optics.py 30.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 22 16:22:17 2018

@author: david
"""

import numpy as np
import scipy as sp
import scipy.ndimage
import matplotlib
import math
import matplotlib.pyplot as plt

#adjust the components of E0 so that they are orthogonal to d
    #if d is 2D, the z component is calculated such that ||[dx, dy, dz]||=1
def orthogonalize(E, d):
    if d.shape[-1] == 2:
        dz = 1 - d[..., 0]**2 - d[..., 1]**2
        d = np.append(d, dz)
    s = np.cross(E, d)
    
    dE = np.cross(d, s)
    return dE
    #return dE/np.linalg.norm(dE) * np.linalg.norm(E)

def intensity(E):
    Econj = np.conj(E)
    I = np.sum(E*Econj, axis=-1)
    return np.real(I)

class planewave:
    #implement all features of a plane wave
    #   k, E, frequency (or wavelength in a vacuum)--l
    #   try to enforce that E and k have to be orthogonal
    
    #initialization function that sets these parameters when a plane wave is created
    def __init__ (self, k, E):
        
        self.k = np.array(k)              
        self.E = E
        
        if ( np.linalg.norm(k) > 1e-15 and np.linalg.norm(E) >1e-15):
            s = np.cross(k, E)              #compute an orthogonal side vector
            s = s / np.linalg.norm(s)       #normalize it
            Edir = np.cross(s, k)              #compute new E vector which is orthogonal
            self.k = np.array(k)
            self.E = Edir / np.linalg.norm(Edir) * np.linalg.norm(E)
    
    def __str__(self):
        return str(self.k) + "\n" + str(self.E)     #for verify field vectors use print command

    def kmag(self):
        return math.sqrt(self.k[0] ** 2 + self.k[1] ** 2 + self.k[2] ** 2)
    
    #function that renders the plane wave given a set of coordinates
    def evaluate(self, X, Y, Z):
        k_dot_r = self.k[0] * X + self.k[1] * Y + self.k[2] * Z     #phase term k*r
        ex = np.exp(1j * k_dot_r)       #E field equation  = E0 * exp (i * (k * r)) here we simply set amplitude as 1
        Ef = ex[..., None] * self.E
        return Ef


class objective:
    
    #initialize an objective lens
    #   sin_alpha is the sine of the angle subtended by the objective (numerical aperture in a refractive index of 1.0)
    #   n is the real refractive index of the imaging media (default air)
    #   N is the resolution of the 2D objective map (field at the input and output aperture)
    def __init__(self, sin_alpha, n, N):
        
        #set member variables
        self.sin_alpha = sin_alpha
        self.n = n
        
        #calculate the transfer function from the back aperture to the front aperture
        self.N = N
        self._CI(N)
        self._CR(N)        
    
       
    #calculates the basis vectors describing the mapping between the back and front aperture
    def _calc_bases(self, N):
        
        #calculate the (sx, sy) coordinates (angular spectrum) corresponding to each position in the entrance/exit pupil
        s = np.linspace(-self.sin_alpha, self.sin_alpha, N)
        [SX, SY] = np.meshgrid(s, s)
        S_SQ = SX**2 + SY**2                                  #calculate sx^2 + sy^2
        
        BAND_M = S_SQ <= self.sin_alpha**2                    #find a mask for pixels within the bandpass of the objective
        self.BAND_M = BAND_M
        
        #pull out pixels that pass through the objective bandpass        
        SX = SX[BAND_M]
        SY = SY[BAND_M]
        S_SQ = S_SQ[BAND_M]
        SZ = np.sqrt(1 - S_SQ)                            #calculate sz = sqrt(1 - sx^2 - sy^2) in normalized (-1, 1) coordinates
        
        #calculate the apodization functions for each polarization
        self.FS = 1.0 / np.sqrt(SZ)
        self.FP = self.FS
        
        #calculate the S and P basis vectors
        THETA = np.arctan2(SY, SX)
        
        SX_SXSY = np.cos(THETA)
        SY_SXSY = np.sin(THETA)
        
        v_size = (len(SX), 3)
        VS_VSP = np.zeros(v_size)
        VP = np.zeros(v_size)
        VPP = np.zeros(v_size)
        
