image.h
22.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
#ifndef STIM_IMAGE_H
#define STIM_IMAGE_H
#ifdef USING_OPENCV
//#include <opencv2/core/core.hpp>
//#include <opencv2/highgui/highgui.hpp>
#include <opencv2/opencv.hpp>
#else
#include <stim/image/bmp.h>
#endif
#include <vector>
#include <iostream>
#include <climits> //use limits and remove the MIN and MAX macros
#define NOMINMAX
#include <typeinfo>
#include <fstream>
#include <cstring>
#include <stim/parser/filename.h>
namespace stim{
/// This static class provides the STIM interface for loading, saving, and storing 2D images.
/// Data is stored in an interleaved (BIP) format (default for saving and loading is RGB).
//currently this interface uses CImg
// T = data type (usually unsigned char)
template <class T>
class image{
T* img; //pointer to the image data (interleaved RGB for color)
size_t R[3];
inline size_t X() const { return R[1]; }
inline size_t Y() const { return R[2]; }
inline size_t C() const { return R[0]; }
void init(){ //initializes all variables, assumes no memory is allocated
memset(R, 0, sizeof(size_t) * 3); //set the resolution and number of channels to zero
img = NULL;
}
void unalloc(){ //frees any resources associated with the image
if(img) free(img); //if memory has been allocated, free it
}
void clear(){ //clears all image data
unalloc(); //unallocate previous memory
init(); //re-initialize the variables
}
void allocate(){
unalloc();
img = (T*) malloc( sizeof(T) * R[0] * R[1] * R[2] ); //allocate memory
if (img == NULL) {
std::cout << "stim::image ERROR - failed to allocate memory for image" << std::endl;
exit(1);
}
}
void allocate(size_t x, size_t y, size_t c){ //allocate memory based on the resolution
R[0] = c; R[1] = x; R[2] = y; //set the resolution
allocate(); //allocate memory
}
inline size_t idx(size_t x, size_t y, size_t c = 0) const {
return y * R[0] * R[1] + x * R[0] + c;
}
#ifdef USING_OPENCV
int cv_type(){
if(typeid(T) == typeid(unsigned char)) return CV_MAKETYPE(CV_8U, (int)C());
if(typeid(T) == typeid(char)) return CV_MAKETYPE(CV_8S, (int)C());
if(typeid(T) == typeid(unsigned short)) return CV_MAKETYPE(CV_16U, (int)C());
if(typeid(T) == typeid(short)) return CV_MAKETYPE(CV_16S, (int)C());
if(typeid(T) == typeid(int)) return CV_MAKETYPE(CV_32S, (int)C());
if(typeid(T) == typeid(float)) return CV_MAKETYPE(CV_32F, (int)C());
if(typeid(T) == typeid(double)) return CV_MAKETYPE(CV_64F, (int)C());
std::cout<<"ERROR in stim::image::cv_type - no valid data type found"<<std::endl;
exit(1);
}
#endif
/// Returns the value for "white" based on the dynamic range (assumes white is 1.0 for floating point images)
T white(){
if (typeid(T) == typeid(double) || typeid(T) == typeid(float))
return (T)1.0;
else
return std::numeric_limits<T>::max();
}
public:
size_t bytes() { return size() * sizeof(T); }
/// Default constructor - creates an empty image object
image(){ init(); } //initialize all variables to zero, don't allocate any memory
/// Constructor with a filename - loads the specified file
image(std::string filename){ //constructor initialize the image with an image file
init();
load(filename);
}
/// Create a new image from scratch given a number of samples and channels
image(size_t x, size_t y = 1, size_t c = 1){
init();
allocate(x, y, c);
}
/// Create a new image with the data given in 'data'
image(T* data, size_t x, size_t y, size_t c = 1){
init();
allocate(x, y, c);
memcpy(img, data, bytes());
}
/// Copy constructor - duplicates an image object
image(const stim::image<T>& I){
init();
allocate(I.X(), I.Y(), I.C());
memcpy(img, I.img, bytes());
}
/// Destructor - clear memory
~image(){
free(img);
}
///Resize an image - this function looks like it hasn't been implemented
void resize(size_t x, size_t y, size_t c = 1) {
allocate(x, y, c);
}
stim::image<T>& operator=(const stim::image<T>& I){
if(&I == this) //handle self-assignment
return *this;
init();
allocate(I.X(), I.Y(), I.C());
memcpy(img, I.img, bytes());
return *this;
}
#ifndef USING_OPENCV
void load_bmp(std::string filename) {
stim::bmp bitmap;
bitmap.open(filename); //load the bitmap and read the headers
resize(bitmap.width, bitmap.height, 3); //resize the current image to match the bitmap
