bsq.h
16.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
#ifndef STIM_BSQ_H
#define STIM_BSQ_H
#include "../envi/envi_header.h"
#include "../envi/binary.h"
#include "../envi/bil.h"
#include <cstring>
#include <utility>
#include <vector>
namespace rts{
template <typename T>
class bsq: public binary<T> {
protected:
//envi_header header;
std::vector<double> w; //band wavelengths
unsigned int offset;
public:
using binary<T>::open;
using binary<T>::file;
using binary<T>::getSlice;
using binary<T>::R;
//open a file, given the file name and dimensions
bool open(std::string filename, unsigned int X, unsigned int Y, unsigned int B, unsigned int header_offset, std::vector<double> wavelengths){
//copy the wavelengths to the BSQ file structure
w = wavelengths;
//copy the wavelengths to the structure
offset = header_offset;
return open(filename, vec<unsigned int>(X, Y, B), header_offset);
}
//retrieve one band (specified by the band index)
bool band_index( T * p, unsigned int page){
if (page >= R[2]){ //make sure the bank number is right
std::cout<<"ERROR: page out of range"<<std::endl;
return false;
}
file.seekg(R[0] * R[1] * page * sizeof(T), std::ios::beg);
file.read((char *)p, sizeof(T) * R[0] * R[1]);
// getSlice(p, 2, page);
return true;
}
//retrieve one band (specified by the wavelength)
bool band( T * p, double wavelength){
//if there are no wavelengths in the BSQ file
if(w.size() == 0)
return band_index(p, (unsigned int)wavelength);
unsigned int XY = R[0] * R[1]; //calculate the number of pixels in a band
unsigned page=0; //bands around the wavelength
//get the bands numbers around the wavelength
//if wavelength is smaller than the first one in header file
if ( w[page] > wavelength ){
band_index(p, page);
return true;
}
while( w[page] < wavelength )
{
page++;
//if wavelength is larger than the last wavelength in header file
if (page == R[2]) {
getSlice(p, 2, R[2]-1);
return true;
}
}
if ( wavelength < w[page] )
{
T * p1;
T * p2;
p1=(T*)malloc( XY * sizeof(T)); //memory allocation
p2=(T*)malloc( XY * sizeof(T));
band_index(p1, page - 1);
band_index(p2, page );
for(unsigned i=0; i < XY; i++){
double r = (double) (wavelength - w[page-1]) / (double) (w[page] - w[page-1]);
p[i] = (p2[i] - p1[i]) * r + p1[i];
}
free(p1);
free(p2);
}
else //if the wavelength is equal to a wavelength in header file
{
band_index(p, page);
}
return true;
}
//save one pixel of the file into the memory, and return the pointer
bool spectrum(T * p, unsigned x, unsigned y){
unsigned int i;
if ( x >= R[0] || y >= R[1]){ //make sure the sample and line number is right
std::cout<<"ERROR: sample or line out of range"<<std::endl;
return false;
}
file.seekg((x + y * R[0]) * sizeof(T), std::ios::beg); //point to the certain sample and line
for (i = 0; i < R[3]; i++)
{
file.read((char *)(p + i), sizeof(T));
file.seekg((R[1] * R[0] - 1) * sizeof(T), std::ios::cur); //go to the next band
}
return true;
}
//baseline correction and save it into file
bool baseline(std::string outname, std::vector<double> wls )
{
unsigned N = wls.size(); //get the number of baseline points
std::ofstream target(outname.c_str(), std::ios::binary); //open the target binary file
std::string headername = outname + ".hdr"; //the header file name
//simplify image resolution
unsigned int B = R[2]; //calculate the number of bands
unsigned int XY = R[0] * R[1]; //calculate the number of pixels in a band
unsigned int S = XY * sizeof(T); //calculate the number of bytes in a band
double ai, bi; //stores the two baseline points wavelength surrounding the current band
double ci; //stores the current band's wavelength
// unsigned aii, bii; //stores the two baseline points number surrounding the current band
unsigned control=0;
T * a; //pointers to the high and low band images
T * b;
T * c; //pointer to the current image
a = (T*)malloc( S ); //memory allocation
b = (T*)malloc( S );
c = (T*)malloc( S );
if (a == NULL || b == NULL || c == NULL){
std::cout<<"ERROR: error allocating memory";
exit(1);
}
//initialize lownum, highnum, low, high
ai=w[0];
//if no baseline point is specified at band 0,
//set the baseline point at band 0 to 0
if(wls[0] != w[0]){
bi = wls[control];
memset(a, (char)0, S);
}
//else get the low band
else{
control += 1;
band(a, ai);
bi = wls[control];
}
//get the high band
band(b, bi);
//correct every band
for(unsigned cii = 0; cii < B; cii++){
//update baseline points, if necessary
if( w[cii] >= bi && cii != B - 1) {
//if the high band is now on the last BL point?