        VS_VSP[:, 0] = -SY_SXSY
        VS_VSP[:, 1] = SX_SXSY
        
        VP[:, 0] = -SX_SXSY
        VP[:, 1] = -SY_SXSY
        
        SXSY = np.sqrt(S_SQ)
        VPPZ = np.zeros(SXSY.shape)
        DC_M = SXSY > 0
        VPPZ[DC_M] = S_SQ[DC_M] / SXSY[DC_M]
        VPP[:, 0] = -SX_SXSY * SZ
        VPP[:, 1] = -SY_SXSY * SZ
        VPP[:, 2] = VPPZ
        
        return [VS_VSP, VP, VPP]        
        
        
    #calculate the transfer function that maps the back aperture field to the front aperture field (Eq. 19 in Davis et al.)
    def _CI(self, N):
        [VS_VSP, VP, VPP] = self._calc_bases(N)
        
        VSP_VST = np.matmul(VS_VSP[:, :, None], VS_VSP[:, None, :])
        VPP_VPT = np.matmul(VPP[:, :, None], VP[:, None, :])
        
        self.CI = self.FS[:, None, None] * VSP_VST + self.FP[:, None, None] * VPP_VPT      
        
    def _CR(self, N):
        [VS_VSP, VP, VPP] = self._calc_bases(N)
        
        VSP_VST = np.matmul(VS_VSP[:, :, None], VS_VSP[:, None, :])
        VP_VPPT = np.matmul(VP[:, :, None], VPP[:, None, :])
        
        self.CR = 1.0 / self.FS[:, None, None] * VSP_VST + 1.0 / self.FP[:, None, None] * VP_VPPT
        
    #condenses a field defined at the back aperture of the objective
    #   E is a 3xNxN image of the field at the back aperture
    def back2front(self, E):
        Ein = E[self.BAND_M, :, None]
        
        Efront = np.zeros((self.N, self.N, 3), dtype=np.complex128)
        Efront[self.BAND_M, :] = np.squeeze(np.matmul(self.CI, Ein))
        
        return Efront
    
        #propagates a field from the front aperture of the objective to the back aperture
    #   E is a 3xNxN image of the field at the front aperture
    def front2back(self, E):
        Ein = E[self.BAND_M, :, None]
        
        Eback = np.zeros((self.N, self.N, 3), dtype=np.complex128)
        Eback[self.BAND_M, :] = np.squeeze(np.matmul(self.CR, Ein))
        
        return Eback
    
    #calculates the image at the focus given the image at the back aperture
    #   E is the field at the back aperture of the objective
    #   k0 is the wavenumber in a vacuum (2pi/lambda_0)
    def focus(self, E, k0, RX, RY, RZ):
        
        #calculate the angular spectrum at the front aperture
        Ef = self.back2front(E)
        
        #generate an array describing the valid components of S
        s = np.linspace(-self.sin_alpha, self.sin_alpha, self.N)
        [SX, SY] = np.meshgrid(s, s)
        S = [SX[self.BAND_M], SY[self.BAND_M]]        
        SXSY_SQ = S[0]**2 + S[1]**2
        S.append(np.sqrt(1 - SXSY_SQ))
        S = np.array(S)
        
        
        #calculate the k vector (accounting for both k0 and the refractive index of the immersion medium)
        K = k0 * self.n * np.transpose(S)[:, None, :]
        
        #calculate the dot product of K and R
        R = np.moveaxis(np.array([RX, RY, RZ]), 0, -1)[..., None, :, None]
        
        K_DOT_R = np.squeeze(np.matmul(K, R))
        EX = np.exp(1j * K_DOT_R)[..., None]
        Ewaves = EX * Ef[self.BAND_M]
        
        Efocus = np.sum(Ewaves, -2)
        return Efocus

class gaussian_beam:
    
    #generate a beam
    #   (Ex, Ey) specifies the polarization
    #   p specifies the focal point
    #   l is the free-space wavelength
    #   sigma_p is the standard deviation of the Gaussian beam at the focal point
    #   amp is the amplitude of the DC component of the Gaussian beam
    def __init__(self, x_polar, y_polar, lambda_0=1, amp=1, sigma_p=None, sigma_k=None):
        self.E = [x_polar, y_polar]
        self.l = lambda_0
        
