scalarmie.h
38.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
#ifndef STIM_MIE_H
#define STIM_MIE_H
#include <boost/math/special_functions/bessel.hpp>
#include "scalarwave.h"
#include "../math/bessel.h"
#include "../cuda/cudatools/devices.h"
#include <cmath>
namespace stim{
/// Calculate the scattering coefficients for a spherical scatterer
template<typename T>
void B_coefficients(stim::complex<T>* B, T a, T k, stim::complex<T> n, int Nl){
//temporary variables
double vm; //allocate space to store the return values for the bessel function calculation
double* j_ka = (double*) malloc( (Nl + 2) * sizeof(double) );
double* y_ka = (double*) malloc( (Nl + 2) * sizeof(double) );
double* dj_ka= (double*) malloc( (Nl + 2) * sizeof(double) );
double* dy_ka= (double*) malloc( (Nl + 2) * sizeof(double) );
stim::complex<double>* j_kna = (stim::complex<double>*) malloc( (Nl + 2) * sizeof(stim::complex<double>) );
stim::complex<double>* y_kna = (stim::complex<double>*) malloc( (Nl + 2) * sizeof(stim::complex<double>) );
stim::complex<double>* dj_kna= (stim::complex<double>*) malloc( (Nl + 2) * sizeof(stim::complex<double>) );
stim::complex<double>* dy_kna= (stim::complex<double>*) malloc( (Nl + 2) * sizeof(stim::complex<double>) );
double ka = k * a; //store k*a (argument for spherical bessel and Hankel functions)
stim::complex<double> kna = k * n * a; //store k*n*a (argument for spherical bessel functions and derivatives)
stim::bessjyv_sph<double>(Nl, ka, vm, j_ka, y_ka, dj_ka, dy_ka); //calculate bessel functions and derivatives for k*a
stim::cbessjyva_sph<double>(Nl, kna, vm, j_kna, y_kna, dj_kna, dy_kna); //calculate complex bessel functions for k*n*a
stim::complex<double> h_ka, dh_ka;
stim::complex<double> numerator, denominator;
stim::complex<double> i(0, 1);
for(int l = 0; l <= Nl; l++){
h_ka.r = j_ka[l];
h_ka.i = y_ka[l];
dh_ka.r = dj_ka[l];
dh_ka.i = dy_ka[l];
numerator = j_ka[l] * dj_kna[l] * (stim::complex<double>)n - j_kna[l] * dj_ka[l];
denominator = j_kna[l] * dh_ka - h_ka * dj_kna[l] * (stim::complex<double>)n;
B[l] = (2 * l + 1) * pow(i, l) * numerator / denominator;
}
//free memory
free(j_ka); free(y_ka); free(dj_ka); free(dy_ka); free(j_kna); free(y_kna); free(dj_kna); free(dy_kna);
}
template<typename T>
void A_coefficients(stim::complex<T>* A, T a, T k, stim::complex<T> n, int Nl){
//temporary variables
double vm; //allocate space to store the return values for the bessel function calculation
double* j_ka = (double*) malloc( (Nl + 2) * sizeof(double) );
double* y_ka = (double*) malloc( (Nl + 2) * sizeof(double) );
double* dj_ka= (double*) malloc( (Nl + 2) * sizeof(double) );
double* dy_ka= (double*) malloc( (Nl + 2) * sizeof(double) );
stim::complex<double>* j_kna = (stim::complex<double>*) malloc( (Nl + 2) * sizeof(stim::complex<double>) );
stim::complex<double>* y_kna = (stim::complex<double>*) malloc( (Nl + 2) * sizeof(stim::complex<double>) );
stim::complex<double>* dj_kna= (stim::complex<double>*) malloc( (Nl + 2) * sizeof(stim::complex<double>) );
stim::complex<double>* dy_kna= (stim::complex<double>*) malloc( (Nl + 2) * sizeof(stim::complex<double>) );
double ka = k * a; //store k*a (argument for spherical bessel and Hankel functions)
stim::complex<double> kna = k * n * a; //store k*n*a (argument for spherical bessel functions and derivatives)
stim::bessjyv_sph<double>(Nl, ka, vm, j_ka, y_ka, dj_ka, dy_ka); //calculate bessel functions and derivatives for k*a
stim::cbessjyva_sph<double>(Nl, kna, vm, j_kna, y_kna, dj_kna, dy_kna); //calculate complex bessel functions for k*n*a
stim::complex<double> h_ka, dh_ka;
stim::complex<double> numerator, denominator;
stim::complex<double> i(0, 1);
for(size_t l = 0; l <= Nl; l++){
h_ka.r = j_ka[l];
h_ka.i = y_ka[l];
dh_ka.r = dj_ka[l];
dh_ka.i = dy_ka[l];
numerator = j_ka[l] * dh_ka - dj_ka[l] * h_ka;
denominator = j_kna[l] * dh_ka - h_ka * dj_kna[l] * (stim::complex<double>)n;
A[l] = (2 * l + 1) * pow(i, l) * numerator / denominator;
}
//free memory
free(j_ka); free(y_ka); free(dj_ka); free(dy_ka); free(j_kna); free(y_kna); free(dj_kna); free(dy_kna);
}
#define LOCAL_NL 16
/// CUDA kernel for calculating the Mie scattering solution given a set of points (x, y, z), a list of plane waves, and a look-up table for Bl*hl
/// @param E (GPU) is the N x N destination scalar field
/// @param N is the number of sample points to evaluate
/// @param x (GPU) is the grid of X coordinates for each point in E
/// @param y (GPU) is the grid of Y coordinates for each point in E
/// @param z (GPU) is the grid of Z coordinates for each point in E
/// @param W (GPU) is an array of coherent scalar plane waves incident on the Mie scatterer
/// @param nW is the number of plane waves to evaluate (sum)
/// @param a is the radius of the Mie scatterer
/// @param n is the complex refractive index of the Mie scatterer