if (control != N-1) {
control++; //increment the index
std::swap(a, b); //swap the baseline band pointers
ai = bi;
bi = wls[control];
band(b, bi);
}
//if the last BL point on the last band of the file?
else if ( wls[control] < w[B - 1]) {
std::swap(a, b); //swap the baseline band pointers
memset(b, (char)0, S); //clear the high band
ai = bi;
bi = w[B - 1];
}
}
//get the current band
band_index(c, cii);
ci = w[cii];
//perform the baseline correction
for(unsigned i=0; i < XY; i++){
double r = (double) (ci - ai) / (double) (bi - ai);
c[i] =(T) ( c[i] - (b[i] - a[i]) * r - a[i] );
}
target.write(reinterpret_cast<const char*>(c), S); //write the corrected data into destination
}
//header.save(headername); //save the new header file
free(a);
free(b);
free(c);
target.close();
return true;
}
// normalize the BSQ file
bool normalize(std::string outname, double w)
{
unsigned int B = R[2]; //calculate the number of bands
unsigned int XY = R[0] * R[1]; //calculate the number of pixels in a band
unsigned int S = XY * sizeof(T); //calculate the number of bytes in a band
std::ofstream target(outname.c_str(), std::ios::binary); //open the target binary file
std::string headername = outname + ".hdr"; //the header file name
T * b; //pointers to the certain wavelength band
T * c; //pointer to the current image
b = (T*)malloc( S ); //memory allocation
c = (T*)malloc( S );
band(b, w); //get the certain band into memory
for(unsigned j = 0; j < B; j++)
{
band_index(c, j); //get the current band into memory
for(unsigned i = 0; i < XY; i++)
{
c[i] = c[i] / b[i];
}
target.write(reinterpret_cast<const char*>(c), S); //write normalized data into destination
}
//header.save(headername); //save the new header file
free(b);
free(c);
target.close();
return true;
}
//convert BSQ file to BIP file and save it
bool bip(std::string outname)
{
std::string temp = outname + "_temp";
std::string headtemp = temp + ".hdr";
//first creat a temporary bil file and convert bsq file to bil file
bil(temp);
rts::bil<T> n;
if(n.open(temp, R[0], R[1], R[2], offset, w)==false){ //open infile
std::cout<<"ERROR: unable to open input file"<<std::endl;
exit(1);
}
//then convert bil file to bip file
n.bip(outname);
n.close();
remove(temp.c_str());
remove(headtemp.c_str());
return true;
}
//convert BSQ file to BIL file and save it
bool bil(std::string outname)
{
//simplify image resolution
unsigned int L = R[0] * R[2] * sizeof(T); //calculate the number of bytes of a ZX slice
unsigned int jump = (R[1] - 1) * R[0] * sizeof(T);
std::ofstream target(outname.c_str(), std::ios::binary);
std::string headername = outname + ".hdr";
T * p; //pointer to the current spectrum
p = (T*)malloc(L);
for ( unsigned i = 0; i < R[1]; i++)
{
file.seekg(R[0] * i * sizeof(T), std::ios::beg);
for ( unsigned j = 0; j < R[2]; j++ )
{
file.read((char *)(p + j * R[0]), sizeof(T) * R[0]);
file.seekg(jump, std::ios::cur); //go to the next band
}
target.write(reinterpret_cast<const char*>(p), L); //write XZ slice data into target file
}
//header.interleave = rts::envi_header::BIL; //change the type of file in header file
//header.save(headername);
free(p);
target.close();
return true;
}
//providing the left and the right bound data, return baseline-corrected band height
bool baseline_band(double lb, double rb, T* lp, T* rp, double wavelength, T* result){
unsigned XY = R[0] * R[1];
band(result, wavelength); //get band
//perform the baseline correction
double r = (double) (wavelength - lb) / (double) (rb - lb);
for(unsigned i=0; i < XY; i++){