        #calculate the standard deviation of the Gaussian function in k-space 
        if(sigma_p is None and sigma_k is None):
            self.sigma = 2 * math.pi / lambda_0
        elif(sigma_p is not None):
            self.sigma = 1.0 / sigma_p
        else:
            self.sigma = sigma_k
            
        #self.s = self.sigma_p2k(sigma_p)
        self.A = amp
        
    #calculates the maximum k-space frequency supported by this beam    
    def kmax(self):
        return 2 * np.pi / self.l
    
    #calculate the standard deviation of the Gaussian function in k space given the std at the focal point
   # def sigma_p2k(self, sigma):
        
        # this code is based on: http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf
        # f(r) = 1 / (2 pi sigma^2) e^(-r^2 / (2 sigma^2))
        # F(kx, ky) = f( |k_par| ) = e^( -2 pi^2 |k_par|^2 sigma^2 )
        
        # Basically, the Fourier transform of a normally distributed Gaussian is
        #   a non-scaled Gaussian with standard deviation 1/(2 pi sigma)        
        #return 1.0/(2 * math.pi * sigma)
        #return 1.0 / sigma
      
    
    def kspace(self, Kx, Ky):
        #sigma = self.s * (np.pi / self.l)
        #G = 1 / (2 * np.pi * sigma **2) * np.exp(- (0.5/(sigma**2)) * (Kx ** 2 + Ky ** 2))
        G = self.A * np.exp(- (Kx ** 2 + Ky ** 2) / (2 * self.sigma ** 2))
        
        #calculate k-vectors outside of the band-limit
        B = ((Kx ** 2 + Ky **2) > self.kmax() ** 2)
        
        #calculate Kz (required for calculating the Ez component of E)
        #Kz = np.lib.scimath.sqrt(self.kmax() ** 2 - Kx**2 - Ky**2)
        
        Ex = self.E[0] * G
        Ey = self.E[1] * G
        #Ez = -Kx/Kz * Ex
        Ez = np.zeros(Ex.shape)
        
        #set all values outside of the band limit to zero
        Ex[B] = 0
        Ey[B] = 0
        Ez[B] = 0
        
        return [Ex, Ey, Ez]
    
    # The PSF at the focal point is the convolution of a Bessel function and a Gaussian
    # This function calculates the parameters of the Gaussian function in terms of a*e^{-x^2 / (2*c^2)}
    #   a (return) is the scale factor for the Gaussian
    #   c (return) is the standard deviation
    def psf_gaussian(self):
        # this code is based on: http://mathworld.wolfram.com/FourierTransformGaussian.html
        #a = math.sqrt( 2 * math.pi * (self.s ** 2) )
        #c = 1.0 / (2 * math.pi * self.s)
        
        a = math.sqrt( (self.sigma ** 2) )
        c = 1.0 / (self.sigma)
        
        return [a, c]
    
    # The PSF at the focal point is the convolution of a Bessel function and a Gaussian
    # This function calculates the parameters of the bessel function in terms of a J_1(pi * a * x) / x
    def psf_bessel(self):
        return self.kmax() / math.pi  
    
    # calculate the beam point spread function at the focal plane
    #   D is the image extent for the square: (-D, D, -D, D)
    #   N is the number of spatial samples along one dimension of the image (NxN)
    #   order is the mathematical order of the calculation (in terms of the resolution of the FFT)
    def psf(self, D, N):
        
        [a, c] = self.psf_gaussian()
        alpha = self.psf_bessel()
        
        #calculate the sample positions along the x-axis
        x = np.linspace(-D, D, N)
        dx = x[1] - x[0]
        
        [X, Y] = np.meshgrid(x, x)
        R = np.sqrt(X**2 + Y**2)
        
        bessel = alpha * sp.special.j1(math.pi * alpha * R) / R
        
        return a * sp.ndimage.filters.gaussian_filter(bessel, c / dx)    
        
    
    #return the k-space transform of the beam at p as an NxN array
    def kspace_image(self, N):
        #calculate the band limit [-2*pi/lambda, 2*pi/lambda]
        kx = np.linspace(-self.kmax(), self.kmax(), N)
        ky = kx
        