if (!bitmap.read((char*)img)) { //read the bits from file
std::cout << "stim::image ERROR: problem loading bitmap image." << std::endl;
exit(1);
}
bitmap.close(); //close the bitmap file
}
#endif
//save a Netpbm file
void load_netpbm(std::string filename) {
std::ifstream infile(filename.c_str(), std::ios::in | std::ios::binary); //open an output file
if (!infile) {
std::cout << "Error opening input file in image::load_netpbm()" << std::endl;
exit(1);
}
size_t nc; //allocate space for the number of channels
char format[2]; //allocate space to hold the image format tag
infile.read(format, 2); //read the image format tag
infile.seekg(1, std::ios::cur); //skip the newline character
if (format[0] != 'P') {
std::cout << "Error in image::load_netpbm() - file format tag is invalid: " << format[0] << format[1] << std::endl;
exit(1);
}
if (format[1] == '5') nc = 1; //get the number of channels from the format flag
else if (format[1] == '6') nc = 3;
else {
std::cout << "Error in image::load_netpbm() - file format tag is invalid: " << format[0] << format[1] << std::endl;
exit(1);
}
unsigned char c; //stores a character
while (infile.peek() == '#') { //if the next character indicates the start of a comment
while (true) {
c = infile.get();
if (c == 0x0A) break;
}
}
std::string sw; //create a string to store the width of the image
while(true){
c = infile.get(); //get a single character
if (c == ' ') break; //exit if we've encountered a space
sw.push_back(c); //push the character on to the string
}
size_t w = atoi(sw.c_str()); //convert the string into an integer
std::string sh;
while (true) {
c = infile.get();
if (c == 0x0A) break;
sh.push_back(c);
}
while (true) { //skip the maximum value
c = infile.get();
if (c == 0x0A) break;
}
size_t h = atoi(sh.c_str()); //convert the string into an integer
allocate(w, h, nc); //allocate space for the image
unsigned char* buffer = (unsigned char*)malloc(w * h * nc); //create a buffer to store the read data
infile.read((char*)buffer, size()); //copy the binary data from the file to the image
infile.close(); //close the file
for (size_t n = 0; n < size(); n++) img[n] = (T)buffer[n]; //copy the buffer data into the image
free(buffer); //free the buffer array
}
#ifdef USING_OPENCV
void from_opencv(unsigned char* buffer, size_t width, size_t height) {
allocate(width, height, 3);
T value;
size_t i;
for (size_t c = 0; c < C(); c++) { //copy directly
for (size_t y = 0; y < Y(); y++) {
for (size_t x = 0; x < X(); x++) {
i = y * X() * C() + x * C() + (2 - c);
value = buffer[i];
img[idx(x, y, c)] = value;
}
}
}
}
#endif
//Copy N data points from source to dest, casting while doing so
template<typename S, typename D>
void type_copy(S* source, D* dest, size_t N) {
if (typeid(S) == typeid(D)) //if both types are the same
memcpy(dest, source, N * sizeof(S)); //just use a memcpy
for (size_t n = 0; n < N; n++) //otherwise, iterate through each element
dest[n] = (D)source[n]; //copy and cast
}
/// Load an image from a file
void load(std::string filename){
#ifdef USING_OPENCV
cv::Mat cvImage = cv::imread(filename, CV_LOAD_IMAGE_UNCHANGED); //use OpenCV to open the image file
if(!cvImage.data){
std::cout<<"ERROR stim::image::load() - unable to find image "<<filename<<std::endl;
exit(1);
}
int cv_type = cvImage.type();
int cols = cvImage.cols;
int rows = cvImage.rows;
int channels = cvImage.channels();
allocate(cols, rows, channels); //allocate space for the image
size_t img_bytes = bytes();
unsigned char* cv_ptr = (unsigned char*)cvImage.data;
if (C() == 1) //if this is a single-color image, just copy the data
type_copy<unsigned char, T>(cv_ptr, img, size());
if(C() == 3) //if this is a 3-color image, OpenCV uses BGR interleaving
from_opencv(cv_ptr, X(), Y());
#else
stim::filename file(filename);
if (file.extension() == "ppm")
load_netpbm(filename);
else if (file.extension() == "bmp")
load_bmp(filename);
#endif
}
//save a Netpbm file
void save_netpbm(std::string filename) {
std::ofstream outfile(filename.c_str(), std::ios::out | std::ios::binary); //open an output file
if(!outfile) {
std::cout << "Error generating output file in image::save_netpbm()" << std::endl;
exit(1);
}
if (sizeof(T) != 1) {
std::cout << "Error in image::save_netpbm() - data type must be 8-bit integer." << std::endl;
