quaternion.h
3.18 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#ifndef RTS_QUATERNION_H
#define RTS_QUATERNION_H
#include <stim/math/matrix.h>
#include <stim/cuda/cudatools/callable.h>
namespace stim{
template<typename T>
class quaternion
{
public:
T w;
T x;
T y;
T z;
CUDA_CALLABLE void normalize(){
double length=sqrt(w*w + x*x + y*y + z*z);
w=w/length;
x=x/length;
y=y/length;
z=z/length;
}
CUDA_CALLABLE void CreateRotation(T theta, T ux, T uy, T uz){
vec<T> u(ux, uy, uz);
CreateRotation(theta, u);
}
CUDA_CALLABLE void CreateRotation(T theta, vec<T> u){
vec<T> u_hat = u.norm();
//assign the given Euler rotation to this quaternion
w = (T)cos(theta/2);
x = u_hat[0]*(T)sin(theta/2);
y = u_hat[1]*(T)sin(theta/2);
z = u_hat[2]*(T)sin(theta/2);
}
void CreateRotation(vec<T> from, vec<T> to){
vec<T> r = from.cross(to); //compute the rotation vector
T theta = asin(r.len()); //compute the angle of the rotation about r
//deal with a zero vector (both k and kn point in the same direction)
if(theta == (T)0){
return;
}
//create a quaternion to capture the rotation
CreateRotation(theta, r.norm());
}
CUDA_CALLABLE quaternion<T> operator *(quaternion<T> ¶m){
float A, B, C, D, E, F, G, H;
A = (w + x)*(param.w + param.x);
B = (z - y)*(param.y - param.z);
C = (w - x)*(param.y + param.z);
D = (y + z)*(param.w - param.x);
E = (x + z)*(param.x + param.y);
F = (x - z)*(param.x - param.y);
G = (w + y)*(param.w - param.z);
H = (w - y)*(param.w + param.z);
quaternion<T> result;
result.w = B + (-E - F + G + H) /2;
result.x = A - (E + F + G + H)/2;
result.y = C + (E - F + G - H)/2;
result.z = D + (E - F - G + H)/2;
return result;
}
CUDA_CALLABLE matrix<T, 3> toMatrix3(){
matrix<T, 3> result;
T wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;
// calculate coefficients
x2 = x + x; y2 = y + y;
z2 = z + z;
xx = x * x2; xy = x * y2; xz = x * z2;
yy = y * y2; yz = y * z2; zz = z * z2;
wx = w * x2; wy = w * y2; wz = w * z2;
result(0, 0) = 1 - (yy + zz);
result(0, 1) = xy - wz;
result(0, 2) = xz + wy;
result(1, 0) = xy + wz;
result(1, 1) = 1 - (xx + zz);
result(1, 2) = yz - wx;
result(2, 0) = xz - wy;
result(2, 1) = yz + wx;
result(2, 2) = 1 - (xx + yy);
return result;
}
CUDA_CALLABLE matrix<T, 4> toMatrix4(){
matrix<T, 4> result;
T wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;
// calculate coefficients
x2 = x + x; y2 = y + y;
z2 = z + z;
xx = x * x2; xy = x * y2; xz = x * z2;
yy = y * y2; yz = y * z2; zz = z * z2;
wx = w * x2; wy = w * y2; wz = w * z2;
result(0, 0) = 1 - (yy + zz);
result(0, 1) = xy - wz;
result(0, 2) = xz + wy;
result(1, 0) = xy + wz;
result(1, 1) = 1 - (xx + zz);
result(1, 2) = yz - wx;
result(2, 0) = xz - wy;
result(2, 1) = yz + wx;
result(2, 2) = 1 - (xx + yy);
result(3, 3) = 1;
return result;
}
CUDA_CALLABLE quaternion(){
w=0; x=0; y=0; z=0;
}
CUDA_CALLABLE quaternion(T c, T i, T j, T k){
w=c; x=i; y=j; z=k;
}
};
} //end rts namespace
#endif