result[i] =(T) (result[i] - (rp[i] - lp[i]) * r - lp[i] );
}
return true;
}
//providing the left and the right bound wavelength, return baseline-corrected band height
bool height(double lb, double rb, double bandwavelength, T* result){
T* lp;
T* rp;
unsigned XY = R[0] * R[1];
unsigned S = XY * sizeof(T);
lp = (T*) malloc(S); //memory allocation
rp = (T*) malloc(S);
band(lp, lb);
band(rp, rb);
baseline_band(lb, rb, lp, rp, bandwavelength, result);
free(lp);
free(rp);
return true;
}
//calculate the area between two bound point(including baseline correction)
bool area(double lb, double rb, double lab, double rab, T* result){
T* lp; //left band pointer
T* rp; //right band pointer
T* cur; //current band 1
T* cur2; //current band 2
unsigned XY = R[0] * R[1];
unsigned S = XY * sizeof(T);
lp = (T*) malloc(S); //memory allocation
rp = (T*) malloc(S);
cur = (T*) malloc(S);
cur2 = (T*) malloc(S);
memset(result, (char)0, S);
//find the wavelenght position in the whole band
unsigned int n = w.size();
unsigned int ai = 0; //left bound position
unsigned int bi = n - 1; //right bound position
//to make sure the left and the right bound are in the bandwidth
if (lb < w[0] || rb < w[0] || lb > w[n-1] || rb >w[n-1]){
std::cout<<"ERROR: left bound or right bound out of bandwidth"<<std::endl;
exit(1);
}
//to make sure rigth bound is bigger than left bound
else if(lb > rb){
std::cout<<"ERROR: right bound should be bigger than left bound"<<std::endl;
exit(1);
}
//get the position of lb and rb
while (lab >= w[ai]){
ai++;
}
while (rab <= w[bi]){
bi--;
}
band(lp, lb);
band(rp, rb);
//calculate the beginning and the ending part
baseline_band(lb, rb, lp, rp, rab, cur2); //ending part
baseline_band(lb, rb, lp, rp, w[bi], cur);
for(unsigned j = 0; j < XY; j++){
result[j] += (rab - w[bi]) * (cur[j] + cur2[j]) / 2.0;
}
baseline_band(lb, rb, lp, rp, lab, cur2); //beginnning part
baseline_band(lb, rb, lp, rp, w[ai], cur);
for(unsigned j = 0; j < XY; j++){
result[j] += (w[ai] - lab) * (cur[j] + cur2[j]) / 2.0;
}
//calculate the area
ai++;
for(unsigned i = ai; i <= bi ;i++)
{
baseline_band(lb, rb, lp, rp, w[ai], cur2);
for(unsigned j = 0; j < XY; j++)
{
result[j] += (w[ai] - w[ai-1]) * (cur[j] + cur2[j]) / 2.0;
}
std::swap(cur,cur2); //swap the band pointers
}
free(lp);
free(rp);
free(cur);
free(cur2);
return true;
}
//peak height ratio
bool ph_to_ph(double lb1, double rb1, double pos1, double lb2, double rb2, double pos2, T * result){
T* p1 = (T*)malloc(R[0] * R[1] * sizeof(T));
T* p2 = (T*)malloc(R[0] * R[1] * sizeof(T));
//get the two peak band
height(lb1, rb1, pos1, p1);
height(lb2, rb2, pos2, p2);
//calculate the ratio in result
for(unsigned i = 0; i < R[0] * R[1]; i++){
if(p1[i] == 0 && p2[i] ==0)
result[i] = 1;
else
result[i] = p1[i] / p2[i];
}
free(p1);
free(p2);
return true;
}
//peak are to peak height ratio
bool pa_to_ph(double lb1, double rb1, double lab1, double rab1,
double lb2, double rb2, double pos, T* result){
T* p1 = (T*)malloc(R[0] * R[1] * sizeof(T));
T* p2 = (T*)malloc(R[0] * R[1] * sizeof(T));
//get the area and the peak band
area(lb1, rb1, lab1, rab1, p1);
height(lb2, rb2, pos, p2);
//calculate the ratio in result
for(unsigned i = 0; i < R[0] * R[1]; i++){
if(p1[i] == 0 && p2[i] ==0)
result[i] = 1;
else
result[i] = p1[i] / p2[i];
}
free(p1);
free(p2);
return true;
}
//peak area to peak area ratio
bool pa_to_pa(double lb1, double rb1, double lab1, double rab1,
double lb2, double rb2, double lab2, double rab2, T* result){
T* p1 = (T*)malloc(R[0] * R[1] * sizeof(T));
