cylinder_dep.h 13.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
#ifndef STIM_CYLINDER_H
#define STIM_CYLINDER_H
#include <iostream>
#include <stim/math/circle.h>
#include <stim/biomodels/centerline.h>


namespace stim
{
template<typename T>
class cylinder
 : public centerline<T>
{
	private:
		stim::circle<T> s;							//an arbitrary circle
		std::vector<stim::circle<T> > e;			//an array of circles that store the centerline

		std::vector<stim::vec3<T> > norms;
		std::vector<stim::vec<T> > Us;
		std::vector<stim::vec<T> > mags;			//stores a list of magnitudes for each point in the centerline (assuming mags[0] is the radius)
		std::vector< T > L;							//length of the cylinder at each position (pre-integration)


		using stim::centerline<T>::c;
		using stim::centerline<T>::N;
	
		///default init	
		void
		init()
		{

		}

		///inits the cylinder from a list of points (std::vector of stim::vec3 --inP) and radii (inM)
		void
		init(std::vector<stim::vec3<T> > inP, std::vector<stim::vec<T> > inM)
		{
			mags = inM;
			stim::vec3<float> v1;
			stim::vec3<float> v2;
			e.resize(inP.size());

			norms.resize(inP.size());
			Us.resize(inP.size());

			if(inP.size() < 2)
				return;

			//calculate each L.
			L.resize(inP.size());						//the number of precomputed lengths will equal the number of points
			T temp = (T)0;								//length up to that point
			L[0] = temp;
			for(size_t i = 1; i < L.size(); i++)
			{
				temp += (inP[i-1] - inP[i]).len();
				L[i] = temp;
			}

			stim::vec3<T> dr = (inP[1] - inP[0]).norm();
			s = stim::circle<T>(inP[0], inM[0][0], dr, stim::vec3<T>(1,0,0));
			norms[0] = s.N;
			e[0] = s;
			Us[0] = e[0].U;
			for(size_t i = 1; i < inP.size()-1; i++)
			{
				s.center(inP[i]);
				v1 = (inP[i] - inP[i-1]).norm();
				v2 = (inP[i+1] - inP[i]).norm();
				dr = (v1+v2).norm();
				s.normal(dr);

				norms[i] = s.N;

				s.scale(inM[i][0]/inM[i-1][0]);
				e[i] = s;
				Us[i] = e[i].U;
			}
			
			int j = inP.size()-1;
			s.center(inP[j]);
			dr = (inP[j] - inP[j-1]).norm();
			s.normal(dr);

			norms[j] = s.N;

			s.scale(inM[j][0]/inM[j-1][0]);
			e[j] = s;
			Us[j] = e[j].U;
		}
		
		///returns the direction vector at point idx.
		stim::vec3<T>
		d(int idx)
		{
			if(idx == 0)
			{
				stim::vec3<T> temp(
						c[idx+1][0]-c[idx][0],	
						c[idx+1][1]-c[idx][1],	
						c[idx+1][2]-c[idx][2]
						);	
//				return (e[idx+1].P - e[idx].P).norm();
				return (temp.norm());
			}
			else if(idx == N-1)
			{
				stim::vec3<T> temp(
						c[idx][0]-c[idx+1][0],	
						c[idx][1]-c[idx+1][1],	
						c[idx][2]-c[idx+1][2]
						);	
			//	return (e[idx].P - e[idx-1].P).norm();
				return (temp.norm());
			}
			else
			{
//				return (e[idx+1].P - e[idx].P).norm();
//				stim::vec3<float> v1 = (e[idx].P-e[idx-1].P).norm();
				stim::vec3<T> v1(
						c[idx][0]-c[idx-1][0],	
						c[idx][1]-c[idx-1][1],	
						c[idx][2]-c[idx-1][2]
						);	
						
//				stim::vec3<float> v2 = (e[idx+1].P-e[idx].P).norm();
				stim::vec3<T> v2(
						c[idx+1][0]-c[idx][0],	
						c[idx+1][1]-c[idx][1],	
						c[idx+1][2]-c[idx][2]
						);
					
				return (v1.norm()+v2.norm()).norm();			
			} 
	//		return e[idx].N;	