/// @param c is the position of the sphere in (x, y, z)
/// @param hB (GPU) is a look-up table of Hankel functions (equally spaced in distance from the sphere) pre-multiplied with scattering coefficients
/// @param kr_min is the minimum kr value in the hB look-up table (corresponding to the closest point to the sphere)
/// @param dkr is the spacing (in kr) between samples of the hB look-up table
/// @param N_hB is the number of samples in hB
/// @param Nl is the order of the calculation (number of Hankel function orders)
template<typename T>
__global__ void cuda_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::vec3<T> c, stim::complex<T>* hB, T r_min, T dr, size_t N_hB, int Nl){
extern __shared__ stim::complex<T> shared_hB[]; //declare the list of waves in shared memory
size_t i = blockIdx.x * blockDim.x + threadIdx.x; //get the index into the sample array (sample point associated with this thread)
if(i >= N) return; //exit if this thread is outside the array
stim::vec3<T> p;
(x == NULL) ? p[0] = 0 : p[0] = x[i]; // test for NULL values and set positions
(y == NULL) ? p[1] = 0 : p[1] = y[i];
(z == NULL) ? p[2] = 0 : p[2] = z[i];
p = p - c;
T r = p.len(); //calculate the distance from the sphere
if(r < a) return; //exit if the point is inside the sphere (we only calculate the internal field)
T fij = (r - r_min)/dr; //FP index into the spherical bessel LUT
size_t ij = (size_t) fij; //convert to an integral index
T alpha = fij - ij; //calculate the fractional portion of the index
size_t n0j = ij * (Nl + 1); //start of the first entry in the LUT
size_t n1j = (ij+1) * (Nl + 1); //start of the second entry in the LUT
T cos_phi;
T Pl_2, Pl_1, Pl; //declare registers to store the previous two Legendre polynomials
stim::complex<T> hBl;
stim::complex<T> Ei = 0; //create a register to store the result
int l;
stim::complex<T> hlBl[LOCAL_NL+1]; //the first LOCAL_NL components are stored in registers for speed
int shared_start = threadIdx.x * (Nl - LOCAL_NL); //wrap up some operations so that they aren't done in the main loops
//unroll LOCAL_NL + 1
#pragma unroll 17 //copy the first LOCAL_NL+1 h_l * B_l components to registers
for(l = 0; l <= LOCAL_NL; l++)
hlBl[l] = clerp<T>( hB[n0j + l], hB[n1j + l], alpha );
for(l = LOCAL_NL+1; l <= Nl; l++) //copy any additional h_l * B_l components to shared memory
shared_hB[shared_start + (l - (LOCAL_NL+1))] = clerp<T>( hB[n0j + l], hB[n1j + l], alpha );
complex<T> e, Ew;
for(size_t w = 0; w < nW; w++){ //for each plane wave
cos_phi = p.norm().dot(W[w].kvec().norm()); //calculate the cosine of the angle between the k vector and the direction from the sphere
Pl_2 = 1; //the Legendre polynomials will be calculated recursively, initialize the first two steps of the recursive relation
Pl_1 = cos_phi;
e = exp(complex<T>(0, W[w].kvec().dot(c)));
Ew = W[w].E() * e;
Ei += Ew * hlBl[0] * Pl_2; //unroll the first two orders using the initial steps of the Legendre recursive relation
Ei += Ew * hlBl[1] * Pl_1;
//LOCAL_NL - 1
#pragma unroll 15 //unroll the next LOCAL_NL-1 loops for speed (iterating through the components in the register file)
for(l = 2; l <= LOCAL_NL; l++){
Pl = ( (2 * (l-1) + 1) * cos_phi * Pl_1 - (l-1) * Pl_2 ) / (l); //calculate the next step in the Legendre polynomial recursive relation (this is where most of the computation occurs)
Ei += Ew * hlBl[l] * Pl; //calculate and sum the current field order
Pl_2 = Pl_1; //shift Pl_1 -> Pl_2 and Pl -> Pl_1
Pl_1 = Pl;
}
for(l = LOCAL_NL+1; l <= Nl; l++){ //do the same as above, except for any additional orders that are stored in shared memory (not registers)
Pl = ( (2 * (l-1) + 1) * cos_phi * Pl_1 - (l-1) * Pl_2 ) / (l); //again, this is where most computation in the kernel occurs
Ei += Ew * shared_hB[shared_start + l - LOCAL_NL - 1] * Pl;
Pl_2 = Pl_1; //shift Pl_1 -> Pl_2 and Pl -> Pl_1
Pl_1 = Pl;
}
}
E[i] += Ei; //copy the result to device memory
}
///Calculate the scalar Mie scattered field on the GPU when a list of GPU-based pre-multiplied Hankel functions are available
/// @param E (GPU) is the N x N destination scalar field
/// @param N is the number fo elements of the scalar field in each direction
/// @param x (GPU) is the grid of X coordinates for each point in E
/// @param y (GPU) is the grid of Y coordinates for each point in E
/// @param z (GPU) is the grid of Z coordinates for each point in E
/// @param W (GPU) is an array of coherent scalar plane waves incident on the Mie scatterer
/// @param nW is the number of plane waves to evaluate (sum)
/// @param a is the radius of the Mie scatterer
/// @param n is the complex refractive index of the Mie scatterer
/// @param c is the position of the sphere in (x, y, z)
/// @param hB (GPU) is a look-up table of Hankel functions (equally spaced in distance from the sphere) pre-multiplied with scattering coefficients