        #generate a meshgrid for the field
        [Kx, Ky] = np.meshgrid(kx, ky)

        #generate a Gaussian with a standard deviation of sigma * pi/lambda
        return self.kspace(Kx, Ky)
    
    # calculate the practical band limit of the beam such that 
    # all frequencies higher than the returned values are less than epsilon
    def practical_band_limit(self, epsilon = 0.001):
        
        return min(self.sigma * math.sqrt(math.log(1.0/epsilon)), self.kmax())
        
        
    #return a plane wave decomposition of the beam using N plane waves
    def decompose(self, N):
        PW = []                     #create an empty list of plane waves
        
        # sample a cylinder and project those samples onto a unit sphere
        theta = np.random.uniform(0, 2*np.pi, N)
        
        # get the practical band limit to minimize sampling
        band_limit = self.practical_band_limit() / self.kmax()
        phi = np.arccos(np.random.uniform(1 - band_limit, 1, N))
        
        kx = -self.kmax() * np.sin(phi) * np.cos(theta)
        ky = -self.kmax() * np.sin(phi) * np.sin(theta)
        
        mc_weight = 2 * math.pi / N
        E0 = self.kspace(kx, ky)
        kz = np.sqrt(self.kmax() ** 2 - kx**2 - ky**2)
        
        for i in range(0, N):
            k = [kx[i], ky[i], kz[i]]
            E = [E0[0][i] * mc_weight, E0[1][i] * mc_weight, E0[2][i] * mc_weight]
            w = planewave(k, E)
            PW.append(w)
            
        return PW
    
class layersample:
    
    #generate a layered sample based on a list of layer refractive indices
    #   layer_ri is a list of complex refractive indices for each layer
    #   z is the list of boundary positions along z
    def __init__(self, layer_ri, z):
        self.n = np.array(layer_ri).astype(np.complex128)
        self.z = np.array(z)
    
    #calculate the index of the field component associated with a layer
    #   l is the layer index [0, L)
    #   c is the component (x=0, y=1, z=2)
    #   d is the direction (0 = transmission, 1 = reflection)
    def i(self, l, c, d):
        i = l * 6 + d * 3 + c - 3
        return  i

    # generate the linear system corresponding to this layered sample and plane wave
    #   s is the direction vector scaled by the refractive index
    #   k0 is the free-space k-vector
    #   E is the field vector for the incident plane wave
    def generate_linsys(self, s, k0, E):
        #allocate space for the matrix
        L = len(self.n)
        M = np.zeros((6*(L-1), 6*(L-1)), dtype=np.complex128)
        
        #allocate space for the RHS vector
        b = np.zeros(6*(L-1), dtype=np.complex128)
        
        #initialize a counter for the equation number
        ei = 0
        
        #calculate the sz component for each layer
        self.sz = np.zeros(L, dtype=np.complex128)
        for l in range(L):
            self.sz[l] = np.sqrt(self.n[l]**2 - s[0]**2 - s[1]**2)
        
        #set constraints based on Gauss' law
        for l in range(0, L):
            #sz = np.sqrt(self.n[l]**2 - s[0]**2 - s[1]**2)
            
            #set the upward components for each layer
            #   note that layer L-1 does not have a downward component
            #   David I, Equation 7
            if l != L-1:
                M[ei, self.i(l, 0, 1)] = s[0]
                M[ei, self.i(l, 1, 1)] = s[1]
                M[ei, self.i(l, 2, 1)] = -self.sz[l]
                ei = ei+1
            
            #set the downward components for each layer
            #   note that layer 0 does not have a downward component
            #   Davis I, Equation 6
            if l != 0:
                M[ei, self.i(l, 0, 0)] = s[0]
                M[ei, self.i(l, 1, 0)] = s[1]
                M[ei, self.i(l, 2, 0)] = self.sz[l]
                ei = ei+1            
            
        #enforce a continuous field across boundaries
        for l in range(1, L):
            sz0 = self.sz[l-1]
            sz1 = self.sz[l]
            A = np.exp(1j * k0 * sz0 * (self.z[l] - self.z[l-1]))
            if l < L - 1:
                dl = self.z[l] - self.z[l+1]
                arg = -1j * k0 * sz1 * dl
                B = np.exp(arg)
            
