spharmonics.h
7.06 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#ifndef STIM_SPH_HARMONICS
#define STIM_SPH_HARMONICS
#include <complex>
#include <stim/math/vector.h>
#include <boost/math/special_functions/spherical_harmonic.hpp>
#include <stim/math/constants.h>
#include <stim/math/random.h>
#include <vector>
#define WIRE_SCALE 1.001
namespace stim{
template<class T>
class spharmonics{
public:
std::vector<T> C; //list of SH coefficients
protected:
unsigned int mcN; //number of Monte-Carlo samples
//calculate the value of the SH basis function (l, m) at (theta, phi)
//here, theta = [0, PI], phi = [0, 2*PI]
double SH(int l, int m, double theta, double phi){
//std::complex<T> result = boost::math::spherical_harmonic(l, m, phi, theta);
//return result.imag() + result.real();
//this calculation is based on calculating the real spherical harmonics:
// https://en.wikipedia.org/wiki/Spherical_harmonics#Addition_theorem
if (m < 0) {
return sqrt(2.0) * pow(-1, m) * boost::math::spherical_harmonic(l, abs(m), phi, theta).imag();
}
else if (m == 0) {
return boost::math::spherical_harmonic(l, m, phi, theta).real();
}
else {
return sqrt(2.0) * pow(-1, m) * boost::math::spherical_harmonic(l, m, phi, theta).real();
}
}
unsigned int coeff_1d(unsigned int l, int m){
return pow(l + 1, 2) - (l - m) - 1;
}
public:
spharmonics() {
mcN = 0;
}
spharmonics(size_t c) : spharmonics() {
resize(c);
}
void push(double c){
C.push_back(c);
}
void resize(unsigned int n){
C.resize(n);
}
void setc(unsigned int l, int m, T value){
unsigned int c = coeff_1d(l, m);
C[c] = value;
}
void setc(unsigned int c, T value){
C[c] = value;
}
unsigned int getSize() const{
return C.size();
}
std::vector<T> getC() const{
return C;
}
/// Initialize Monte-Carlo sampling of a function using N spherical harmonics coefficients
/// @param N is the number of spherical harmonics coefficients used to represent the user function
void mcBegin(unsigned int coefficients){
C.resize(coefficients, 0);
mcN = 0;
}
void mcBegin(unsigned int l, int m){
unsigned int c = pow(l + 1, 2) - (l - m);
mcBegin(c);
}
void mcSample(double theta, double phi, double val){
int l, m;
double sh;
l = m = 0;
for(unsigned int i = 0; i < C.size(); i++){
sh = SH(l, m, theta, phi);
C[i] += sh * val;
m++; //increment m
//if we're in a new tier, increment l and set m = -l
if(m > l){
l++;
m = -l;
}
} //end for all coefficients
//increment the number of samples
mcN++;
} //end mcSample()
void mcEnd(){
//divide all coefficients by the number of samples
for(unsigned int i = 0; i < C.size(); i++)
C[i] /= mcN;
}
/// Generates a PDF describing the probability distribution of points on a spherical surface
/// @param sph_pts is a list of points in spherical coordinates (theta, phi) where theta = [0, 2pi] and phi = [0, pi]
/// @param l is the maximum degree of the spherical harmonic function
/// @param m is the maximum order
void pdf(std::vector<stim::vec<double> > sph_pts, unsigned int l, int m){
mcBegin( l, m ); //begin spherical harmonic sampling
unsigned int nP = sph_pts.size();
for(unsigned int p = 0; p < nP; p++){
mcSample(sph_pts[p][1], sph_pts[p][2], 1.0);
}
mcEnd();
}
/// Generates a PDF describing the probability distribution of points on a spherical surface
/// @param sph_pts is a list of points in cartesian coordinates
/// @param l is the maximum degree of the spherical harmonic function
/// @param m is the maximum order
/// @param c is the centroid of the points in sph_pts. DEFAULT 0,0,0
/// @param n is the number of points of the surface of the sphere used to create the PDF. DEFAULT 1000
void pdf(std::vector<stim::vec3<double> > sph_pts, unsigned int l, int m, stim::vec3<double> c = stim::vec3<double>(0,0,0), unsigned int n = 1000)
{
std::vector<double> weights; ///the weight at each point on the surface of the sphere.
// weights.resize(n);
unsigned int nP = sph_pts.size();
std::vector<stim::vec3<double> > sphere = stim::Random<double>::sample_sphere(n, 1.0, stim::TAU);
for(int i = 0; i < n; i++)
{
double val = 0;
for(int j = 0; j < nP; j++)
{
stim::vec3<double> temp = sph_pts[j] - c;
if(temp.dot(sphere[i]) > 0)
val += pow(temp.dot(sphere[i]),4);
}
weights.push_back(val);
}
mcBegin(l, m); //begin spherical harmonic sampling
for(unsigned int i = 0; i < n; i++)
{
stim::vec3<double> sph = sphere[i].cart2sph();
mcSample(sph[1], sph[2], weights[i]);
}
mcEnd();
}
std::string str(){
std::stringstream ss;
int l, m;
l = m = 0;
for(unsigned int i = 0; i < C.size(); i++){
ss<<C[i]<<'\t';
m++; //increment m
//if we're in a new tier, increment l and set m = -l
if(m > l){
l++;
m = -l;
ss<<std::endl;
}
}
return ss.str();
}
/// Returns the value of the function at the coordinate (theta, phi)
/// @param theta = [0, 2pi]
/// @param phi = [0, pi]
double operator()(double theta, double phi){
double fx = 0;
int l = 0;
int m = 0;
for(unsigned int i = 0; i < C.size(); i++){
fx += C[i] * SH(l, m, theta, phi);
m++;
if(m > l){
l++;
m = -l;
}
}
return fx;
}
/// Fill an NxN grid with the spherical function for theta = [0 2pi] and phi = [0 pi]
void grid(T* data, size_t N){
double dt = stim::TAU / (double)N; //calculate the step size in each direction
double dp = stim::PI / (double)(N - 1);
for(size_t ti = 0; ti < N; ti++){
for(size_t pi = 0; pi < N){
data[pi * N + ti] = (*this)((double)ti * dt, (double)pi * dp);
}
}
}
/*
//overload arithmetic operations
spharmonics<T> operator*(T rhs) const {
spharmonics<T> result(C.size()); //create a new spherical harmonics object
for (size_t c = 0; c < C.size(); c++) //for each coefficient
result.C[c] = C[c] * rhs; //calculate the factor and store the result in the new spharmonics object
return result;
}
spharmonics<T> operator+(spharmonics<T> rhs) {
size_t low = std::min(C.size(), rhs.C.size()); //store the number of coefficients in the lowest object
size_t high = std::max(C.size(), rhs.C.size()); //store the number of coefficients in the result
bool rhs_lowest = false; //true if rhs has the lowest number of coefficients
if (rhs.C.size() < C.size()) rhs_lowest = true; //if rhs has a lower number of coefficients, set the flag
spharmonics<T> result(high); //create a new object
size_t c;
for (c = 0; c < low; c++) //perform the first batch of additions
result.C[c] = C[c] + rhs.C[c]; //perform the addition
for (c = low; c < high; c++) {
if (rhs_lowest)
result.C[c] = C[c];
else
result.C[c] = rhs.C[c];
}
return result;
}
spharmonics<T> operator-(spharmonics<T> rhs) {
return (*this) + (rhs * (T)(-1));
}
*/
}; //end class sph_harmonics
}
#endif