/// @param kr_min is the minimum kr value in the hB look-up table (corresponding to the closest point to the sphere)
/// @param dkr is the spacing (in kr) between samples of the hB look-up table
/// @param N_hB is the number of samples in hB
/// @param Nl is the order of the calculation (number of Hankel function orders)
template<typename T>
void gpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::vec3<T> c, stim::complex<T>* hB, T kr_min, T dkr, size_t N_hB, size_t Nl){
size_t max_shared_mem = stim::sharedMemPerBlock(); //get the amount of shared memory per block
size_t hBl_array = sizeof(stim::complex<T>) * (Nl + 1); //calculate the number of bytes required to store the LUT corresponding to a single sample in shared memory
int threads = (int)((max_shared_mem / hBl_array) / 32 * 32); //calculate the optimal number of threads per block (make sure it's divisible by the number of warps - 32)
dim3 blocks((unsigned)(N / threads + 1)); //calculate the optimal number of blocks
size_t shared_mem;
if(Nl <= LOCAL_NL) shared_mem = 0;
else shared_mem = threads * sizeof(stim::complex<T>) * (Nl - LOCAL_NL); //amount of shared memory to allocate
//std::cout<<"shared memory allocated: "<<shared_mem<<std::endl;
cuda_scalar_mie_scatter<T><<< blocks, threads, shared_mem >>>(E, N, x, y, z, W, nW, a, n, c, hB, kr_min, dkr, N_hB, (int)Nl); //call the kernel
}
template<typename T>
__global__ void cuda_dist(T* r, T* x, T* y, T* z, size_t N, stim::vec3<T> c = stim::vec3<T>(0, 0, 0)){
size_t i = blockIdx.x * blockDim.x + threadIdx.x; //get the index into the array
if(i >= N) return; //exit if this thread is outside the array
stim::vec3<T> p;
(x == NULL) ? p[0] = 0 : p[0] = x[i]; // test for NULL values and set positions
(y == NULL) ? p[1] = 0 : p[1] = y[i];
(z == NULL) ? p[2] = 0 : p[2] = z[i];
r[i] = (p - c).len();
}
///Calculate the scalar Mie scattered field on the GPU
/// @param E (GPU) is the N x N destination scalar field
/// @param N is the number of sample points of the scalar field
/// @param x (GPU) is the grid of X coordinates for each point in E
/// @param y (GPU) is the grid of Y coordinates for each point in E
/// @param z (GPU) is the grid of Z coordinates for each point in E
/// @param W (CPU) is an array of coherent scalar plane waves incident on the Mie scatterer
/// @param a is the radius of the Mie scatterer
/// @param n is the complex refractive index of the Mie scatterer
/// @param r_spacing is the minimum distance between r values of the sample points in E (used to calculate look-up tables)
template<typename T>
void gpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, std::vector<stim::scalarwave<T>> W, T a, stim::complex<T> n, stim::vec3<T> c = stim::vec3<T>(0, 0, 0), T r_spacing = 0.1){
//calculate the necessary number of orders required to represent the scattered field
T k = W[0].kmag();
int Nl = (int)ceil(k*a + 4 * cbrt( k * a ) + 2); //calculate the number of orders required to represent the sphere
if(Nl < LOCAL_NL) Nl = LOCAL_NL; //always do at least the minimum number of local operations (kernel optimization)
//calculate the scattering coefficients for the sphere
stim::complex<T>* B = (stim::complex<T>*) malloc( sizeof(stim::complex<T>) * (Nl + 1) ); //allocate space for the scattering coefficients
B_coefficients(B, a, k, n, Nl); //calculate the scattering coefficients
// PLANE WAVES
stim::scalarwave<T>* dev_W; //allocate space and copy plane waves
HANDLE_ERROR( cudaMalloc(&dev_W, sizeof(stim::scalarwave<T>) * W.size()) );
HANDLE_ERROR( cudaMemcpy(dev_W, &W[0], sizeof(stim::scalarwave<T>) * W.size(), cudaMemcpyHostToDevice) );
// BESSEL FUNCTION LOOK-UP TABLE
//calculate the distance from the sphere center at each sample point and store the result in dev_r
T* dev_r; //declare the device pointer to hold the distance from the sphere center
HANDLE_ERROR( cudaMalloc(&dev_r, sizeof(T) * N) ); //allocate space for the array of distances
int threads = stim::maxThreadsPerBlock(); //query the device to find the maximum number of threads per block
dim3 blocks((unsigned)(N / threads + 1)); //calculate the number of blocks necessary to evaluate the total number of sample points N
cuda_dist<T> <<< blocks, threads >>>(dev_r, x, y, z, N, c); //calculate the distance
//Use the cuBLAS library to find the minimum and maximum distances from the sphere center. This will be used to create a look-up table for the Hankel functions
cublasStatus_t stat;
cublasHandle_t handle;
stat = cublasCreate(&handle); //create a cuBLAS handle
if (stat != CUBLAS_STATUS_SUCCESS){ //test for failure
printf ("CUBLAS initialization failed\n");
exit(1);
}
int i_min, i_max;
stat = cublasIsamin(handle, (int)N, dev_r, 1, &i_min);
if (stat != CUBLAS_STATUS_SUCCESS){ //test for failure