            
            #if this is the second layer, use the simplified equations that account for the incident field
            if l == 1:
                M[ei, self.i(0, 0, 1)] = 1
                M[ei, self.i(1, 0, 0)] = -1
                if L > 2:
                    #print(-B, M[ei, self.i(1, 0, 1)])
                    M[ei, self.i(1, 0, 1)] = -B
                    
                b[ei] = -A * E[0]
                ei = ei + 1
                
                M[ei, self.i(0, 1, 1)] = 1
                M[ei, self.i(1, 1, 0)] = -1
                if L > 2:
                    M[ei, self.i(1, 1, 1)] = -B
                b[ei] = -A * E[1]
                ei = ei + 1
                
                M[ei, self.i(0, 2, 1)] = s[1]
                M[ei, self.i(0, 1, 1)] = sz0
                M[ei, self.i(1, 2, 0)] = -s[1]
                M[ei, self.i(1, 1, 0)] = sz1
                if L > 2:
                    M[ei, self.i(1, 2, 1)] = -B*s[1]
                    M[ei, self.i(1, 1, 1)] = -B*sz1
                b[ei] = A * sz0 * E[1] - A * s[1]*E[2]
                ei = ei + 1
                
                M[ei, self.i(0, 0, 1)] = -sz0
                M[ei, self.i(0, 2, 1)] = -s[0]
                M[ei, self.i(1, 0, 0)] = -sz1
                M[ei, self.i(1, 2, 0)] = s[0]
                if L > 2:
                    M[ei, self.i(1, 0, 1)] = B*sz1
                    M[ei, self.i(1, 2, 1)] = B*s[0]
                b[ei] = A * s[0] * E[2] - A * sz0 * E[0]
                ei = ei + 1
            
            #if this is the last layer, use the simplified equations that exclude reflections from the last layer
            elif l == L-1:
                M[ei, self.i(l-1, 0, 0)] = A
                M[ei, self.i(l-1, 0, 1)] = 1
                M[ei, self.i(l, 0, 0)] = -1
                ei = ei + 1
                
                M[ei, self.i(l-1, 1, 0)] = A
                M[ei, self.i(l-1, 1, 1)] = 1
                M[ei, self.i(l, 1, 0)] = -1
                ei = ei + 1
                
                M[ei, self.i(l-1, 2, 0)] = A*s[1]
                M[ei, self.i(l-1, 1, 0)] = -A*sz0
                M[ei, self.i(l-1, 2, 1)] = s[1]
                M[ei, self.i(l-1, 1, 1)] = sz0
                M[ei, self.i(l, 2, 0)] = -s[1]
                M[ei, self.i(l, 1, 0)] = sz1
                ei = ei + 1
                
                M[ei, self.i(l-1, 0, 0)] = A*sz0
                M[ei, self.i(l-1, 2, 0)] = -A*s[0]
                M[ei, self.i(l-1, 0, 1)] = -sz0
                M[ei, self.i(l-1, 2, 1)] = -s[0]
                M[ei, self.i(l, 0, 0)] = -sz1
                M[ei, self.i(l, 2, 0)] = s[0]
                ei = ei + 1
            #otherwise use the full set of boundary conditions
            else:
                M[ei, self.i(l-1, 0, 0)] = A
                M[ei, self.i(l-1, 0, 1)] = 1
                M[ei, self.i(l, 0, 0)] = -1
                M[ei, self.i(l, 0, 1)] = -B
                ei = ei + 1
                
                M[ei, self.i(l-1, 1, 0)] = A
                M[ei, self.i(l-1, 1, 1)] = 1
                M[ei, self.i(l, 1, 0)] = -1
                M[ei, self.i(l, 1, 1)] = -B
                ei = ei + 1
                
