agilent_binary.h
11 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
//make sure that this header file is only loaded once
#ifndef STIM_AGILENT_BINARY_H
#define STIM_AGILENT_BINARY_H
#include <string>
#include <fstream>
#include <complex>
#include <cstring>
#include <chrono>
//CUDA
//#ifdef CUDA_FOUND
#include <cuda_runtime.h>
#include "cufft.h"
#include <stim/cuda/cudatools/error.h>
#include <stim/envi/envi_header.h>
//#endif
namespace stim{
template<typename T>
class agilent_binary{
protected:
std::string fname;
T* ptr; //pointer to the image data
size_t R[3]; //size of the binary image in X, Y, and Z
static const size_t header = 1020; //header size
double Z[2]; //range of z values (position or wavelength)
public:
size_t size(){
return (size_t)R[0] * (size_t)R[1] * (size_t)R[2];
}
size_t bytes(){
return size() * sizeof(T);
}
void alloc(){
if (ptr != NULL) free(ptr);
ptr = (T*) malloc(bytes());
}
void alloc(size_t x, size_t y, size_t z){
R[0] = x;
R[1] = y;
R[2] = z;
alloc();
}
char* data() {
return (char*)ptr;
}
size_t dim(size_t i){
return R[i];
}
/// Create a deep copy of an agileng_binary object
void deep_copy(agilent_binary<T>* dst, const agilent_binary<T>* src){
dst->alloc(src->R[0], src->R[1], src->R[2]); //allocate memory
memcpy(dst->ptr, src->ptr, bytes()); //copy the data
memcpy(dst->Z, src->Z, sizeof(double) * 2); //copy the data z range
}
/// Default constructor, sets the resolution to zero and the data pointer to NULL
agilent_binary(){
memset(R, 0, sizeof(size_t) * 3); //set the resolution to zero
memset(Z, 0, sizeof(double) * 2);
ptr = NULL;
}
/// Constructor with resolution
agilent_binary(size_t x, size_t y, size_t z){
alloc(x, y, z);
memset(Z, 0, sizeof(double) * 2);
}
/// Constructor with filename
agilent_binary(std::string filename){
ptr = NULL;
memset(Z, 0, sizeof(double) * 2);
load(filename);
}
/// Copy constructor
agilent_binary(const agilent_binary<T> &obj){
deep_copy(this, &obj);
}
agilent_binary<T>& operator=(const agilent_binary<T> rhs){
if(this != &rhs){ //check for self-assignment
deep_copy(this, &rhs); //make a deep copy
}
return *this; //return the result
}
operator bool() {
if (R[0] == 0 || R[1] == 0 || R[2] == 0) return false;
else return true;
}
~agilent_binary(){
free(ptr);
}
void load(std::string filename){
if(ptr != NULL) free(ptr); //if memory has been allocated, free it
fname = filename; //save the filename
short x, y, z;
std::ifstream infile(fname, std::ios::binary); //open the input file
infile.seekg(9, std::ios::beg); //seek past 9 bytes from the beginning of the file
infile.read((char*)(&z), 2); //read two bytes of data (the number of samples is stored as a 16-bit integer)
infile.seekg(13, std::ios::cur); //skip another 13 bytes
infile.read((char*)(&x), 2); //read the X and Y dimensions
infile.read((char*)(&y), 2);
infile.seekg(header, std::ios::beg); //seek to the start of the data
alloc(x, y, z);
ptr = (T*) malloc(bytes()); //allocate space for the data
infile.read((char*)ptr, bytes()); //read the data
infile.close();
Z[0] = 1;
Z[1] = (double)R[2];
}
void save(std::string filename){
std::ofstream outfile(filename, std::ios::binary); //create an output file
char zero = 0;
for(size_t i = 0; i < 9; i++) outfile.write(&zero, 1); //write 9 zeros
outfile.write((char*)&R[2], 2);
for(size_t i = 0; i < 13; i++) outfile.write(&zero, 1); //write 13 zeros
outfile.write((char*)&R[0], 2);
outfile.write((char*)&R[1], 2);
for(size_t i = 0; i < 992; i++) outfile.write(&zero, 1); //write 992 zeros
size_t b = bytes();
outfile.write((char*)ptr, b); //write the data to the output file
outfile.close();
}
stim::envi_header create_header(){
stim::envi_header header;
header.samples = R[0];
header.lines = R[1];
header.bands = R[2];
double z_delta = (double)(Z[1] - Z[0]) / (double)(R[2] - 1);
header.wavelength.resize(R[2]);
for(size_t i = 0; i < R[2]; i++)
header.wavelength[i] = i * z_delta + Z[0];
return header;
}
/// Subtract the mean from each pixel. Generally used for centering an interferogram.