		}

		stim::vec3<T>
		d(T l, int idx)
		{
			if(idx == 0 || idx == N-1)
			{
				return norms[idx];
//				return e[idx].N;
			}
			else
			{
				
				T rat = (l-L[idx])/(L[idx+1]-L[idx]);
				return(	norms[idx] + (norms[idx+1] - norms[idx])*rat);
//				return(	e[idx].N + (e[idx+1].N - e[idx].N)*rat);
			} 
		}


		///finds the index of the point closest to the length l on the lower bound.
		///binary search.
		int
		findIdx(T l)
		{
			unsigned int i = L.size()/2;
			unsigned int max = L.size()-1;
			unsigned int min = 0;
			while(i > 0 && i < L.size()-1)
			{
//				std::cerr << "Trying " << i << std::endl;
//				std::cerr << "l is " << l << ", L[" << i << "]" << L[i] << std::endl;
				if(l < L[i])
				{
					max = i;
					i = min+(max-min)/2;
				}
				else if(L[i] <= l && L[i+1] >= l)
				{
					break;
				}
				else
				{
					min = i;
					i = min+(max-min)/2;
				}
			}
			return i;
		}

	public:
		///default constructor
		cylinder()
		// : centerline<T>()
		{

		}

		///constructor to create a cylinder from a set of points, radii, and the number of sides for the cylinder.
		///@param inP:  Vector of stim vec3 composing the points of the centerline.
		///@param inM:  Vector of stim vecs composing the radii of the centerline.
		cylinder(std::vector<stim::vec3<T> > inP, std::vector<stim::vec<T> > inM)
			: centerline<T>(inP)
		{
			init(inP, inM);
		}

		///constructor to create a cylinder from a set of points, radii, and the number of sides for the cylinder.
		///@param inP:  Vector of stim vec3 composing the points of the centerline.
		///@param inM:  Vector of stim vecs composing the radii of the centerline.
		cylinder(std::vector<stim::vec3<T> > inP, std::vector< T > inM)
			: centerline<T>(inP)
		{
			std::vector<stim::vec<T> > temp;
			stim::vec<T> zero(0.0,0.0);
			temp.resize(inM.size(), zero);
			for(int i = 0; i < inM.size(); i++)
				temp[i][0] = inM[i];
			init(inP, temp);
		}


		///Constructor defines a cylinder with centerline inP and magnitudes of zero
		///@param inP: Vector of stim vec3 composing the points of the centerline
		cylinder(std::vector< stim::vec3<T> > inP)
			: centerline<T>(inP)
		{
			std::vector< stim::vec<T> > inM;						//create an array of arbitrary magnitudes

			stim::vec<T> zero;
			zero.push_back(0);

			inM.resize(inP.size(), zero);								//initialize the magnitude values to zero
			init(inP, inM);
		}

		///Returns the number of points on the cylinder centerline

		unsigned int size(){
			return N;
		}


		///Returns a position vector at the given p-value (p value ranges from 0 to 1).
		///interpolates the position along the line.
		///@param pvalue: the location of the in the cylinder, from 0 (beginning to 1).
		stim::vec3<T>
		p(T pvalue)
		{
			if(pvalue < 0.0 || pvalue > 1.0)
			{
				return stim::vec3<float>(-1,-1,-1);
			}
			T l = pvalue*L[L.size()-1];
			int idx = findIdx(l);
			return (p(l,idx));
/*				T rat = (l-L[idx])/(L[idx+1]-L[idx]);
				stim::vec3<T> v1(
						c[idx][0],	
						c[idx][1],	
						c[idx][2]
						);	
						
				stim::vec3<T> v2(
						c[idx+1][0],	
						c[idx+1][1],	
						c[idx+1][2]
						);

//			return(	e[idx].P + (e[idx+1].P-e[idx].P)*rat);
			return( v1 + (v2 - v1)*rat);
*/		}