                M[ei, self.i(l-1, 2, 0)] = A*s[1]
                M[ei, self.i(l-1, 1, 0)] = -A*sz0
                M[ei, self.i(l-1, 2, 1)] = s[1]
                M[ei, self.i(l-1, 1, 1)] = sz0
                M[ei, self.i(l, 2, 0)] = -s[1]
                M[ei, self.i(l, 1, 0)] = sz1
                M[ei, self.i(l, 2, 1)] = -B*s[1]
                M[ei, self.i(l, 1, 1)] = -B*sz1
                ei = ei + 1
                
                M[ei, self.i(l-1, 0, 0)] = A*sz0
                M[ei, self.i(l-1, 2, 0)] = -A*s[0]
                M[ei, self.i(l-1, 0, 1)] = -sz0
                M[ei, self.i(l-1, 2, 1)] = -s[0]
                M[ei, self.i(l, 0, 0)] = -sz1
                M[ei, self.i(l, 2, 0)] = s[0]
                M[ei, self.i(l, 0, 1)] = B*sz1
                M[ei, self.i(l, 2, 1)] = B*s[0]
                ei = ei + 1
        
        return [M, b]
    
    #create a matrix for a single plane wave specified by k and E
    #   d = [dx, dy] are the x and y coordinates of the normalized direction of propagation
    #   k0 is the free space wave number (2 pi / lambda0)
    #   E is the electric field vector
    
    def solve1(self, d, k0, E):
                
        #s is the plane wave direction scaled by the refractive index
        s = np.array(d) * self.n[0]

               
        #store the matrix and RHS vector (for debugging)   
        [self.M, self.b] = self.generate_linsys(s, k0, E)
        #self.M = M
        #self.b = b
        
        #evaluate the linear system
        P = np.linalg.solve(self.M, self.b)
        
        #save the results (also for debugging)
        self.P = P
        
        #store the coefficients for each layer
        L = len(self.n)                             # calculate the number of layers
        self.Pt = np.zeros((3, L), np.complex128)
        self.Pr = np.zeros((3, L), np.complex128)
        for l in range(L):
            if l == 0:
                self.Pt[:, 0] = [E[0], E[1], E[2]]
            else:
                px = P[self.i(l, 0, 0)]
                py = P[self.i(l, 1, 0)]
                pz = P[self.i(l, 2, 0)]
                self.Pt[:, l] = [px, py, pz]
                
            if l == L-1:
                self.Pr[:, L-1] = [0, 0, 0]
            else:
                px = P[self.i(l, 0, 1)]
                py = P[self.i(l, 1, 1)]
                pz = P[self.i(l, 2, 1)]
                self.Pr[:, l] = [px, py, pz]
        
        #store values required for evaluation
        #store k
        self.k = k0
        
        #store sx and sy
        self.s = np.array([s[0], s[1]])
        
        self.solved = True
    
    #evaluate a solved homogeneous substrate
    def evaluate(self, X, Y, Z):
        
        if not self.solved:
            print("ERROR: the layered substrate hasn't been solved")
            return
        
        #this code is a bit cumbersome and could probably be optimized
        #   Basically, it vectorizes everything by creating an image
        #   such that the value at each pixel is the corresponding layer
        #   that the pixel resides in. That index is then used to calculate
        #   the field within the layer
        
        #allocate space for layer indices
        LI = np.zeros(Z.shape, dtype=np.int)
                
        #find the layer index for each sample point
        L = len(self.z)
        LI[Z < self.z[0]] = 0
        for l in range(L-1):
            idx = np.logical_and(Z > self.z[l], Z <= self.z[l+1])
            LI[idx] = l
            LI[Z > self.z[-1]] = L - 1
        
        #calculate the appropriate phase shift for the wave transmitted through the layer
        Ph_t = np.exp(1j * self.k * self.sz[LI] * (Z - self.z[LI]))
        
        #calculate the appropriate phase shift for the wave reflected off of the layer boundary
        LIp = LI + 1
        LIp[LIp >= L] = 0
        Ph_r = np.exp(-1j * self.k * self.sz[LI] * (Z - self.z[LIp]))
#        print(Ph_r)
        Ph_r[LI >= L-1] = 0
        
        #calculate the phase shift based on the X and Y positions
        Ph_xy = np.exp(1j * self.k * (self.s[0] * X + self.s[1] * Y))
        