void meancenter(){
size_t Z = R[2]; //store the number of bands
size_t XY = R[0] * R[1]; //store the number of pixels in the image
T sum = (T)0;
T mean;
for(size_t xy = 0; xy < XY; xy++){ //for each pixel
sum = 0;
for(size_t z = 0; z < Z; z++){ //for each band
sum += ptr[ z * XY + xy ]; //add the band value to a running sum
}
mean = sum / (T)Z; //calculate the pixel mean
for(size_t z = 0; z < Z; z++){
ptr[ z * XY + xy ] -= mean; //subtract the mean from each band
}
}
}
/// adds n bands of zero padding to the end of the file
void zeropad(size_t n){
size_t newZ = R[2] + n;
T* temp = (T*) calloc(R[0] * R[1] * newZ, sizeof(T)); //allocate space for the new image
memcpy(temp, ptr, size() * sizeof(T)); //copy the old data to the new image
free(ptr); //free the old data
ptr = temp; //swap in the new data
R[2] = newZ; //set the z-dimension to the new zero value
}
//pads to the nearest power-of-two
void zeropad(){
size_t newZ = (size_t)pow(2, ceil(log(R[2])/log(2))); //find the nearest power-of-two
size_t n = newZ - R[2]; //calculate the number of bands to add
zeropad(n); //add the padding
}
/// Calculate the absorbance spectrum from the transmission spectrum given a background
void absorbance(stim::agilent_binary<T>* background){
size_t N = size(); //calculate the number of values to be ratioed
if(N != background->size()){
std::cerr<<"ERROR in stim::agilent_binary::absorbance() - transmission image size doesn't match background"<<std::endl;
exit(1);
}
for(size_t i = 0; i < N; i++)
ptr[i] = -log10(ptr[i] / background->ptr[i]);
}
//crops the image down to a set number of samples
void crop(size_t n) {
if (n < R[2]) { //if the requested size is smaller than the image
R[2] = n; //update the number of bands
T* old_ptr = ptr; //store the old pointer
alloc(); //allocate space for the new image
memcpy(ptr, old_ptr, bytes()); //copy the old data to the new image
free(old_ptr); //free the old data
}
}
//#ifdef CUDA_FOUND
/// Perform an FFT and return a binary file with bands in the specified range
agilent_binary<T> fft(double band_min, double band_max, double ELWN = 15798, int UDR = 2){
auto total_start = std::chrono::high_resolution_clock::now();
auto start = std::chrono::high_resolution_clock::now();
T* cpu_data = (T*) malloc( bytes() ); //allocate space for the transposed data
for(size_t b = 0; b < R[2]; b++){
for(size_t x = 0; x < R[0] * R[1]; x++){
cpu_data[x * R[2] + b] = ptr[b * R[0] * R[1] + x];
}
}
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> diff = end-start;
// std::cout << "Transpose data: " << diff.count() << " s\n";
start = std::chrono::high_resolution_clock::now();
cufftHandle plan; //allocate space for a cufft plan
cufftReal* gpu_data; //create a pointer to the data
size_t batch = R[0] * R[1]; //calculate the batch size (X * Y)
HANDLE_ERROR(cudaMalloc((void**)&gpu_data, bytes())); //allocate space on the GPU
HANDLE_ERROR(cudaMemcpy(gpu_data, cpu_data, bytes(), cudaMemcpyHostToDevice)); //copy the data to the GPU
cufftComplex* gpu_fft;
HANDLE_ERROR(cudaMalloc((void**)&gpu_fft, R[0] * R[1] * (R[2]/2 + 1) * sizeof(cufftComplex)));
end = std::chrono::high_resolution_clock::now();
diff = end-start;
