vec3.h
6.52 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#ifndef STIM_VEC3_H
#define STIM_VEC3_H
#include <stim/cuda/cudatools/callable.h>
#include <cmath>
#include <sstream>
namespace stim{
/// A class designed to act as a 3D vector with CUDA compatibility
template<typename T>
class vec3{
protected:
T ptr[3];
public:
CUDA_CALLABLE vec3(){}
CUDA_CALLABLE vec3(T v){
ptr[0] = ptr[1] = ptr[2] = v;
}
CUDA_CALLABLE vec3(T x, T y, T z){
ptr[0] = x;
ptr[1] = y;
ptr[2] = z;
}
//copy constructor
CUDA_CALLABLE vec3( const vec3<T>& other){
ptr[0] = other.ptr[0];
ptr[1] = other.ptr[1];
ptr[2] = other.ptr[2];
}
//access an element using an index
CUDA_CALLABLE T& operator[](size_t idx){
return ptr[idx];
}
CUDA_CALLABLE T* data(){
return ptr;
}
/// Casting operator. Creates a new vector with a new type U.
template< typename U >
CUDA_CALLABLE operator vec3<U>(){
vec3<U> result;
result.ptr[0] = (U)ptr[0];
result.ptr[1] = (U)ptr[1];
result.ptr[2] = (U)ptr[2];
return result;
}
// computes the squared Euclidean length (useful for several operations where only >, =, or < matter)
CUDA_CALLABLE T len_sq() const{
return ptr[0] * ptr[0] + ptr[1] * ptr[1] + ptr[2] * ptr[2];
}
/// computes the Euclidean length of the vector
CUDA_CALLABLE T len() const{
return sqrt(len_sq());
}
/// Convert the vector from cartesian to spherical coordinates (x, y, z -> r, theta, phi where theta = [-PI, PI])
CUDA_CALLABLE vec3<T> cart2sph() const{
vec3<T> sph;
sph.ptr[0] = len();
sph.ptr[1] = std::atan2(ptr[1], ptr[0]);
if(sph.ptr[0] == 0)
sph.ptr[2] = 0;
else
sph.ptr[2] = std::acos(ptr[2] / sph.ptr[0]);
return sph;
}
CUDA_CALLABLE vec3<T> cart2cyl() const{
vec3<T> cyl;
cyl.ptr[0] = sqrt(pow(ptr[0],2) + pow(ptr[1],2));
cyl.ptr[1] = atan(ptr[1]/ptr[0]);
cyl.ptr[2] = ptr[2];
return cyl;
}
/// Convert the vector from cartesian to spherical coordinates (r, theta, phi -> x, y, z where theta = [0, 2*pi])
CUDA_CALLABLE vec3<T> sph2cart() const{
vec3<T> cart;
cart.ptr[0] = ptr[0] * std::cos(ptr[1]) * std::sin(ptr[2]);
cart.ptr[1] = ptr[0] * std::sin(ptr[1]) * std::sin(ptr[2]);
cart.ptr[2] = ptr[0] * std::cos(ptr[2]);
return cart;
}
/// Convert the vector from cylindrical to cart coordinates (r, theta, z -> x, y, z where theta = [0, 2*pi])
CUDA_CALLABLE vec3<T> cyl2cart() const{
vec3<T> cart;
cart.ptr[0] = ptr[0] * std::cos(ptr[1]);
cart.ptr[1] = ptr[0] * std::sin(ptr[1]);
cart.ptr[2] = ptr[2];
return cart;
}
/// Computes the normalized vector (where each coordinate is divided by the L2 norm)
CUDA_CALLABLE vec3<T> norm() const{
vec3<T> result;
T l = len(); //compute the vector length
return (*this) / l;
}
/// Computes the cross product of a 3-dimensional vector
CUDA_CALLABLE vec3<T> cross(const vec3<T> rhs) const{
vec3<T> result;
result[0] = (ptr[1] * rhs.ptr[2] - ptr[2] * rhs.ptr[1]);
result[1] = (ptr[2] * rhs.ptr[0] - ptr[0] * rhs.ptr[2]);
result[2] = (ptr[0] * rhs.ptr[1] - ptr[1] * rhs.ptr[0]);
return result;
}
/// Compute the Euclidean inner (dot) product
CUDA_CALLABLE T dot(vec3<T> rhs) const{
return ptr[0] * rhs.ptr[0] + ptr[1] * rhs.ptr[1] + ptr[2] * rhs.ptr[2];
}
/// Arithmetic addition operator
/// @param rhs is the right-hand-side operator for the addition