printf ("CUBLAS Error: failed to calculate minimum r value.\n");
exit(1);
}
stat = cublasIsamax(handle, (int)N, dev_r, 1, &i_max);
if (stat != CUBLAS_STATUS_SUCCESS){ //test for failure
printf ("CUBLAS Error: failed to calculate maximum r value.\n");
exit(1);
}
i_min--; //cuBLAS uses 1-based indexing for Fortran compatibility
i_max--;
T r_min, r_max; //allocate space to store the minimum and maximum values
HANDLE_ERROR( cudaMemcpy(&r_min, dev_r + i_min, sizeof(T), cudaMemcpyDeviceToHost) ); //copy the min and max values from the device to the CPU
HANDLE_ERROR( cudaMemcpy(&r_max, dev_r + i_max, sizeof(T), cudaMemcpyDeviceToHost) );
r_min = max(r_min, a); //if the radius of the sphere is larger than r_min, change r_min to a (the scattered field doesn't exist inside the sphere)
size_t N_hB_lut = (size_t)((r_max - r_min) / r_spacing + 1); //number of values in the look-up table based on the user-specified spacing along r
//Declare and evaluate variables used to calculate the spherical Bessel functions and store them temporarily on the CPU
double vm; //allocate space to store the return values for the bessel function calculation
double* jv = (double*) malloc( (Nl + 1) * sizeof(double) );
double* yv = (double*) malloc( (Nl + 1) * sizeof(double) );
double* djv= (double*) malloc( (Nl + 1) * sizeof(double) );
double* dyv= (double*) malloc( (Nl + 1) * sizeof(double) );
size_t hB_bytes = sizeof(stim::complex<T>) * (Nl+1) * N_hB_lut; //calculate the number of bytes necessary to store the Hankel function LUT
stim::complex<T>* hB_lut = (stim::complex<T>*) malloc(hB_bytes); //pointer to the look-up table
T dr = (r_max - r_min) / (N_hB_lut-1); //calculate the optimal distance between values in the LUT
stim::complex<T> hl; //declare a complex value for the Hankel function result
for(size_t ri = 0; ri < N_hB_lut; ri++){ //for each value in the LUT
stim::bessjyv_sph<double>(Nl, k * (r_min + ri * dr), vm, jv, yv, djv, dyv); //compute the list of spherical bessel functions from [0 Nl]
for(size_t l = 0; l <= Nl; l++){ //for each order
hl.r = (T)jv[l]; //generate the spherical Hankel function from the Bessel functions
hl.i = (T)yv[l];
hB_lut[ri * (Nl + 1) + l] = hl * B[l]; //pre-multiply the Hankel function by the scattering coefficients
}
}
//Copy the pre-multiplied Hankel function look-up table to the GPU - this LUT gives a list of uniformly spaced Hankel function values pre-multiplied by scattering coefficients
stim::complex<T>* dev_hB_lut;
HANDLE_ERROR( cudaMalloc(&dev_hB_lut, hB_bytes) );
HANDLE_ERROR( cudaMemcpy(dev_hB_lut, hB_lut, hB_bytes, cudaMemcpyHostToDevice) );
//calculate the Mie scattering solution on the GPU
gpu_scalar_mie_scatter<T>(E, N, x, y, z, dev_W, W.size(), a, n, c, dev_hB_lut, r_min, dr, N_hB_lut, Nl);
//HANDLE_ERROR(cudaMemcpy(E, E, N * sizeof(stim::complex<T>), cudaMemcpyDeviceToHost)); //copy the field from device memory
HANDLE_ERROR(cudaFree(dev_hB_lut));
HANDLE_ERROR(cudaFree(dev_r));
HANDLE_ERROR(cudaFree(dev_W));
}
/// Calculate the scalar Mie solution for the scattered field produced by a single plane wave
/// @param E is a pointer to the destination field values
/// @param N is the number of points used to calculate the field
/// @param x is an array of x coordinates for each point, specified relative to the sphere (x = NULL assumes all zeros)
/// @param y is an array of y coordinates for each point, specified relative to the sphere (y = NULL assumes all zeros)
/// @param z is an array of z coordinates for each point, specified relative to the sphere (z = NULL assumes all zeros)
/// @param W is an array of planewaves that will be scattered
/// @param a is the radius of the sphere
/// @param n is the complex refractive index of the sphere
template<typename T>
void cpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, std::vector<stim::scalarwave<T>> W, T a, stim::complex<T> n, stim::vec3<T> c = stim::vec3<T>(0, 0, 0)){
/*#ifdef CUDA_FOUND
stim::complex<T>* dev_E; //allocate space for the field
cudaMalloc(&dev_E, N * sizeof(stim::complex<T>));
cudaMemcpy(dev_E, E, N * sizeof(stim::complex<T>), cudaMemcpyHostToDevice);
//cudaMemset(dev_F, 0, N * sizeof(stim::complex<T>)); //set the field to zero (necessary because a sum is used)
// COORDINATES
T* dev_x = NULL; //allocate space and copy the X coordinate (if specified)
if(x != NULL){
HANDLE_ERROR(cudaMalloc(&dev_x, N * sizeof(T)));
HANDLE_ERROR(cudaMemcpy(dev_x, x, N * sizeof(T), cudaMemcpyHostToDevice));
}
T* dev_y = NULL; //allocate space and copy the Y coordinate (if specified)
if(y != NULL){
HANDLE_ERROR(cudaMalloc(&dev_y, N * sizeof(T)));
HANDLE_ERROR(cudaMemcpy(dev_y, y, N * sizeof(T), cudaMemcpyHostToDevice));
}
T* dev_z = NULL; //allocate space and copy the Z coordinate (if specified)
if(z != NULL){
HANDLE_ERROR(cudaMalloc(&dev_z, N * sizeof(T)));