		///Returns a position vector at the given length into the fiber (based on the pvalue).
		///Interpolates the radius along the line.
		///@param l: the location of the in the cylinder.
		///@param idx: integer location of the point closest to l but prior to it.
		stim::vec3<T>
		p(T l, int idx)
		{
				T rat = (l-L[idx])/(L[idx+1]-L[idx]);
				stim::vec3<T> v1(
						c[idx][0],	
						c[idx][1],	
						c[idx][2]
						);	
						
				stim::vec3<T> v2(
						c[idx+1][0],	
						c[idx+1][1],	
						c[idx+1][2]
						);
//			return(	e[idx].P + (e[idx+1].P-e[idx].P)*rat);
			return(	v1 + (v2-v1)*rat);
//			return(
//			return (pos[idx] + (pos[idx+1]-pos[idx])*((l-L[idx])/(L[idx+1]- L[idx])));
		}

		///Returns a radius at the given p-value (p value ranges from 0 to 1).
		///interpolates the radius along the line.
		///@param pvalue: the location of the in the cylinder, from 0 (beginning to 1).
		T
		r(T pvalue)
		{
			if(pvalue < 0.0 || pvalue > 1.0){
				std::cerr<<"Error, value "<<pvalue<<" is outside of [0 1]."<<std::endl;
				exit(1);
			}
			T l = pvalue*L[L.size()-1];
			int idx = findIdx(l);
			return (r(l,idx));
/*			T rat = (l-L[idx])/(L[idx+1]-L[idx]);
//			return (mags[idx][0] + (mags[idx+1][0]-mags[idx][0])*rat);
			return (e[idx].U.len() + (e[idx+1].U.len() - e[idx].U.len())*rat);
*/		}

		///Returns a radius at the given length into the fiber (based on the pvalue).
		///Interpolates the position along the line.
		///@param l: the location of the in the cylinder.
		///@param idx: integer location of the point closest to l but prior to it.
		T
		r(T l, int idx)
		{
				T rat = (l-L[idx])/(L[idx+1]-L[idx]);
			T v1 = (e[idx].U.len() + (e[idx+1].U.len() - e[idx].U.len())*rat);
			T v3 = (Us[idx].len() + (Us[idx+1].len() - Us[idx].len())*rat);
			T v2 = (mags[idx][0] + (mags[idx+1][0]-mags[idx][0])*rat);
//			std::cout << (float)v1 = (float) v2 << std::endl;
			if(abs(v3 - v1) >= 10e-6)
			{
				std::cout << "-------------------------" << std::endl;
				std::cout << e[idx].str() << std::endl << std::endl;
				std::cout << Us[idx].str() << std::endl;
				std::cout << (float)v1 - (float) v2 << std::endl;
				std::cout << "failed" << std::endl;
			}
//			std::cout << e[idx].U.len() << " " << mags[idx][0] << std::endl;
//			std::cout << v2 << std::endl;
			return(v2);
//			return (mags[idx][0] + (mags[idx+1][0]-mags[idx][0])*rat);
	//	(
		}

		///	Returns the magnitude at the given index
		///	@param i is the index of the desired point
		/// @param m is the index of the magnitude value
		T ri(unsigned i, unsigned m = 0){
			return mags[i][m];
		}

		/// Adds a new magnitude value to all points
		/// @param m is the starting value for the new magnitude
		void add_mag(T m = 0){
			for(unsigned int p = 0; p < N; p++)
				mags[p].push_back(m);
		}

		/// Sets a magnitude value
		/// @param val is the new value for the magnitude
		/// @param p is the point index for the magnitude to be set
		/// @param m is the index for the magnitude
		void set_mag(T val, unsigned p, unsigned m = 0){
			mags[p][m] = val;
		}

		/// Returns the number of magnitude values at each point
		unsigned nmags(){
			return mags[0].size();
		}