CUDA_CALLABLE vec3<T> operator+(vec3<T> rhs) const{
vec3<T> result;
result.ptr[0] = ptr[0] + rhs[0];
result.ptr[1] = ptr[1] + rhs[1];
result.ptr[2] = ptr[2] + rhs[2];
return result;
}
/// Arithmetic addition to a scalar
/// @param rhs is the right-hand-side operator for the addition
CUDA_CALLABLE vec3<T> operator+(T rhs) const{
vec3<T> result;
result.ptr[0] = ptr[0] + rhs;
result.ptr[1] = ptr[1] + rhs;
result.ptr[2] = ptr[2] + rhs;
return result;
}
/// Arithmetic subtraction operator
/// @param rhs is the right-hand-side operator for the subtraction
CUDA_CALLABLE vec3<T> operator-(vec3<T> rhs) const{
vec3<T> result;
result.ptr[0] = ptr[0] - rhs[0];
result.ptr[1] = ptr[1] - rhs[1];
result.ptr[2] = ptr[2] - rhs[2];
return result;
}
/// Arithmetic subtraction to a scalar
/// @param rhs is the right-hand-side operator for the addition
CUDA_CALLABLE vec3<T> operator-(T rhs) const{
vec3<T> result;
result.ptr[0] = ptr[0] - rhs;
result.ptr[1] = ptr[1] - rhs;
result.ptr[2] = ptr[2] - rhs;
return result;
}
/// Arithmetic scalar multiplication operator
/// @param rhs is the right-hand-side operator for the subtraction
CUDA_CALLABLE vec3<T> operator*(T rhs) const{
vec3<T> result;
result.ptr[0] = ptr[0] * rhs;
result.ptr[1] = ptr[1] * rhs;
result.ptr[2] = ptr[2] * rhs;
return result;
}
/// Arithmetic scalar division operator
/// @param rhs is the right-hand-side operator for the subtraction
CUDA_CALLABLE vec3<T> operator/(T rhs) const{
return (*this) * ((T)1.0/rhs);
}
/// Multiplication by a scalar, followed by assignment
CUDA_CALLABLE vec3<T> operator*=(T rhs){
ptr[0] = ptr[0] * rhs;
ptr[1] = ptr[1] * rhs;
ptr[2] = ptr[2] * rhs;
return *this;
}
/// Addition and assignment
CUDA_CALLABLE vec3<T> operator+=(vec3<T> rhs){
ptr[0] = ptr[0] + rhs;
ptr[1] = ptr[1] + rhs;
ptr[2] = ptr[2] + rhs;
return *this;
}
/// Assign a scalar to all values
CUDA_CALLABLE vec3<T> & operator=(T rhs){
ptr[0] = ptr[0] = rhs;
ptr[1] = ptr[1] = rhs;
ptr[2] = ptr[2] = rhs;
return *this;
}
/// Casting and assignment
template<typename Y>
CUDA_CALLABLE vec3<T> & operator=(vec3<Y> rhs){
ptr[0] = (T)rhs.ptr[0];
ptr[1] = (T)rhs.ptr[1];
ptr[2] = (T)rhs.ptr[2];
return *this;
}
/// Unary minus (returns the negative of the vector)
CUDA_CALLABLE vec3<T> operator-() const{
vec3<T> result;
result.ptr[0] = -ptr[0];
result.ptr[1] = -ptr[1];
result.ptr[2] = -ptr[2];
return result;
}
CUDA_CALLABLE bool operator==(vec3<T> rhs) const{
if(rhs[0] == ptr[0] && rhs[1] == ptr[1] && rhs[2] == ptr[2])
return true;
else
return false;
}
//#ifndef __CUDACC__
/// Outputs the vector as a string
std::string str() const{
std::stringstream ss;
const size_t N = 3;
ss<<"[";
for(size_t i=0; i<N; i++)
{
ss<<ptr[i];
if(i != N-1)
ss<<", ";
}
ss<<"]";
return ss.str();
}
//#endif
size_t size(){ return 3; }
}; //end class vec3
} //end namespace stim
/// Multiply a vector by a constant when the vector is on the right hand side
template <typename T>
stim::vec3<T> operator*(T lhs, stim::vec3<T> rhs){
return rhs * lhs;
}
//stream operator
template<typename T>
std::ostream& operator<<(std::ostream& os, stim::vec3<T> const& rhs){
os<<rhs.str();
return os;
}
#endif