T* p2 = (T*)malloc(R[0] * R[1] * sizeof(T));
//get the area and the peak band
area(lb1, rb1, lab1, rab1, p1);
area(lb2, rb2, lab2, rab2, p2);
//calculate the ratio in result
for(unsigned i = 0; i < R[0] * R[1]; i++){
if(p1[i] == 0 && p2[i] ==0)
result[i] = 1;
else
result[i] = p1[i] / p2[i];
}
free(p1);
free(p2);
return true;
}
//x * f(x)
bool x_area(double lb, double rb, double lab, double rab, T* result){
T* lp; //left band pointer
T* rp; //right band pointer
T* cur; //current band 1
T* cur2; //current band 2
unsigned XY = R[0] * R[1];
unsigned S = XY * sizeof(T);
lp = (T*) malloc(S); //memory allocation
rp = (T*) malloc(S);
cur = (T*) malloc(S);
cur2 = (T*) malloc(S);
memset(result, (char)0, S);
//find the wavelenght position in the whole band
unsigned int n = w.size();
unsigned int ai = 0; //left bound position
unsigned int bi = n - 1; //right bound position
//to make sure the left and the right bound are in the bandwidth
if (lb < w[0] || rb < w[0] || lb > w[n-1] || rb >w[n-1]){
std::cout<<"ERROR: left bound or right bound out of bandwidth"<<std::endl;
exit(1);
}
//to make sure rigth bound is bigger than left bound
else if(lb > rb){
std::cout<<"ERROR: right bound should be bigger than left bound"<<std::endl;
exit(1);
}
//get the position of lb and rb
while (lab >= w[ai]){
ai++;
}
while (rab <= w[bi]){
bi--;
}
band(lp, lb);
band(rp, rb);
//calculate the beginning and the ending part
baseline_band(lb, rb, lp, rp, rab, cur2); //ending part
baseline_band(lb, rb, lp, rp, w[bi], cur);
for(unsigned j = 0; j < XY; j++){
result[j] += (rab - w[bi]) * (rab + w[bi]) * (cur[j] + cur2[j]) / 4.0;
}
baseline_band(lb, rb, lp, rp, lab, cur2); //beginnning part
baseline_band(lb, rb, lp, rp, w[ai], cur);
for(unsigned j = 0; j < XY; j++){
result[j] += (w[ai] - lab) * (w[ai] + lab) * (cur[j] + cur2[j]) / 4.0;
}
//calculate f(x) times x
ai++;
for(unsigned i = ai; i <= bi ;i++)
{
baseline_band(lb, rb, lp, rp, w[ai], cur2);
for(unsigned j = 0; j < XY; j++)
{
result[j] += (w[ai] - w[ai-1]) * (w[ai] + w[ai-1]) * (cur[j] + cur2[j]) / 4.0;
}
std::swap(cur,cur2); //swap the band pointers
}
free(lp);
free(rp);
free(cur);
free(cur2);
return true;
}
//centroid point
bool cpoint(double lb, double rb, double lab, double rab, T* result){
T* p1 = (T*)malloc(R[0] * R[1] * sizeof(T));
T* p2 = (T*)malloc(R[0] * R[1] * sizeof(T));
//get the area and the peak band
x_area(lb, rb, lab, rab, p1);
area(lb, rb, lab, rab, p2);
//calculate the ratio in result
for(unsigned i = 0; i < R[0] * R[1]; i++){
if(p1[i] == 0 && p2[i] ==0)
result[i] = 1;
else
result[i] = p1[i] / p2[i];
}
free(p1);
free(p2);
return true;
}
//create mask file
bool build_mask(double mask_band, double threshold, unsigned char* p = NULL){
T* temp = (T*)malloc(R[0] * R[1] * sizeof(T)); //allocate memory for the certain band
band(temp, mask_band);
for (unsigned int i = 0; i < R[0] * R[1]; i++) {
if (temp[i] < threshold)
p[i] = 0;
else
p[i] = 255;
}
free(temp);
return true;
}
//apply mask
bool apply_mask(std::string outfile, unsigned char* p){
std::ofstream target(outfile.c_str(), std::ios::binary);
unsigned XY = R[0] * R[1]; //calculate number of a band
unsigned L = XY * sizeof(T);
T * temp = (T*)malloc(L);
for (unsigned i = 0; i < R[2]; i++)
{
band_index(temp, i);
for ( unsigned j = 0; j < XY; j++)
{
if(p[j] == 0){
temp[j] = 0;
}
else{
continue;
}
}
target.write(reinterpret_cast<const char*>(temp), L); //write a band data into target file
}
target.close();
free(temp);
return true;
}
//close the file
bool close(){
file.close();
return true;
}
};
}
#endif