envi.h 33.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
#ifndef STIM_ENVI_H
#define STIM_ENVI_H

#include "../envi/envi_header.h"
#include "../envi/bsq.h"
#include "../envi/bip.h"
#include "../envi/bil.h"
#include <iostream>
#include "../image/image.h"

namespace stim{

/** This class implements reading of ENVI hyperspectral files. These files can be stored in multiple orientations
	(including BSQ, BIP, and BIL) in order to optimize streaming speed depending on applications. Basic ENVI
	files are stored on disk as a large binary file with a corresponding header. Code for reading and processing
	ENVI header files is in the envi_header class.
*/
class envi{	

	void* file;		//void pointer to the relevant file reader (bip, bsq, or bil - with appropriate data type)

public:

	envi_header header;

	/// Allocate memory for a new ENVI file based on the current interleave format (BIP, BIL, BSQ) and data type.
	bool allocate(){

		file = NULL;	//set file to a NULL pointer

		if(header.interleave == envi_header::BSQ){
			if(header.data_type ==envi_header::float32)
				return(file = new bsq<float>());
			else if(header.data_type == envi_header::float64)
				return(file = new bsq<double>());
		}
		else if(header.interleave == envi_header::BIP){
			if(header.data_type ==envi_header::float32)
				return(file = new bip<float>());
			else if(header.data_type == envi_header::float64)
				return(file = new bip<double>());
		}
		else if(header.interleave == envi_header::BIL){
			if(header.data_type ==envi_header::float32)
				return(file = new bil<float>());
			else if(header.data_type == envi_header::float64)
				return(file = new bil<double>());
		}

		exit(1);	//if the function hasn't already returned, we don't handle this state

	}

	/// Open an existing ENVI file given the file and header names.

	/// @param filename is the name of the ENVI binary file
	/// @param headername is the name of the ENVI header file
	bool open(std::string filename, std::string headername){

		//allocate memory
		allocate();

		//load the header
		header.load(headername);

		//load the file
		if(header.interleave == envi_header::BSQ) {		//if the infile is bsq file
			if(header.data_type == envi_header::float32) {
				return ((bsq<float>*)file)->open(filename, header.samples, header.lines, header.bands, header.header_offset, header.wavelength);
			}
			else if(header.data_type == envi_header::float64) {
				return ((bsq<double>*)file)->open(filename, header.samples, header.lines, header.bands, header.header_offset, header.wavelength);
			}
			else
				return false;
		}

		else if(header.interleave == envi_header::BIL) {		//if the infile is bil file
			if(header.data_type == envi_header::float32) {
				return ((bil<float>*)file)->open(filename, header.samples, header.lines, header.bands, header.header_offset, header.wavelength);
			}
			else if(header.data_type == envi_header::float64) {
				return ((bil<double>*)file)->open(filename, header.samples, header.lines, header.bands, header.header_offset, header.wavelength);
			}
			else
				return false;
		}
				
		else if(header.interleave == envi_header::BIP) {		//if the infile is bip file
			if(header.data_type == envi_header::float32) {
				return ((bip<float>*)file)->open(filename, header.samples, header.lines, header.bands, header.header_offset, header.wavelength);
			}
			else if(header.data_type == envi_header::float64) {
				return ((bip<double>*)file)->open(filename, header.samples, header.lines, header.bands, header.header_offset, header.wavelength);
			}
			else
				return false;		
		}
		
		else{
		std::cout<<"ERROR: unidentified type file       "<<headername<<std::endl;
		exit(1);
		}

	}

	/// Normalize a hyperspectral ENVI file given a band number and threshold.

	/// @param outfile is the name of the normalized file to be output
	/// @param band is the band label to be output
	/// @param threshold is a threshold value specified such that normalization will only be done to values in the band > threshold (preventing division by small numbers)
	bool normalize(std::string outfile, double band, double threshold = 0.0){
	
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->normalize(outfile, band, threshold);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->normalize(outfile,band, threshold);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->normalize(outfile, band);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->normalize(outfile,band);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->normalize(outfile, band);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->normalize(outfile,band);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
			exit(1);
		}
		return false;
	}

	/// Performs piecewise linear baseline correction of a hyperspectral file/

	/// @param outfile is the file name for the baseline corrected output
	/// @param w is a list of band labels to serve as baseline points (zero values)
	bool baseline(std::string outfile, std::vector<double> w){

		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->baseline(outfile, w);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->baseline(outfile,w);
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->baseline(outfile, w);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->baseline(outfile, w);
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file 
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->baseline(outfile, w);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->baseline(outfile, w);
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
			exit(1);
		}
	}

