDLE_ERROR(cudaMemcpy(dev_z, z, N * sizeof(T), cudaMemcpyHostToDevice));
	}

	//	PLANE WAVES
	stim::scalarwave<T>* dev_W;																//allocate space and copy plane waves
	HANDLE_ERROR( cudaMalloc(&dev_W, sizeof(stim::scalarwave<T>) * W.size()) );
	HANDLE_ERROR( cudaMemcpy(dev_W, &W[0], sizeof(stim::scalarwave<T>) * W.size(), cudaMemcpyHostToDevice) );

	// BESSEL FUNCTION LOOK-UP TABLE
	//calculate the distance from the sphere center
	T* dev_r;
	HANDLE_ERROR( cudaMalloc(&dev_r, sizeof(T) * N) );
		
	int threads = stim::maxThreadsPerBlock();
	dim3 blocks((unsigned)(N / threads + 1));
	cuda_dist<T> <<< blocks, threads >>>(dev_r, dev_x, dev_y, dev_z, N);

	//Find the minimum and maximum values of r
    cublasStatus_t stat;
    cublasHandle_t handle;

	stat = cublasCreate(&handle);							//create a cuBLAS handle
	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
        printf ("CUBLAS initialization failed\n");
		exit(1);
	}

	int i_min, i_max;
	stat = cublasIsamin(handle, (int)N, dev_r, 1, &i_min);
	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
        printf ("CUBLAS Error: failed to calculate minimum r value.\n");
		exit(1);
	}
	stat = cublasIsamax(handle, (int)N, dev_r, 1, &i_max);
	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
        printf ("CUBLAS Error: failed to calculate maximum r value.\n");
		exit(1);
	}

	T r_min, r_max;											//allocate space to store the minimum and maximum values
	HANDLE_ERROR( cudaMemcpy(&r_min, dev_r + i_min, sizeof(T), cudaMemcpyDeviceToHost) );		//copy the min and max values from the device to the CPU
	HANDLE_ERROR( cudaMemcpy(&r_max, dev_r + i_max, sizeof(T), cudaMemcpyDeviceToHost) );


	//size_t Nlut_j = (size_t)((r_max - r_min) / r_spacing + 1);			//number of values in the look-up table based on the user-specified spacing along r
	size_t N_hB_lut = (size_t)((r_max - r_min) / r_spacing + 1);

	T kr_min = k * r_min;
	T kr_max = k * r_max;

	//temporary variables
	double vm;															//allocate space to store the return values for the bessel function calculation
	double* jv = (double*) malloc( (Nl + 1) * sizeof(double) );
	double* yv = (double*) malloc( (Nl + 1) * sizeof(double) );
	double* djv= (double*) malloc( (Nl + 1) * sizeof(double) );
	double* dyv= (double*) malloc( (Nl + 1) * sizeof(double) );

	size_t hB_bytes = sizeof(stim::complex<T>) * (Nl+1) * N_hB_lut;
	stim::complex<T>* hB_lut = (stim::complex<T>*) malloc(hB_bytes);													//pointer to the look-up table
	T dkr = (kr_max - kr_min) / (N_hB_lut-1);												//distance between values in the LUT
	std::cout<<"LUT jl bytes:  "<<hB_bytes<<std::endl;
	stim::complex<T> hl;
	for(size_t kri = 0; kri < N_hB_lut; kri++){													//for each value in the LUT
		stim::bessjyv_sph<double>(Nl, kr_min + kri * dkr, vm, jv, yv, djv, dyv);		//compute the list of spherical bessel functions from [0 Nl]
		for(size_t l = 0; l <= Nl; l++){													//for each order
			hl.r = (T)jv[l];
			hl.i = (T)yv[l];

			hB_lut[kri * (Nl + 1) + l] = hl * B[l];										//store the bessel function result
		}
	}

	//stim::cpu2image<T>(hankel_lut, "hankel.bmp", Nl+1, Nlut_j, stim::cmBrewer);

	//Allocate device memory and copy everything to the GPU
	stim::complex<T>* dev_hB_lut;
	HANDLE_ERROR( cudaMalloc(&dev_hB_lut, hB_bytes) );
	HANDLE_ERROR( cudaMemcpy(dev_hB_lut, hB_lut, hB_bytes, cudaMemcpyHostToDevice) );

	gpu_scalar_mie_scatter<T>(dev_E, N, dev_x, dev_y, dev_z, dev_W, W.size(), a, n, dev_hB_lut, kr_min, dkr, N_hB_lut, Nl);

	cudaMemcpy(E, dev_E, N * sizeof(stim::complex<T>), cudaMemcpyDeviceToHost);			//copy the field from device memory

	if(x != NULL) cudaFree(dev_x);														//free everything
	if(y != NULL) cudaFree(dev_y);
	if(z != NULL) cudaFree(dev_z);
	cudaFree(dev_E);
#else
	