//std::cout << "Allocate/copy: " << diff.count() << " s\n";
start = std::chrono::high_resolution_clock::now();
int N[1]; //create an array with the interferogram size (required for cuFFT input)
N[0] = (int)R[2]; //set the only array value to the interferogram size
if(cufftPlanMany(&plan, 1, N, NULL, 1, (int)R[2], NULL, 1, (int)R[2], CUFFT_R2C, (int)batch) != CUFFT_SUCCESS){
std::cout<<"cuFFT Error: unable to create 1D plan."<<std::endl;
exit(1);
}
end = std::chrono::high_resolution_clock::now();
diff = end-start;
//std::cout << "Create a plan: " << diff.count() << " s\n";
start = std::chrono::high_resolution_clock::now();
if (cufftExecR2C(plan, gpu_data, gpu_fft) != CUFFT_SUCCESS){ //execute the (implicitly forward) transform
std::cout<<"CUFFT error: ExecR2C Forward failed";
exit(1);
}
end = std::chrono::high_resolution_clock::now();
diff = end-start;
//std::cout << "Perform FFT: " << diff.count() << " s\n";
start = std::chrono::high_resolution_clock::now();
std::complex<T>* cpu_fft = (std::complex<T>*) malloc( R[0] * R[1] * (R[2]/2+1) * sizeof(std::complex<T>) );
HANDLE_ERROR(cudaMemcpy(cpu_fft, gpu_fft, R[0] * R[1] * (R[2]/2+1) * sizeof(cufftComplex), cudaMemcpyDeviceToHost)); //copy data from the host to the device
//double int_delta = 0.00012656; //interferogram sample spacing in centimeters
double int_delta = (1.0 / ELWN) * ((double)UDR / 2.0); //calculate the interferogram spacing
double int_length = int_delta * R[2]; //interferogram length in centimeters
double fft_delta = 1/int_length; //spectrum spacing (in inverse centimeters, wavenumber)
double fft_max = fft_delta * R[2]/2; //get the maximum wavenumber value supported by the specified number of interferogram samples
if(band_max > fft_max) band_max = fft_max; //the user gave a band outside of the FFT range, reset the band to the maximum available
if (band_min < 0) band_min = 0;
size_t start_i = (size_t)std::ceil(band_min / fft_delta); //calculate the first band to store
size_t size_i = (size_t)std::floor(band_max / fft_delta) - start_i; //calculate the number of bands to store
size_t end_i = start_i + size_i; //last band number
agilent_binary<T> result(R[0], R[1], size_i);
result.Z[0] = start_i * fft_delta; //set the range for the FFT result
result.Z[1] = end_i * fft_delta;
for(size_t b = start_i; b < end_i; b++){
for(size_t x = 0; x < R[0] * R[1]; x++){
result.ptr[(b - start_i) * R[0] * R[1] + x] = abs(cpu_fft[x * (R[2]/2+1) + b]);
}
}
end = std::chrono::high_resolution_clock::now();
diff = end-start;
//std::cout << "Transpose/Crop: " << diff.count() << " s\n";
auto total_end = std::chrono::high_resolution_clock::now();
diff = total_end-total_start;
cufftDestroy(plan);
HANDLE_ERROR(cudaFree(gpu_data));
HANDLE_ERROR(cudaFree(gpu_fft));
free(cpu_data);
free(cpu_fft);
return result;
}
//saves the binary as an ENVI file with a BIP interleave format
int bip(T* bip_ptr){
//std::ofstream out(outfile.c_str(), std::ios::binary); //create a binary file stream for output
size_t XY = R[0] * R[1];
size_t B = R[2];
size_t b;
for(size_t xy = 0; xy < XY; xy++){
for(b = 0; b < B; b++){
bip_ptr[xy * B + b] = ptr[b * XY + xy];
}
}
return 0;
}
//#endif
};
}
#endif