HANDLE_ERROR(cudaMemcpy(dev_z, z, N * sizeof(T), cudaMemcpyHostToDevice));
}
gpu_scalar_mie_scatter(dev_E, N, dev_x, dev_y, dev_z, W, a, n, c, r_spacing);
if(x != NULL) cudaFree(dev_x); //free everything
if(y != NULL) cudaFree(dev_y);
if(z != NULL) cudaFree(dev_z);
cudaFree(dev_E);
#else
*/
//calculate the necessary number of orders required to represent the scattered field
T k = W[0].kmag();
int Nl = (int)ceil(k*a + 4 * cbrt( k * a ) + 2);
if(Nl < LOCAL_NL) Nl = LOCAL_NL; //always do at least the minimum number of local operations (kernel optimization)
//std::cout<<"Nl: "<<Nl<<std::endl;
//calculate the scattering coefficients for the sphere
stim::complex<T>* B = (stim::complex<T>*) malloc( sizeof(stim::complex<T>) * (Nl + 1) ); //allocate space for the scattering coefficients
B_coefficients(B, a, k, n, Nl);
//allocate space to store the bessel function call results
double vm;
double* j_kr = (double*) malloc( (Nl + 1) * sizeof(double) );
double* y_kr = (double*) malloc( (Nl + 1) * sizeof(double) );
double* dj_kr= (double*) malloc( (Nl + 1) * sizeof(double) );
double* dy_kr= (double*) malloc( (Nl + 1) * sizeof(double) );
T* P = (T*) malloc( (Nl + 1) * sizeof(T) );
T r, kr, cos_phi;
stim::complex<T> h;
stim::complex<T> Ew;
for(size_t i = 0; i < N; i++){
stim::vec3<T> p; //declare a 3D point
(x == NULL) ? p[0] = 0 : p[0] = x[i]; // test for NULL values and set positions
(y == NULL) ? p[1] = 0 : p[1] = y[i];
(z == NULL) ? p[2] = 0 : p[2] = z[i];
p = p - c;
r = p.len();
if(r >= a){
for(size_t w = 0; w < W.size(); w++){
Ew = W[w].E() * exp(stim::complex<float>(0, W[w].kvec().dot(c)));
kr = p.len() * W[w].kmag(); //calculate k*r
stim::bessjyv_sph<double>(Nl, kr, vm, j_kr, y_kr, dj_kr, dy_kr);
cos_phi = p.norm().dot(W[w].kvec().norm()); //calculate the cosine of the angle from the propagating direction
stim::legendre<T>(Nl, cos_phi, P);
for(size_t l = 0; l <= Nl; l++){
h.r = j_kr[l];
h.i = y_kr[l];
E[i] += Ew * B[l] * h * P[l];
}
}
}
}
//#endif
}
template<typename T>
void cpu_scalar_mie_scatter(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T> w, T a, stim::complex<T> n, stim::vec3<T> c = stim::vec3<T>(0, 0, 0), T r_spacing = 0.1){
std::vector< stim::scalarwave<T> > W(1, w);
cpu_scalar_mie_scatter(E, N, x, y, z, W, a, n, c, r_spacing);
}
template<typename T>
__global__ void cuda_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::complex<T>* jA, T r_min, T dr, size_t N_jA, int Nl){
extern __shared__ stim::complex<T> shared_jA[]; //declare the list of waves in shared memory
size_t i = blockIdx.x * blockDim.x + threadIdx.x; //get the index into the array
if(i >= N) return; //exit if this thread is outside the array
stim::vec3<T> p;
(x == NULL) ? p[0] = 0 : p[0] = x[i]; // test for NULL values and set positions
(y == NULL) ? p[1] = 0 : p[1] = y[i];
(z == NULL) ? p[2] = 0 : p[2] = z[i];
T r = p.len(); //calculate the distance from the sphere
if(r >= a) return; //exit if the point is inside the sphere (we only calculate the internal field)
T fij = (r - r_min)/dr; //FP index into the spherical bessel LUT
size_t ij = (size_t) fij; //convert to an integral index
T alpha = fij - ij; //calculate the fractional portion of the index
size_t n0j = ij * (Nl + 1); //start of the first entry in the LUT
size_t n1j = (ij+1) * (Nl + 1); //start of the second entry in the LUT
T cos_phi;
T Pl_2, Pl_1, Pl; //declare registers to store the previous two Legendre polynomials
stim::complex<T> jAl;
stim::complex<T> Ei = 0; //create a register to store the result
int l;
stim::complex<T> jlAl[LOCAL_NL+1]; //the first LOCAL_NL components are stored in registers for speed
int shared_start = threadIdx.x * (Nl - LOCAL_NL); //wrap up some operations so that they aren't done in the main loops
#pragma unroll LOCAL_NL+1 //copy the first LOCAL_NL+1 h_l * B_l components to registers
for(l = 0; l <= LOCAL_NL; l++)
jlAl[l] = clerp<T>( jA[n0j + l], jA[n1j + l], alpha );
for(l = LOCAL_NL+1; l <= Nl; l++) //copy any additional h_l * B_l components to shared memory
shared_jA[shared_start + (l - (LOCAL_NL+1))] = clerp<T>( jA[n0j + l], jA[n1j + l], alpha );
for(size_t w = 0; w < nW; w++){ //for each plane wave
if(r == 0) cos_phi = 0;
else
cos_phi = p.norm().dot(W[w].kvec().norm()); //calculate the cosine of the angle between the k vector and the direction from the sphere
Pl_2 = 1; //the Legendre polynomials will be calculated recursively, initialize the first two steps of the recursive relation
Pl_1 = cos_phi;
Ei += W[w].E() * jlAl[0] * Pl_2; //unroll the first two orders using the initial steps of the Legendre recursive relation
Ei += W[w].E() * jlAl[1] * Pl_1;
#pragma unroll LOCAL_NL-1 //unroll the next LOCAL_NL-1 loops for speed (iterating through the components in the register file)
for(l = 2; l <= LOCAL_NL; l++){