	/// Converts ENVI files between interleave types (BSQ, BIL, and BIP)

	/// @param outfile is the file name for the converted output
	/// @param interleave is the interleave format for the destination file
	bool convert(std::string outfile, stim::envi_header::interleaveType interleave){

		if(header.interleave == envi_header::BSQ){			//if the infile is bsq file

			if(header.data_type ==envi_header::float32){		//if the data type of infile is float
				if(interleave == envi_header::BSQ){
					std::cout<<"ERROR:  is already BSQ file"<<std::endl;
					exit(1);
				}
				else if(interleave == envi_header::BIL)			//if the target file is bil file
					return ((bsq<float>*)file)->bil(outfile);
				else if(interleave == envi_header::BIP)			//if the target file is bip file
					return ((bsq<float>*)file)->bip(outfile);
			}

			else if(header.data_type == envi_header::float64){		//if the data type is float
				if(interleave == envi_header::BSQ){
					std::cout<<"ERROR:  is already BSQ file"<<std::endl;
					exit(1);
				}
				else if(interleave == envi_header::BIL)
					return ((bsq<double>*)file)->bil(outfile);
				else if(interleave == envi_header::BIP)
					return ((bsq<double>*)file)->bip(outfile);
			}
			
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);				
			}
		}

		else if(header.interleave == envi_header::BIL){

			if(header.data_type ==envi_header::float32){		//if the data type of infile is float
				if(interleave == envi_header::BIL){
					std::cout<<"ERROR:  is already BIL file"<<std::endl;
					exit(1);
				}
				else if(interleave == envi_header::BSQ)			//if the target file is bsq file
					return ((bil<float>*)file)->bsq(outfile);
				else if(interleave == envi_header::BIP)			//if the target file is bip file
					return ((bil<float>*)file)->bip(outfile);
			}

			else if(header.data_type == envi_header::float64){		//if the data type is float
				if(interleave == envi_header::BIL){
					std::cout<<"ERROR:  is already BIL file"<<std::endl;
					exit(1);
				}
				else if(interleave == envi_header::BSQ)
					return ((bil<double>*)file)->bsq(outfile);
				else if(interleave == envi_header::BIP)
					return ((bil<double>*)file)->bip(outfile);
			}
			
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);				
			}
		}

		else if(header.interleave == envi_header::BIP){
		
			if(header.data_type ==envi_header::float32){		//if the data type of infile is float
				if(interleave == envi_header::BIP){
					std::cout<<"ERROR:  is already BIP file"<<std::endl;
					exit(1);
				}
				else if(interleave == envi_header::BIL)			//if the target file is bil file
					return ((bip<float>*)file)->bil(outfile);
				else if(interleave == envi_header::BSQ)			//if the target file is bsq file
					return ((bip<float>*)file)->bsq(outfile);
			}

			else if(header.data_type == envi_header::float64){		//if the data type is float
				if(interleave == envi_header::BIP){
					std::cout<<"ERROR:  is already BIP file"<<std::endl;
					exit(1);
				}
				else if(interleave == envi_header::BIL)			//if the target file is bil file
					return ((bip<double>*)file)->bil(outfile);
				else if(interleave == envi_header::BSQ)			//if the target file is bsq file
					return ((bip<double>*)file)->bsq(outfile);
			}
			
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);				
			}
		}
		
		else{
			std::cout<<"ERROR: unidentified interleave type"<<std::endl;
			exit(1);
		}
		return false;
	
	}

	/// Builds a mask from a band image and threshold value

	/// @param mask_band is the label for the band that will be used to build the mask
	/// @param threshold is a value selected such that all band values greater than threshold will have a mask value of 'true'
	/// @param p is memory of size X*Y that will store the resulting mask
	bool build_mask(double mask_band, double threshold, unsigned char* p = NULL)	{

		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->build_mask(mask_band, threshold, p);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->build_mask(mask_band, threshold, p);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->build_mask(mask_band, threshold, p);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->build_mask(mask_band, threshold, p);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->build_mask(mask_band, threshold, p);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->build_mask(mask_band, threshold, p);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		return false;
	}

	/// Applies a mask to the ENVI file.

	/// @param outfile is the name of the resulting masked output file
	/// @param p is memory of size X*Y containing the mask (0 = false, all other values are true)
	bool apply_mask(std::string outfile, unsigned char* p)	
	{

		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->apply_mask(outfile, p);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->apply_mask(outfile, p);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->apply_mask(outfile, p);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->apply_mask(outfile, p);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->apply_mask(outfile, p);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->apply_mask(outfile, p);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
			exit(1);
		}
		return false;
	}

	/// Compute the ratio of two baseline-corrected peaks. The result is stored in a pre-allocated array.