	//allocate space to store the bessel function call results
	double vm;										
	double* j_kr = (double*) malloc( (Nl + 1) * sizeof(double) );
	double* y_kr = (double*) malloc( (Nl + 1) * sizeof(double) );
	double* dj_kr= (double*) malloc( (Nl + 1) * sizeof(double) );
	double* dy_kr= (double*) malloc( (Nl + 1) * sizeof(double) );

	T* P = (T*) malloc( (Nl + 1) * sizeof(T) );

	T r, kr, cos_phi;
	stim::complex<T> h;
	for(size_t i = 0; i < N; i++){
		stim::vec3<T> p;															//declare a 3D point
	
		(x == NULL) ? p[0] = 0 : p[0] = x[i];										// test for NULL values and set positions
		(y == NULL) ? p[1] = 0 : p[1] = y[i];
		(z == NULL) ? p[2] = 0 : p[2] = z[i];
		r = p.len();
		if(r >= a){
			for(size_t w = 0; w < W.size(); w++){
				kr = p.len() * W[w].kmag();											//calculate k*r
				stim::bessjyv_sph<double>(Nl, kr, vm, j_kr, y_kr, dj_kr, dy_kr);
				cos_phi = p.norm().dot(W[w].kvec().norm());							//calculate the cosine of the angle from the propagating direction
				stim::legendre<T>(Nl, cos_phi, P);

				for(size_t l = 0; l <= Nl; l++){
					h.r = j_kr[l];
					h.i = y_kr[l];
					E[i] += W[w].E() * B[l] * h * P[l];
				}
			}
		}
	}
#endif
}

template<typename T>
void cpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T> w, T a, stim::complex<T> n){
	std::vector< stim::scalarwave<T> > W(1, w);
	cpu_scalar_mie_scatter(E, N, x, y, z, W, a, n);
}

/// Calculate the scalar Mie solution for the internal field produced by a single plane wave scattered by a sphere

/// @param E is a pointer to the destination field values
/// @param N is the number of points used to calculate the field
/// @param x is an array of x coordinates for each point, specified relative to the sphere (x = NULL assumes all zeros)
/// @param y is an array of y coordinates for each point, specified relative to the sphere (y = NULL assumes all zeros)
/// @param z is an array of z coordinates for each point, specified relative to the sphere (z = NULL assumes all zeros)
/// @param w is a planewave that will be scattered
/// @param a is the radius of the sphere
/// @param n is the complex refractive index of the sphere
template<typename T>
void cpu_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, std::vector< stim::scalarwave<T> > W, T a, stim::complex<T> n){

	//calculate the necessary number of orders required to represent the scattered field
	T k = W[0].kmag();

	size_t Nl = ceil(k*a + 4 * cbrt( k * a ) + 2);
	std::cout<<"Nl: "<<Nl<<std::endl;

	//calculate the scattering coefficients for the sphere
	stim::complex<T>* A = (stim::complex<T>*) malloc( sizeof(stim::complex<T>) * (Nl + 1) );	//allocate space for the scattering coefficients
	A_coefficients(A, a, k, n, Nl);

	//allocate space to store the bessel function call results
	double vm;										
	stim::complex<double>* j_knr = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
	stim::complex<double>* y_knr = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
	stim::complex<double>* dj_knr= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
	stim::complex<double>* dy_knr= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );

	T* P = (T*) malloc( (Nl + 1) * sizeof(T) );

	T r, cos_phi;
	stim::complex<double> knr;
	stim::complex<T> h;
	for(size_t i = 0; i < N; i++){
		stim::vec3<T> p;									//declare a 3D point
	
		(x == NULL) ? p[0] = 0 : p[0] = x[i];				// test for NULL values and set positions
		(y == NULL) ? p[1] = 0 : p[1] = y[i];
		(z == NULL) ? p[2] = 0 : p[2] = z[i];
		r = p.len();
		if(r < a){
			E[i] = 0;
			for(size_t w = 0; w < W.size(); w++){
				knr = (stim::complex<double>)n * p.len() * W[w].kmag();							//calculate k*n*r

				stim::cbessjyva_sph<double>(Nl, knr, vm, j_knr, y_knr, dj_knr, dy_knr);
				if(r == 0)
					cos_phi = 0;
				else
					cos_phi = p.norm().dot(W[w].kvec().norm());				//calculate the cosine of the angle from the propagating direction
				stim::legendre<T>(Nl, cos_phi, P);
								
				for(size_t l = 0; l <= Nl; l++){
					E[i] += W[w].E() * A[l] * (stim::complex<T>)j_knr[l] * P[l];
				}
			}
		}
	}
}

template<typename T>
void cpu_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T> w, T a, stim::complex<T> n){
	std::vector< stim::scalarwave<T> > W(1, w);
	cpu_scalar_mie_internal(E, N, x, y, z, W, a, n);
}

}

#endif