Pl = ( (2 * (l-1) + 1) * cos_phi * Pl_1 - (l-1) * Pl_2 ) / (l); //calculate the next step in the Legendre polynomial recursive relation (this is where most of the computation occurs)
Ei += W[w].E() * jlAl[l] * Pl; //calculate and sum the current field order
Pl_2 = Pl_1; //shift Pl_1 -> Pl_2 and Pl -> Pl_1
Pl_1 = Pl;
}
for(l = LOCAL_NL+1; l <= Nl; l++){ //do the same as above, except for any additional orders that are stored in shared memory (not registers)
Pl = ( (2 * (l-1) + 1) * cos_phi * Pl_1 - (l-1) * Pl_2 ) / (l); //again, this is where most computation in the kernel occurs
Ei += W[w].E() * shared_jA[shared_start + l - LOCAL_NL - 1] * Pl;
Pl_2 = Pl_1; //shift Pl_1 -> Pl_2 and Pl -> Pl_1
Pl_1 = Pl;
}
}
E[i] = Ei; //copy the result to device memory
}
template<typename T>
void gpu_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T>* W, size_t nW, T a, stim::complex<T> n, stim::complex<T>* jA, T r_min, T dr, size_t N_jA, size_t Nl){
size_t max_shared_mem = stim::sharedMemPerBlock();
size_t hBl_array = sizeof(stim::complex<T>) * (Nl + 1);
//std::cout<<"hl*Bl array size: "<<hBl_array<<std::endl;
//std::cout<<"shared memory: "<<max_shared_mem<<std::endl;
int threads = (int)((max_shared_mem / hBl_array) / 32 * 32);
//std::cout<<"threads per block: "<<threads<<std::endl;
dim3 blocks((unsigned)(N / threads + 1)); //calculate the optimal number of blocks
size_t shared_mem;
if(Nl <= LOCAL_NL) shared_mem = 0;
else shared_mem = threads * sizeof(stim::complex<T>) * (Nl - LOCAL_NL); //amount of shared memory to allocate
//std::cout<<"shared memory allocated: "<<shared_mem<<std::endl;
cuda_scalar_mie_internal<T><<< blocks, threads, shared_mem >>>(E, N, x, y, z, W, nW, a, n, jA, r_min, dr, N_jA, (int)Nl); //call the kernel
}
/// Calculate the scalar Mie solution for the internal field produced by a single plane wave scattered by a sphere
/// @param E is a pointer to the destination field values
/// @param N is the number of points used to calculate the field
/// @param x is an array of x coordinates for each point, specified relative to the sphere (x = NULL assumes all zeros)
/// @param y is an array of y coordinates for each point, specified relative to the sphere (y = NULL assumes all zeros)
/// @param z is an array of z coordinates for each point, specified relative to the sphere (z = NULL assumes all zeros)
/// @param w is a planewave that will be scattered
/// @param a is the radius of the sphere
/// @param n is the complex refractive index of the sphere
template<typename T>
void cpu_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, std::vector< stim::scalarwave<T> > W, T a, stim::complex<T> n, stim::vec3<T> c = stim::vec3<T>(0, 0, 0)){
//calculate the necessary number of orders required to represent the scattered field
T k = W[0].kmag();
int Nl = (int)ceil(k*a + 4 * cbrt( k * a ) + 2);
if(Nl < LOCAL_NL) Nl = LOCAL_NL; //always do at least the minimum number of local operations (kernel optimization)
//std::cout<<"Nl: "<<Nl<<std::endl;
//calculate the scattering coefficients for the sphere
stim::complex<T>* A = (stim::complex<T>*) malloc( sizeof(stim::complex<T>) * (Nl + 1) ); //allocate space for the scattering coefficients
A_coefficients(A, a, k, n, Nl);
/*#ifdef CUDA_FOUND
stim::complex<T>* dev_E; //allocate space for the field
cudaMalloc(&dev_E, N * sizeof(stim::complex<T>));
cudaMemcpy(dev_E, E, N * sizeof(stim::complex<T>), cudaMemcpyHostToDevice);
//cudaMemset(dev_F, 0, N * sizeof(stim::complex<T>)); //set the field to zero (necessary because a sum is used)
// COORDINATES
T* dev_x = NULL; //allocate space and copy the X coordinate (if specified)
if(x != NULL){
HANDLE_ERROR(cudaMalloc(&dev_x, N * sizeof(T)));
HANDLE_ERROR(cudaMemcpy(dev_x, x, N * sizeof(T), cudaMemcpyHostToDevice));
}
T* dev_y = NULL; //allocate space and copy the Y coordinate (if specified)
if(y != NULL){
HANDLE_ERROR(cudaMalloc(&dev_y, N * sizeof(T)));
HANDLE_ERROR(cudaMemcpy(dev_y, y, N * sizeof(T), cudaMemcpyHostToDevice));
}
T* dev_z = NULL; //allocate space and copy the Z coordinate (if specified)
if(z != NULL){
HANDLE_ERROR(cudaMalloc(&dev_z, N * sizeof(T)));
HANDLE_ERROR(cudaMemcpy(dev_z, z, N * sizeof(T), cudaMemcpyHostToDevice));
}
// PLANE WAVES
stim::scalarwave<T>* dev_W; //allocate space and copy plane waves
HANDLE_ERROR( cudaMalloc(&dev_W, sizeof(stim::scalarwave<T>) * W.size()) );
HANDLE_ERROR( cudaMemcpy(dev_W, &W[0], sizeof(stim::scalarwave<T>) * W.size(), cudaMemcpyHostToDevice) );
// BESSEL FUNCTION LOOK-UP TABLE
//calculate the distance from the sphere center
T* dev_r;
HANDLE_ERROR( cudaMalloc(&dev_r, sizeof(T) * N) );
int threads = stim::maxThreadsPerBlock();
dim3 blocks((unsigned)(N / threads + 1));
cuda_dist<T> <<< blocks, threads >>>(dev_r, dev_x, dev_y, dev_z, N);
//Find the minimum and maximum values of r
cublasStatus_t stat;
cublasHandle_t handle;
stat = cublasCreate(&handle); //create a cuBLAS handle