	/// @param lb1 is the label value for the left baseline point for the first peak (numerator)
	/// @param rb1 is the label value for the right baseline point for the first peak (numerator)
	/// @param pos1 is the label value for the first peak (numerator) position
	/// @param lb2 is the label value for the left baseline point for the second peak (denominator)
	/// @param rb2 is the label value for the right baseline point for the second peak (denominator)
	/// @param pos2 is the label value for the second peak (denominator) position
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool ph_to_ph(double lb1, double rb1, double pos1, double lb2, double rb2, double pos2, void * result){
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->ph_to_ph(lb1, rb1, pos1, lb2, rb2, pos2, (float*)result);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->ph_to_ph(lb1, rb1, pos1, lb2, rb2, pos2, (double*)result);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->ph_to_ph(lb1, rb1, pos1, lb2, rb2, pos2, (float*)result);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->ph_to_ph(lb1, rb1, pos1, lb2, rb2, pos2, (double*)result);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->ph_to_ph(lb1, rb1, pos1, lb2, rb2, pos2, (float*)result);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->ph_to_ph(lb1, rb1, pos1, lb2, rb2, pos2, (double*)result);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
			exit(1);
		}
		return false;
	}

	/// Compute the ratio between a peak area and peak height.

	/// @param lb1 is the label value for the left baseline point for the first peak (numerator)
	/// @param rb1 is the label value for the right baseline point for the first peak (numerator)
	/// @param pos1 is the label value for the first peak (numerator) position
	/// @param lb2 is the label value for the left baseline point for the second peak (denominator)
	/// @param rb2 is the label value for the right baseline point for the second peak (denominator)
	/// @param pos2 is the label value for the second peak (denominator) position
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool pa_to_ph(double lb1, double rb1, double lab1, double rab1, double lb2, double rb2, double pos, void * result){
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->pa_to_ph(lb1, rb1, lab1, rab1, lb2, rb2, pos, (float*)result);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->pa_to_ph(lb1, rb1, lab1, rab1, lb2, rb2, pos, (double*)result);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->pa_to_ph(lb1, rb1, lab1, rab1, lb2, rb2, pos, (float*)result);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->pa_to_ph(lb1, rb1, lab1, rab1, lb2, rb2, pos, (double*)result);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->pa_to_ph(lb1, rb1, lab1, rab1, lb2, rb2, pos, (float*)result);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->pa_to_ph(lb1, rb1, lab1, rab1, lb2, rb2, pos, (double*)result);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
			exit(1);
		}
		return false;
	}

	/// Compute the ratio between two peak areas.

	/// @param lb1 is the label value for the left baseline point for the first peak (numerator)
	/// @param rb1 is the label value for the right baseline point for the first peak (numerator)
	/// @param lab1 is the label value for the left bound (start of the integration) of the first peak (numerator)
	/// @param rab1 is the label value for the right bound (end of the integration) of the first peak (numerator)
	/// @param lb2 is the label value for the left baseline point for the second peak (denominator)
	/// @param rb2 is the label value for the right baseline point for the second peak (denominator)
	/// @param lab2 is the label value for the left bound (start of the integration) of the second peak (denominator)
	/// @param rab2 is the label value for the right bound (end of the integration) of the second peak (denominator)	
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool pa_to_pa(double lb1, double rb1, double lab1, double rab1,
					double lb2, double rb2, double lab2, double rab2, void* result){
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->pa_to_pa(lb1, rb1, lab1, rab1, lb2, rb2, lab2, rab2, (float*)result);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->pa_to_pa(lb1, rb1, lab1, rab1, lb2, rb2, lab2, rab2, (double*)result);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->pa_to_pa(lb1, rb1, lab1, rab1, lb2, rb2, lab2, rab2, (float*)result);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->pa_to_pa(lb1, rb1, lab1, rab1, lb2, rb2, lab2, rab2, (double*)result);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->pa_to_pa(lb1, rb1, lab1, rab1, lb2, rb2, lab2, rab2, (float*)result);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->pa_to_pa(lb1, rb1, lab1, rab1, lb2, rb2, lab2, rab2, (double*)result);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
			exit(1);
		}
		return false;
	}

	/// Compute the centroid of a baseline corrected peak.