exit(1);
}
std::string format;
if (channels() == 1) outfile << "P5" << (char)0x0A; //output P5 if the file is grayscale
else if (channels() == 3) outfile << "P6" << (char)0x0A; //output P6 if the file is color
else {
std::cout << "Error in image::save_netpbm() - data must be grayscale or RGB." << std::endl;
exit(1);
}
size_t w = width();
size_t h = height();
outfile << w << " " << h << (char)0x0A; //save the width and height
outfile << "255" << (char)0x0A; //output the maximum value
outfile.write((const char*)img, size()); //write the binary data
outfile.close();
}
#ifndef USING_OPENCV
void save_bmp(std::string filename) {
stim::save_bmp(filename, (char*)img, width(), height());
}
#endif
//save a file
void save(std::string filename){
#ifdef USING_OPENCV
//OpenCV uses an interleaved format, so convert first and then output
T* buffer = (T*) malloc(bytes());
if(C() == 1)
memcpy(buffer, img, bytes());
else if(C() == 3)
get_interleaved_bgr(buffer);
cv::Mat cvImage((int)Y(), (int)X(), cv_type(), buffer);
cv::imwrite(filename, cvImage);
free(buffer);
#else
stim::filename file(filename);
if (file.extension() == "ppm")
save_netpbm(filename);
else if (file.extension() == "bmp")
save_bmp(filename);
else {
std::cout << "stim::image ERROR: File type not supported without OpenCV. Make sure to link OpenCV and define USING_OPENCV" << std::endl;
exit(1);
}
#endif
}
void set_interleaved(T* buffer, size_t width, size_t height, size_t channels){
allocate(width, height, channels);
memcpy(img, buffer, bytes());
}
//create an image from an interleaved buffer
void set_interleaved_rgb(T* buffer, size_t width, size_t height){
set_interleaved(buffer, width, height, 3);
}
void set_interleaved_bgr(T* buffer, size_t width, size_t height){
allocate(width, height, 3);
T value;
size_t i;
for(size_t c = 0; c < C(); c++){ //copy directly
for(size_t y = 0; y < Y(); y++){
for(size_t x = 0; x < X(); x++){
i = y * X() * C() + x * C() + (2-c);
value = buffer[i];
img[idx(x, y, c)] = value;
}
}
}
}
void set_interleaved(T* buffer, size_t width, size_t height){
set_interleaved_rgb(buffer, width, height);
}
void get_interleaved_bgr(T* data){
//for each channel
for(size_t y = 0; y < Y(); y++){
for(size_t x = 0; x < X(); x++){
for(size_t c = 0; c < C(); c++){
data[y * X() * C() + x * C() + (2-c)] = img[idx(x, y, c)];
}
}
}
}
void get_interleaved_rgb(T* data){
memcpy(data, img, bytes());
}
//copies data in the given channel order as a non-interleaved image
void get_noninterleaved(T* data){
//for each channel
for(size_t y = 0; y < Y(); y++){
for(size_t x = 0; x < X(); x++){
for(size_t c = 0; c < C(); c++){
data[c * Y() * X() + y * X() + x] = img[idx(x, y, c)];
}
}
}
}
/// Return an image representing a specified channel
/// @param c is the channel to be returned
image<T> channel(size_t c) const {
image<T> r(X(), Y(), 1); //create a new image
for(size_t x = 0; x < X(); x++){
for(size_t y = 0; y < Y(); y++){
r.img[r.idx(x, y, 0)] = img[idx(x, y, c)];
}
}
return r;
}
/// Returns an std::vector containing each channel as a separate image
std::vector< image<T> > split() const {
std::vector< image<T> > r; //create an image array
r.resize(C()); //create images for each channel
for (size_t c = 0; c < C(); c++) { //for each channel
r[c] = channel(c); //copy the channel image to the array
}
return r;
}
/// Merge a series of single-channel images into a multi-channel image
void merge(std::vector< image<T> >& list) {
size_t x = list[0].width(); //calculate the size of the image
size_t y = list[0].height();
allocate(x, y, list.size()); //re-allocate the image
for (size_t c = 0; c < list.size(); c++) //for each channel
set_channel(list[c].channel(0).data(), c); //insert the channel into the output image
}
T& operator()(size_t x, size_t y, size_t c = 0){
return img[idx(x, y, c)];
}
/// Set all elements in the image to a given scalar value
/// @param v is the value used to set all values in the image
void set_all(T v) { //set all elements of the image to a given value v
size_t N = size();
for (size_t n = 0; n < N; n++) img[n] = v;
}
image<T> operator=(T v){
set_all(v);
return *this;
}
/// invert the image, given a specified maximum value (ex. maxval = 255, I' = 255 - I)