		///returns the position of the point with a given pvalue and theta on the surface
		///in x, y, z coordinates. Theta is in degrees from 0 to 360.
		///@param pvalue: the location of the in the cylinder, from 0 (beginning to 1).
		///@param theta: the angle to the point of a circle.
		stim::vec3<T>
		surf(T pvalue, T theta)
		{
			if(pvalue < 0.0 || pvalue > 1.0)
			{
				return stim::vec3<float>(-1,-1,-1);
			} else {
			T l = pvalue*L[L.size()-1];
			int idx = findIdx(l);
			stim::vec3<T> ps = p(l, idx); 
			T m = r(l, idx);
			s = e[idx];
			s.center(ps);
			s.normal(d(l, idx));
			s.scale(m/e[idx].U.len());
			return(s.p(theta));
			}
		}

		///returns a vector of points necessary to create a circle at every position in the fiber.
		///@param sides: the number of sides of each circle.	
		std::vector<std::vector<vec3<T> > >
		getPoints(int sides)
		{
			std::vector<std::vector <vec3<T> > > points;
			points.resize(N);
			for(int i = 0; i < N; i++)
			{
				points[i] = e[i].getPoints(sides);
			}
			return points;
		}

		///returns the total length of the line at index j.
		T
		getl(int j)
		{
			return (L[j]);
		}
		/// Allows a point on the centerline to be accessed using bracket notation

		vec3<T> operator[](unsigned int i){
			return e[i].P;
		}

		/// Returns the total length of the cylinder centerline
		T length(){
			return L.back();
		}

		/// Integrates a magnitude value along the cylinder.
		/// @param m is the magnitude value to be integrated (this is usually the radius)
		T integrate(unsigned m = 0){

			T M = 0;						//initialize the integral to zero
			T m0, m1;						//allocate space for both magnitudes in a single segment

			//vec3<T> p0, p1;					//allocate space for both points in a single segment

			m0 = mags[0][m];				//initialize the first point and magnitude to the first point in the cylinder
			//p0 = pos[0];

			T len = L[0];						//allocate space for the segment length

			//for every consecutive point in the cylinder
			for(unsigned p = 1; p < N; p++){

				//p1 = pos[p];							//get the position and magnitude for the next point
				m1 = mags[p][m];

				if(p > 1) len = (L[p-1] - L[p-2]);		//calculate the segment length using the L array

				//add the average magnitude, weighted by the segment length
				M += (m0 + m1)/(T)2.0 * len;

				m0 = m1;								//move to the next segment by shifting points
			}
			return M;			//return the integral
		}

		/// Averages a magnitude value across the cylinder
		/// @param m is the magnitude value to be averaged (this is usually the radius)
		T average(unsigned m = 0){			

			//return the average magnitude
			return integrate(m) / L.back();
		}

		/// Resamples the cylinder to provide a maximum distance of "spacing" between centerline points. All current
		///		centerline points are guaranteed to exist in the new cylinder
		/// @param spacing is the maximum spacing allowed between sample points
		cylinder<T> resample(T spacing){

			std::vector< vec3<T> > result;

			vec3<T> p0 = e[0].P;									//initialize p0 to the first point on the centerline
			vec3<T> p1;
			unsigned N = size();									//number of points in the current centerline

			//for each line segment on the centerline
			for(unsigned int i = 1; i < N; i++){
				p1 = e[i].P;										//get the second point in the line segment

				vec3<T> v = p1 - p0;								//calculate the vector between these two points
				T d = v.len();										//calculate the distance between these two points (length of the line segment)

				size_t nsteps = (size_t)std::ceil(d / spacing);		//calculate the number of steps to take along the segment to meet the spacing criteria
				T stepsize = (T)1.0 / nsteps;						//calculate the parametric step size between new centerline points

				//for each step along the line segment
				for(unsigned s = 0; s < nsteps; s++){
					T alpha = stepsize * s;							//calculate the fraction of the distance along the line segment covered
					result.push_back(p0 + alpha * v);				//push the point at alpha position along the line segment
				}

				p0 = p1;											//shift the points to move to the next line segment
			}

			result.push_back(e[size() - 1].P);						//push the last point in the centerline

			return cylinder<T>(result);

		}

		
};

}
#endif