if (stat != CUBLAS_STATUS_SUCCESS){ //test for failure
printf ("CUBLAS initialization failed\n");
exit(1);
}
int i_min, i_max;
stat = cublasIsamin(handle, (int)N, dev_r, 1, &i_min);
if (stat != CUBLAS_STATUS_SUCCESS){ //test for failure
printf ("CUBLAS Error: failed to calculate minimum r value.\n");
exit(1);
}
stat = cublasIsamax(handle, (int)N, dev_r, 1, &i_max);
if (stat != CUBLAS_STATUS_SUCCESS){ //test for failure
printf ("CUBLAS Error: failed to calculate maximum r value.\n");
exit(1);
}
cublasDestroy(handle); //destroy the CUBLAS handle
i_min--; //cuBLAS uses 1-based indexing for Fortran compatibility
i_max--;
T r_min, r_max; //allocate space to store the minimum and maximum values
HANDLE_ERROR( cudaMemcpy(&r_min, dev_r + i_min, sizeof(T), cudaMemcpyDeviceToHost) ); //copy the min and max values from the device to the CPU
HANDLE_ERROR( cudaMemcpy(&r_max, dev_r + i_max, sizeof(T), cudaMemcpyDeviceToHost) );
r_max = min(r_max, a); //the internal field doesn't exist outside of the sphere
size_t N_jA_lut = (size_t)((r_max - r_min) / r_spacing + 1);
//temporary variables
double vm; //allocate space to store the return values for the bessel function calculation
stim::complex<double>* jv = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
stim::complex<double>* yv = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
stim::complex<double>* djv= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
stim::complex<double>* dyv= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
size_t jA_bytes = sizeof(stim::complex<T>) * (Nl+1) * N_jA_lut;
stim::complex<T>* jA_lut = (stim::complex<T>*) malloc(jA_bytes); //pointer to the look-up table
T dr = (r_max - r_min) / (N_jA_lut-1); //distance between values in the LUT
//std::cout<<"LUT jl bytes: "<<jA_bytes<<std::endl;
stim::complex<T> hl;
stim::complex<double> nd = (stim::complex<double>)n;
for(size_t ri = 0; ri < N_jA_lut; ri++){ //for each value in the LUT
stim::cbessjyva_sph<double>(Nl, nd * k * (r_min + ri * dr), vm, jv, yv, djv, dyv); //compute the list of spherical bessel functions from [0 Nl]
for(size_t l = 0; l <= Nl; l++){ //for each order
jA_lut[ri * (Nl + 1) + l] = (stim::complex<T>)(jv[l] * (stim::complex<double>)A[l]); //store the bessel function result
}
}
//Allocate device memory and copy everything to the GPU
stim::complex<T>* dev_jA_lut;
HANDLE_ERROR( cudaMalloc(&dev_jA_lut, jA_bytes) );
HANDLE_ERROR( cudaMemcpy(dev_jA_lut, jA_lut, jA_bytes, cudaMemcpyHostToDevice) );
gpu_scalar_mie_internal<T>(dev_E, N, dev_x, dev_y, dev_z, dev_W, W.size(), a, n, dev_jA_lut, r_min, dr, N_jA_lut, Nl);
cudaMemcpy(E, dev_E, N * sizeof(stim::complex<T>), cudaMemcpyDeviceToHost); //copy the field from device memory
if(x != NULL) cudaFree(dev_x); //free everything
if(y != NULL) cudaFree(dev_y);
if(z != NULL) cudaFree(dev_z);
HANDLE_ERROR( cudaFree(dev_jA_lut) );
HANDLE_ERROR( cudaFree(dev_E) );
HANDLE_ERROR( cudaFree(dev_W) );
HANDLE_ERROR( cudaFree(dev_r) );
HANDLE_ERROR( cudaFree(dev_E) );
#else
*/
//allocate space to store the bessel function call results
double vm;
stim::complex<double>* j_knr = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
stim::complex<double>* y_knr = (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
stim::complex<double>* dj_knr= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
stim::complex<double>* dy_knr= (stim::complex<double>*) malloc( (Nl + 1) * sizeof(stim::complex<double>) );
T* P = (T*) malloc( (Nl + 1) * sizeof(T) );
T r, cos_phi;
stim::complex<double> knr;
stim::complex<T> h;
stim::complex<T> Ew;
for(size_t i = 0; i < N; i++){
stim::vec3<T> p; //declare a 3D point
(x == NULL) ? p[0] = 0 : p[0] = x[i]; // test for NULL values and set positions
(y == NULL) ? p[1] = 0 : p[1] = y[i];
(z == NULL) ? p[2] = 0 : p[2] = z[i];
p = p - c;
r = p.len();
if(r < a){
E[i] = 0;
for(size_t w = 0; w < W.size(); w++){
Ew = W[w].E() * exp(stim::complex<float>(0, W[w].kvec().dot(c)));
knr = (stim::complex<double>)n * p.len() * W[w].kmag(); //calculate k*n*r
stim::cbessjyva_sph<double>(Nl, knr, vm, j_knr, y_knr, dj_knr, dy_knr);
if(r == 0)
cos_phi = 0;
else
cos_phi = p.norm().dot(W[w].kvec().norm()); //calculate the cosine of the angle from the propagating direction
stim::legendre<T>(Nl, cos_phi, P);
for(size_t l = 0; l <= Nl; l++){
E[i] += Ew * A[l] * (stim::complex<T>)j_knr[l] * P[l];
}
}
}
}
//#endif
}
template<typename T>
void cpu_scalar_mie_internal(stim::complex<T>* E, size_t N, T* x, T* y, T* z, stim::scalarwave<T> w, T a, stim::complex<T> n, stim::vec3<T> c = stim::vec3<T>(0, 0, 0)){
std::vector< stim::scalarwave<T> > W(1, w);
cpu_scalar_mie_internal(E, N, x, y, z, W, a, n, c);
}
/// Class stim::scalarmie represents a scalar Mie scattering model that can be used to calculate the fields produced by a scattering sphere.