        #apply the phase shifts
        Et = self.Pt[:, LI] * Ph_t[:, :]
        Er = self.Pr[:, LI] * Ph_r[:, :]
        
        #add everything together coherently
        E = (Et + Er) * Ph_xy[:, :]
        
        #return the electric field
        return np.moveaxis(E, 0, -1)

  
def example_psf():
    
    #specify the angle of accepted waves (NA if n = 1)
    sin_angle = 0.8
    
    #refractive index of the imaging medium
    n = 1.0
    
    #specify the size of the spectral domain (resolution of the front/back aperture)
    N = 100
    
    #create a new objective, specifying the NA (angle * refractive index) and resolution of the transform    
    O = objective(sin_angle, n, N)
    
    #specify the size of the spatial domain
    D = 10
    
    
    #specify the resolution of the spatial domain
    M = 100
    
    #free-space wavelength
    l0 = 1
    
    #calculate the free-space wavenumber
    k0 = 2 * np.pi * l0
    
    #specify the field incident at the aperture
    pap = np.array([1, 0, 0])                     #polarization
    sap = np.array([0, 0, 1])                  #incident angle of the plane wave (will be normalized)
    sap = sap / np.linalg.norm(sap)             #calculate the normalized direction vector for the plane wave
    
    k0ap = sap * k0                                 #calculate the k-vector of the plane wave incident on the aperture
    
    #create a plane wave
    pw = planewave(k0ap, pap)
    
    #generate the domain for the simulation (where the focus will be simulated)
    x = np.linspace(-D, D, M)
    z = np.linspace(-D, D, M)
    [RX, RZ] = np.meshgrid(x, z)
    RY = np.zeros(RX.shape)
    
    #create an image of the back aperture (just an incident plane wave)
    xap = np.linspace(-D, D, N)
    [XAP, YAP] = np.meshgrid(xap, xap)
    ZAP = np.zeros(XAP.shape)
    
    #evaluate the plane wave at the back aperture to produce a 2D image of the field
    EAP = pw.evaluate(XAP, YAP, ZAP)
    
    #calculate the field at the focus (coordinates are specified in RX, RY, and RZ)
    Efocus = O.focus(EAP, k0, RX, RY, RZ)
    
    #display an image of the calculated field
    plt.figure()
    plt.imshow(intensity(Efocus))
    plt.colorbar()
    
    return Efocus
    
#This sample code produces a field similar to Figure 2 in Davis et al., 2010
def example_layer():
    
    #set the material properties
    depths = [-50, -15, 15, 40]                         #specify the position (first boundary) of each layer (first boundary is where the field is defined)
    n = [1.0, 1.4+1j*0.05, 1.4, 1.0]                    #specify the refractive indices of each layer

    #create a layered sample
    layers = layersample(n, depths)
    
    #set the input light parameters
    d = np.array([0.5, 0])                             #direction of propagation of the plane wave
    
    #d = d / np.linalg.norm(d)                           #normalize this direction vector
    l0 = 5                                              #specify the wavelength in free-space         
    k0 = 2 * np.pi / l0                              #calculate the wavenumber in free-space
    E0 = [1, 1, 0]                                      #specify the E vector
    E0 = orthogonalize(E0, d)                           #make sure that both vectors are orthogonal
    #solve for the substrate field
    
    layers.solve1(d, k0, E0)
    #set the simulation domain
    N = 512
    M = 1024
    D = [-40, 80, 0, 60]
    x = np.linspace(D[2], D[3], N)
    z = np.linspace(D[0], D[1], M)
    [X, Z] = np.meshgrid(x, z)
    Y = np.zeros(X.shape)
    E = layers.evaluate(X, Y, Z)
    Er = np.real(E)
    I = intensity(E)
    plt.figure()
    plt.set_cmap("afmhot")
    matplotlib.rcParams.update({'font.size': 32})
    plt.subplot(1, 4, 1)
    plt.imshow(Er[..., 0], extent=(D[3], D[2], D[1], D[0]))
    plt.title("Ex")
    plt.subplot(1, 4, 2)
    plt.imshow(Er[..., 1], extent=(D[3], D[2], D[1], D[0]))
    plt.title("Ey")
    plt.subplot(1, 4, 3)
    plt.imshow(Er[..., 2], extent=(D[3], D[2], D[1], D[0]))
    plt.title("Ez")
    plt.subplot(1, 4, 4)
    plt.imshow(I, extent=(D[3], D[2], D[1], D[0]))
    plt.title("I")
    
def example_psflayer():
    #specify the angle of accepted waves (NA if n = 1)
    sin_angle = 0.7
    