/*image<T> invert(T maxval) {
image<T> result(width(), height(), channels()); //create a new image
size_t N = size(); //get the number of elements in the image
for (size_t n = 0; n < N; n++)
result.data()[n] = maxval - img[n]; //perform the inversion and save the result to the new image
return result;
}*/
/// Stretch the contrast of the image such that the minimum and maximum intensity match the given values
image<T> stretch(T low, T high) {
T maxval = maxv();
T minval = minv();
image<T> result = *this; //create a new image for output
if (maxval == minval) { //if the minimum and maximum values are the same, return an image composed of low
result = low;
return result;
}
size_t N = size(); //get the number of values in the image
T range = maxval - minval; //calculate the current range of the image
T desired_range = high - low; //calculate the desired range of the image
for (size_t n = 0; n < N; n++) { //for each element in the image
result.data()[n] = desired_range * (img[n] - minval) / range + low;
}
return result;
}
/// Add a border of width w with the given value around the image
/// @param w specifies the total size of the border
/// @param T is the pixel value (all channels will be the same)
image<T> border(size_t w, T value = 0) {
image<T> result(width() + w * 2, height() + w * 2, channels()); //create an output image
result = value; //assign the border value to all pixels in the new image
for (size_t y = 0; y < height(); y++) { //for each pixel in the original image
for (size_t x = 0; x < width(); x++) {
size_t n = (y + w) * (width() + w * 2) + x + w; //calculate the index of the corresponding pixel in the result image
size_t n0 = idx(x,y); //calculate the index for this pixel in the original image
result.data()[n] = img[n0]; // copy the original image to the result image afer the border area
}
}
return result;
}
/// Adds curcular padding for the specified number of pixels - in this case replicating the boundary pixels
image<T> pad_replicate(size_t p) {
image<T> result(width() + p * 2, height() + p * 2, channels()); //create an output image
result = 0;
//result = value; //assign the border value to all pixels in the new image
for (size_t y = 0; y < height(); y++) { //for each pixel in the original image
for (size_t x = 0; x < width(); x++) {
size_t n = (y + p) * (width() + p * 2) + x + p; //calculate the index of the corresponding pixel in the result image
size_t n0 = idx(x, y); //calculate the index for this pixel in the original image
result.data()[n] = img[n0]; // copy the original image to the result image afer the border area
}
}
size_t l = p;
size_t r = p + width() - 1;
size_t t = p;
size_t b = p + height() - 1;
for (size_t y = 0; y < p; y++) for (size_t x = l; x <= r; x++) result(x, y) = result(x, t); //pad the top
for (size_t y = b + 1; y < result.height(); y++) for (size_t x = l; x <= r; x++) result(x, y) = result(x, b); //pad the bottom
for (size_t y = t; y <= b; y++) for (size_t x = 0; x < l; x++) result(x, y) = result(l, y); //pad the left
for (size_t y = t; y <= b; y++) for (size_t x = r+1; x < result.width(); x++) result(x, y) = result(r, y); //pad the right
for (size_t y = 0; y < t; y++) for (size_t x = 0; x < l; x++) result(x, y) = result(l, t); //pad the top left
for (size_t y = 0; y < t; y++) for (size_t x = r+1; x < result.width(); x++) result(x, y) = result(r, t); //pad the top right
for (size_t y = b+1; y < result.height(); y++) for (size_t x = 0; x < l; x++) result(x, y) = result(l, b); //pad the bottom left
for (size_t y = b+1; y < result.height(); y++) for (size_t x = r + 1; x < result.width(); x++) result(x, y) = result(r, b); //pad the bottom right
return result;
}
/// Copy the given data to the specified channel
/// @param c is the channel number that the data will be copied to
/// @param buffer is a pointer to the image to be copied to channel c
void set_channel(T* buffer, size_t c){
size_t x, y;
for(y = 0; y < Y(); y++){
for(x = 0; x < X(); x++){
img[idx(x, y, c)] = buffer[y * X() + x];
}
}
}
size_t channels() const{
return C();
}
size_t width() const{
return X();
}
size_t height() const{
return Y();
}
T* data(){
return img;
}
//returns the size (number of values) of the image