template<typename T>
class scalarmie
{
public:
T radius; //radius of the scattering sphere
stim::complex<T> n; //refractive index of the scattering sphere
vec3<T> c; //position of the sphere in space
public:
scalarmie() { //default constructor
radius = 0.5;
n = stim::complex<T>(1.4, 0.0);
c = stim::vec3<T>(0, 0, 0);
}
scalarmie(T r, stim::complex<T> ri, stim::vec3<T> center = stim::vec3<T>(0, 0, 0)){
radius = r;
n = ri;
c = center;
//c = stim::vec3<T>(2, 1, 0);
}
//void sum_scat(stim::scalarfield<T>& E, T* X, T* Y, T* Z, stim::scalarbeam<T> b, int samples = 1000){
// std::vector< stim::scalarwave<float> > wave_array = b.mc(samples); //decompose the beam into an array of plane waves
// stim::cpu_scalar_mie_scatter<float>(E.ptr(), E.size(), X, Y, Z, wave_array, radius, n, E.spacing());
//}
//void sum_intern(stim::scalarfield<T>& E, T* X, T* Y, T* Z, stim::scalarbeam<T> b, int samples = 1000){
// std::vector< stim::scalarwave<float> > wave_array = b.mc(samples); //decompose the beam into an array of plane waves
// stim::cpu_scalar_mie_internal<float>(E.ptr(), E.size(), X, Y, Z, wave_array, radius, n, E.spacing());
//}
//void eval(stim::scalarfield<T>& E, T* X, T* Y, T* Z, stim::scalarbeam<T> b, int order = 500, int samples = 1000){
// b.eval(E, X, Y, Z, order); //evaluate the incident field using a plane wave expansion
// std::vector< stim::scalarwave<float> > wave_array = b.mc(samples); //decompose the beam into an array of plane waves
// sum_scat(E, X, Y, Z, b, samples);
// sum_intern(E, X, Y, Z, b, samples);
//}
void eval(stim::scalarfield<T>& E, stim::scalarbeam<T> b, int order = 500, int samples = 1000){
E.meshgrid();
b.eval(E, order);
std::vector< stim::scalarwave<float> > wave_array = b.mc(samples); //decompose the beam into an array of plane waves
if(E.gpu()){
stim::gpu_scalar_mie_scatter<float>(E.ptr(), E.size(), E.x(), E.y(), E.z(), wave_array, radius, n, c, E.spacing());
}
else{
stim::cpu_scalar_mie_scatter<float>(E.ptr(), E.size(), E.x(), E.y(), E.z(), wave_array, radius, n, E.spacing());
stim::cpu_scalar_mie_internal<float>(E.ptr(), E.size(), E.x(), E.y(), E.z(), wave_array, radius, n, E.spacing());
}
}
}; //end stim::scalarmie
template<typename T>
class scalarcluster : public std::vector< scalarmie<T> > {
public:
void eval(stim::scalarfield<T>& E, stim::scalarbeam<T> b, int order = 500, int samples = 1000) {
E.meshgrid();
b.eval(E, order);
std::vector< stim::scalarwave<float> > wave_array = b.mc(samples); //decompose the beam into an array of plane waves
T radius;
stim::complex<T> n;
stim::vec3<T> c;
for (size_t si = 0; si < std::vector< scalarmie<T> >::size(); si++) { //for each sphere in the cluster
radius = std::vector< scalarmie<T> >::at(si).radius;
n = std::vector< scalarmie<T> >::at(si).n;
c = std::vector< scalarmie<T> >::at(si).c;
if (E.gpu()) {
stim::gpu_scalar_mie_scatter<float>(E.ptr(), E.size(), E.x(), E.y(), E.z(), wave_array, radius, n, c, E.spacing());
}
else {
stim::cpu_scalar_mie_scatter<float>(E.ptr(), E.size(), E.x(), E.y(), E.z(), wave_array, radius, n, c);
stim::cpu_scalar_mie_internal<float>(E.ptr(), E.size(), E.x(), E.y(), E.z(), wave_array, radius, n, c);
}
}
}
};
} //end namespace stim
#endif