	/// @param lb is the label value for the left baseline point
	/// @param rb is the label value for the right baseline point
	/// @param lab is the label for the start of the peak
	/// @param rab is the label for the end of the peak
	/// @param result is a pointer to a pre-allocated array at least X * Y * sizeof(T) in size
	bool cpoint(double lb1, double rb1, double lab1, double rab1, void* result){
		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->cpoint(lb1, rb1, lab1, rab1, (float*)result);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->cpoint(lb1, rb1, lab1, rab1, (double*)result);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIL){		//if the infile is bil file
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->cpoint(lb1, rb1, lab1, rab1, (float*)result);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->cpoint(lb1, rb1, lab1, rab1, (double*)result);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else if(header.interleave == envi_header::BIP){		//if the infile is bip file
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->cpoint(lb1, rb1, lab1, rab1,(float*)result);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->cpoint(lb1, rb1, lab1, rab1, (double*)result);
			else
				std::cout<<"ERROR: unidentified data type"<<std::endl;
		}

		else{
			std::cout<<"ERROR: unidentified file type"<<std::endl;
			exit(1);
		}
		return false;
	}

	/// Closes the ENVI file.
	bool close(){
		if(header.interleave == envi_header::BSQ){
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->close();
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->close();
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}

		else if(header.interleave == envi_header::BIL){
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->close();
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->close();
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}

		else if(header.interleave == envi_header::BIP){
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->close();
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->close();
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}
		return false;
	}

	/// Retrieve a single pixel and stores it in pre-allocated memory.

	/// @param p is a pointer to pre-allocated memory at least sizeof(T) in size.
	/// @param n is an integer index to the pixel using linear array indexing.
	bool pixel(void * p, unsigned n){
		if(header.interleave == envi_header::BSQ){
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->pixel((float*)p, n);
			else if(header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->pixel((double*)p, n);
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}
		else if(header.interleave == envi_header::BIL){
			if(header.data_type ==envi_header::float32)
				return ((bil<float>*)file)->pixel((float*)p, n);
			else if(header.data_type == envi_header::float64)
				return ((bil<double>*)file)->pixel((double*)p, n);
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}
		else if(header.interleave == envi_header::BIP){
			if(header.data_type ==envi_header::float32)
				return ((bip<float>*)file)->pixel((float*)p, n);
			else if(header.data_type == envi_header::float64)
				return ((bip<double>*)file)->pixel((double*)p, n);
			else{
				std::cout<<"ERROR: unidentified data type"<<std::endl;
				exit(1);
			}
		}
		return false;
	}

	/// Saves a header file describing the current ENVI file parameters.
	bool save_header(std::string filename){

		//save the header file here
		header.save(filename);

		return true;
	}

	/// Retrieve a single band (by numerical label) and stores it in pre-allocated memory.

	/// @param p is a pointer to an allocated region of memory at least X * Y * sizeof(T) in size.
	/// @param wavelength is a floating point value (usually a wavelength in spectral data) used as a label for the band to be copied.
	bool band(void* ptr, double wavelength){

		if(header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if(header.data_type ==envi_header::float32)
				return ((bsq<float>*)file)->band((float*)ptr, wavelength);
			else if (header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->band((double*)ptr, wavelength);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				return ((bil<float>*)file)->band((float*)ptr, wavelength);
			else if (header.data_type == envi_header::float64)
				return ((bil<double>*)file)->band((double*)ptr, wavelength);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->band((float*)ptr, wavelength);
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->band((double*)ptr, wavelength);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		return false;
	}

	/// Retrieve a single band (based on index) and stores it in pre-allocated memory.

	/// @param p is a pointer to an allocated region of memory at least X * Y * sizeof(T) in size.
	/// @param page <= B is the integer number of the band to be copied.
	bool band_index(void* ptr, unsigned int b){
		if (header.interleave == envi_header::BSQ){		//if the infile is bsq file
			if (header.data_type == envi_header::float32)
				return ((bsq<float>*)file)->band_index((float*)ptr, b);
			else if (header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->band_index((double*)ptr, b);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				return ((bil<float>*)file)->band_index((float*)ptr, b);
			else if (header.data_type == envi_header::float64)
				return ((bil<double>*)file)->band_index((double*)ptr, b);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->band_index((float*)ptr, b);
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->band_index((double*)ptr, b);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		return false;
	}
	
	/// Helper function that loads a mask into memory given a filename.