size_t size(){ return C() * X() * Y(); }
/// Returns the number of nonzero values
size_t nnz(){
size_t N = X() * Y() * C();
size_t nz = 0;
for(size_t n = 0; n < N; n++)
if(img[n] != 0) nz++;
return nz; //return the number of nonzero pixels
}
//this function returns indices of pixels that have nonzero values
std::vector<size_t> sparse_idx(){
std::vector<size_t> s; //allocate an array
s.resize(nnz()); //allocate space in the array
size_t N = size();
//size_t C = channels();
//T* ptr = img.data(); //get a pointer to the image data
size_t i = 0;
for(size_t n = 0; n < N; n++){
if(img[n] != 0){
s[i] = n;
i++;
}
}
return s; //return the index list
}
/// Returns the maximum pixel value in the image
T maxv(){
T max_val = img[0]; //initialize the maximum value to the first one
size_t N = size(); //get the number of pixels
for (size_t n=0; n<N; n++){ //for every value
if (img[n] > max_val){ //if the value is higher than the current max
max_val = img[n];
}
}
return max_val;
}
/// Returns the maximum pixel value in the image
T minv(){
T min_val = img[0]; //initialize the maximum value to the first one
size_t N = size(); //get the number of pixels
for (size_t n=0; n<N; n++){ //for every value
if (img[n] < min_val){ //if the value is higher than the current max
min_val = img[n];
}
}
return min_val;
}
/// Invert an image by calculating I1 = alpha - I0, where alpha is the maximum image value
image<T> invert(T white_val){
size_t N = size(); //calculate the total number of values in the image
image<T> r(X(), Y(), C()); //allocate space for the resulting image
for(size_t n = 0; n < N; n++)
r.img[n] = white_val - img[n]; //perform the inversion
return r; //return the inverted image
}
image<T> crop(size_t x0, size_t y0, size_t w, size_t h){
image<T> result(w, h, C()); //create the output cropped image
size_t srci;
size_t dsti;
size_t line_bytes = w * C(); //calculate the number of bytes in a line
for (size_t yi = 0; yi < h; yi++) { //for each row in the cropped image
srci = (y0 + yi) * X() * C() + x0 * C(); //calculate the source index
dsti = yi * w * C(); //calculate the destination index
memcpy(&result.img[dsti], &img[srci], line_bytes); //copy the data
}
return result;
}
//crop regions given by an array of 1D index values
std::vector< image<T> > crop_idx(size_t w, size_t h, std::vector<size_t> idx) {
std::vector<image<T>> result(idx.size()); //create an array of image files to return
for (size_t i = 0; i < idx.size(); i++) { //for each specified index point
size_t y = idx[i] / X(); //calculate the y coordinate from the 1D index (center of ROI)
size_t x = idx[i] - y * X(); //calculate the x coordinate (center of ROI)
y -= w / 2; //update x and y values to reflect the lower corner of the ROI
x -= h / 2;
result[i] = crop(x, y, w, h); //get the cropped image and store it in the result array
}
return result;
}
//operator functions
image<T> operator+(image<T> rhs) {
size_t N = size(); //calculate the total number of values in the image
image<T> r(X(), Y(), C()); //allocate space for the resulting image
for (size_t n = 0; n < N; n++)
r.img[n] = img[n] + rhs.img[n]; //perform the inversion
return r; //return the inverted image
}
image<T> srgb2lab(){
std::cout<<"ERROR stim::image::srgb2lab - function has been broken, re-implement."<<std::endl;
exit(1);
}
image<T> convolve2(image<T> mask){
std::cout<<"ERROR stim::image::convolve2 - function has been broken, and shouldn't really be in here."<<std::endl;
exit(1);
}
image<T> rotate(float angle, float cx, float cy){
std::cout<<"ERROR stim::image::rotate - function has been broken, and shouldn't really be in here."<<std::endl;
exit(1);
}
// leila's code for non_interleaving data in 3D
//create an data set from an interleaved buffer
void set_interleaved3(T* buffer, size_t width, size_t height, size_t depth, size_t channels = 3){
std::cout<<"ERROR stim::image::set_interleaved3 - stim::image no longer supports 3D images."<<std::endl;
exit(1);
}
/// Casting operator, casts every value in an image to a different data type V
template<typename V>
operator image<V>() {
image<V> r(X(), Y(), C()); //create a new image
std::copy(img, img + size(), r.data()); //copy and cast the data
return r; //return the new image
}
};
}; //end namespace stim
#endif