    #refractive index of the imaging medium
    n = 1.0
    
    #specify the size of the spectral domain (resolution of the front/back aperture)
    N = 31
    
    #create a new objective, specifying the NA (angle * refractive index) and resolution of the transform    
    O = objective(sin_angle, n, N)
    
    #specify the size of the spatial domain
    D = 5
    
    
    #specify the resolution of the spatial domain
    M = 200
    
    #free-space wavelength
    l0 = 1
    
    #calculate the free-space wavenumber
    k0 = 2 * np.pi /l0
    
    #specify the field incident at the aperture
    pap = np.array([1, 0, 0])                     #polarization
    sap = np.array([0, 0, 1])                  #incident angle of the plane wave (will be normalized)
    sap = sap / np.linalg.norm(sap)             #calculate the normalized direction vector for the plane wave
    
    k0ap = sap * k0                             #calculate the k-vector of the plane wave incident on the aperture
    
    #create a plane wave
    pw = planewave(k0ap, pap)
    
    #create an image of the back aperture (just an incident plane wave)
    xap = np.linspace(-D, D, N)
    [XAP, YAP] = np.meshgrid(xap, xap)
    ZAP = np.zeros(XAP.shape)
    
    #evaluate the plane wave at the back aperture to produce a 2D image of the field
    Eback = pw.evaluate(XAP, YAP, ZAP)
    Efront = O.back2front(Eback)
    
    #set the material properties
    depths = [0, -1, 0, 2]                         #specify the position (first boundary) of each layer (first boundary is where the field is defined)
    n = [1.0, 1.4+1j*0.05, 1.4, 1.0]                    #specify the refractive indices of each layer

    #create a layered sample
    L = layersample(n, depths)
    
    #generate the domain for the simulation (where the focus will be simulated)
    x = np.linspace(-D, D, M)
    z = np.linspace(-D, D, M)
    [RX, RZ] = np.meshgrid(x, z)
    RY = np.zeros(RX.shape)
    
    i = 0
    ang = np.linspace(-sin_angle, sin_angle, N)
    
    for yi in range(N):
        dy = ang[yi]
        for xi in range(N):
            dx = ang[xi]
            dxdy_sq = dx**2 + dy**2
            
            if dxdy_sq <= sin_angle**2:
                
                d = np.array([dx, dy])
                e = Efront[xi, yi, :]
                L.solve1(d, k0, e)
                
                if i == 0:
                    E = L.evaluate(RX, RY, RZ)
                    i = i + 1
                else:
                    E = E + L.evaluate(RX, RY, RZ)
            
    plt.imshow(intensity(E))
    
def example_spp():
    l = 0.647
    k0 = 2 * np.pi / l
    
    n_oil = 1.51
    n_mica = 1.56
    n_gold = 0.16049 + 1j * 3.5726
    n_water = 1.33
    
    #all units are in um
    d_oil = 100
    d_mica = 80
    d_gold = 0.05
    
    #specify the parameters for the layered sample
    zp = [0, d_oil, d_oil + d_mica, d_oil + d_mica + d_gold]
    n = [n_oil, n_mica, n_gold, n_water]
    
    #generate a layered sample
    L = layersample(n, zp)
    
    N = 10000
    min_theta = -90
    max_theta = 90
    DEG = np.linspace(min_theta, max_theta, N)
    
    I = np.zeros(N)
    
    for i in range(N):
        theta = DEG[i] * np.pi / 180
        
        #create a plane wave
        x = np.sin(theta)
        z = np.cos(theta)
        d = [x, 0]
        
        #calculate the E vector by finding a value orthogonal to d
        E0 = [-z, 0, x]
        
        #solve for the layered sample
        L.solve1(d, k0, E0)    
        
        Er = L.Pr[:, 0]
        I[i] = intensity(Er)
    plt.plot(I)