	/// @param mask is a pointer to pre-allocated memory of size X*Y
	/// @param maskname is the file name for the image that will serve as the mask
	bool load_mask(unsigned char * mask, std::string maskname){
		//open the mask file
		stim::image<unsigned char> mask_image(maskname);
		mask_image.data_noninterleaved(mask);
		//save mask file into memory
		//memcpy(mask, mask_image.data_noninterleaved(), mask_image.size());
		//mask_image.clear();
		return true;
	}

	//p:start positon; N: number of pixels saved in X;
	bool feature_matrix(void * X,  unsigned char * mask, unsigned start, unsigned N)
	{
		//save pixels in X as floating numbers: float * p
		float * p = (float*)malloc(header.bands * sizeof(float));		//save pixel information
		unsigned pixels = header.samples * header.lines;		//calculate pixel numbers in a band
		unsigned count = 0;		//for counting use
		unsigned j = 0;		//memory the pointer location in X

		//create two indices into the mask (mask index and pixel index)
		unsigned mi = 0;	//valid pixel index
		unsigned pi = 0;	//actual pixel in the mask

		//find the actual pixel index for the mask index "start"
		while(mi < start){
			if(mask[pi])
				mi++;

			pi++;
		}

		for(unsigned i = pi; i < pixels; i++){
			if(mask[i] != 0){
				pixel(p, i);
				//copy p to X
				for(unsigned k = 0; k < header.bands; k++){
					((float *)X)[j] = p[k];
					j++;
				}
				count++;
				if(count == N)
					break;
			}
			else
				continue;
		}
		if(count < N){
			std::cout << "number of valid pixels in the mask : " << count <<"is less than N: "<< N;
			exit(1);
		}
		free(p);
		return true;
	}

	/// Calculate the mean value for all masked (or valid) pixels in a band and returns the average spectrum

	/// @param p is a pointer to pre-allocated memory of size [B * sizeof(T)] that stores the mean spectrum
	/// @param mask is a pointer to memory of size [X * Y] that stores the mask value at each pixel location
	bool avg_band(void * p, unsigned char* mask){
		if (header.interleave == envi_header::BSQ){
			if (header.data_type == envi_header::float32)
				return ((bsq<float>*)file)->avg_band((float*)p, mask);
			else if (header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->avg_band((double*)p,  mask);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				return ((bil<float>*)file)->avg_band((float*)p,  mask);
			else if (header.data_type == envi_header::float64)
				return ((bil<double>*)file)->avg_band((double*)p,  mask);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->avg_band((float*)p, mask);
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->avg_band((double*)p, mask);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		return false;
	}

	/// Calculate the covariance matrix for all masked pixels in the image.

	/// @param co is a pointer to pre-allocated memory of size [B * B] that stores the resulting covariance matrix
	/// @param avg is a pointer to memory of size B that stores the average spectrum
	/// @param mask is a pointer to memory of size [X * Y] that stores the mask value at each pixel location
	bool co_matrix(void* co, void* avg, unsigned char* mask){
		if (header.interleave == envi_header::BSQ){
			if (header.data_type == envi_header::float32)
				return ((bsq<float>*)file)->co_matrix((float*)co, (float*)avg, mask);
			else if (header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->co_matrix((double*)co, (double*)avg, mask);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				return ((bil<float>*)file)->co_matrix((float*)co, (float*)avg, mask);
			else if (header.data_type == envi_header::float64)
				return ((bil<double>*)file)->co_matrix((double*)co, (double*)avg, mask);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->co_matrix((float*)co, (float*)avg, mask);
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->co_matrix((double*)co, (double*)avg, mask);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		return false;
	}


	/// Crop a region of the image and save it to a new file.

	/// @param outfile is the file name for the new cropped image
	/// @param x0 is the lower-left x pixel coordinate to be included in the cropped image
	/// @param y0 is the lower-left y pixel coordinate to be included in the cropped image
	/// @param x1 is the upper-right x pixel coordinate to be included in the cropped image
	/// @param y1 is the upper-right y pixel coordinate to be included in the cropped image
	bool crop(std::string outfile,unsigned x0, unsigned y0, unsigned x1, unsigned y1){

		if (header.interleave == envi_header::BSQ){
			if (header.data_type == envi_header::float32)
				return ((bsq<float>*)file)->crop(outfile, x0, y0, x1, y1);
			else if (header.data_type == envi_header::float64)
				return ((bsq<double>*)file)->crop(outfile, x0, y0, x1, y1);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIL){
			if (header.data_type == envi_header::float32)
				return ((bil<float>*)file)->crop(outfile, x0, y0, x1, y1);
			else if (header.data_type == envi_header::float64)
				return ((bil<double>*)file)->crop(outfile, x0, y0, x1, y1);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		else if (header.interleave == envi_header::BIP){
			if (header.data_type == envi_header::float32)
				return ((bip<float>*)file)->crop(outfile, x0, y0, x1, y1);
			else if (header.data_type == envi_header::float64)
				return ((bip<double>*)file)->crop(outfile, x0, y0, x1, y1);
			else{
				std::cout << "ERROR: unidentified data type" << std::endl;
				exit(1);
			}
		}
		return false;
	}

};

}	//end namespace rts

#endif