envi.py
9.76 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# -*- coding: utf-8 -*-
"""
Created on Fri Jul 21 20:18:01 2017
@author: david
"""
import os
import numpy
import scipy
import matplotlib.pyplot as plt
import progressbar
class envi_header:
def __init__(self, filename = ""):
if filename != "":
self.load(filename)
else:
self.initialize()
#initialization function
def initialize(self):
self.samples = int(0)
self.lines = int(0)
self.bands = int(0)
self.header_offset = int(0)
self.data_type = int(4)
self.interleave = "bsq"
self.sensor_type = ""
self.byte_order = int(0)
self.x_start = int(0)
self.y_start = int(0)
self.z_plot_titles = ""
self.pixel_size = [float(0), float(0)]
self.pixel_size_units = "Meters"
self.wavelength_units = "Wavenumber"
self.description = ""
self.band_names = []
self.wavelength = []
#convert an ENVI data_type value to a numpy data type
def get_numpy_type(self, val):
if val == 1:
return numpy.byte
elif val == 2:
return numpy.int16
elif val == 3:
return numpy.int32
elif val == 4:
return numpy.float32
elif val == 5:
return numpy.float64
elif val == 6:
return numpy.complex64
elif val == 9:
return numpy.complex128
elif val == 12:
return numpy.uint16
elif val == 13:
return numpy.uint32
elif val == 14:
return numpy.int64
elif val == 15:
return numpy.uint64
def get_envi_type(self, val):
if val == numpy.byte:
return 1
elif val == numpy.int16:
return 2
elif val == numpy.int32:
return 3
elif val == numpy.float32:
return 4
elif val == numpy.float64:
return 5
elif val == numpy.complex64:
return 6
elif val == numpy.complex128:
return 9
elif val == numpy.uint16:
return 12
elif val == numpy.uint32:
return 13
elif val == numpy.int64:
return 14
elif val == numpy.uint64:
return 15
def load(self, fname):
f = open(fname)
l = f.readlines()
if l[0].strip() != "ENVI":
print("ERROR: not an ENVI file")
return
li = 1
while li < len(l):
#t = l[li].split() #split the line into tokens
#t = map(str.strip, t) #strip all of the tokens in the token list
#handle the simple conditions
if l[li].startswith("file type"):
if not l[li].strip().endswith("ENVI Standard"):
print("ERROR: unsupported ENVI file format: " + l[li].strip())
return
elif l[li].startswith("samples"):
self.samples = int(l[li].split()[-1])
elif l[li].startswith("lines"):
self.lines = int(l[li].split()[-1])
elif l[li].startswith("bands"):
self.bands = int(l[li].split()[-1])
elif l[li].startswith("header offset"):
self.header_offset = int(l[li].split()[-1])
elif l[li].startswith("data type"):
self.data_type = self.get_numpy_type(int(l[li].split()[-1]))
elif l[li].startswith("interleave"):
self.interleave = l[li].split()[-1].strip()
elif l[li].startswith("sensor type"):
self.sensor_type = l[li].split()[-1].strip()
elif l[li].startswith("byte order"):
self.byte_order = int(l[li].split()[-1])
elif l[li].startswith("x start"):
self.x_start = int(l[li].split()[-1])
elif l[li].startswith("y start"):
self.y_start = int(l[li].split()[-1])
elif l[li].startswith("z plot titles"):
i0 = l[li].rindex('{')
i1 = l[li].rindex('}')
self.z_plot_titles = l[li][i0 + 1 : i1]
elif l[li].startswith("pixel size"):
i0 = l[li].rindex('{')
i1 = l[li].rindex('}')
s = l[li][i0 + 1 : i1].split(',')
self.pixel_size = [float(s[0]), float(s[1])]
self.pixel_size_units = s[2][s[2].rindex('=') + 1:].strip()
elif l[li].startswith("wavelength units"):
self.wavelength_units = l[li].split()[-1].strip()
#handle the complicated conditions
elif l[li].startswith("description"):
desc = [l[li]]
while l[li].strip()[-1] != '}':
li += 1
desc.append(l[li])
desc = ''.join(list(map(str.strip, desc))) #strip all white space from the string list
i0 = desc.rindex('{')
i1 = desc.rindex('}')
self.description = desc[i0 + 1 : i1]
elif l[li].startswith("band names"):
names = [l[li]]
while l[li].strip()[-1] != '}':
li += 1
names.append(l[li])
names = ''.join(list(map(str.strip, names))) #strip all white space from the string list
i0 = names.rindex('{')
i1 = names.rindex('}')
names = names[i0 + 1 : i1]
self.band_names = list(map(str.strip, names.split(',')))
elif l[li].startswith("wavelength"):
waves = [l[li]]
while l[li].strip()[-1] != '}':
li += 1
waves.append(l[li])
waves = ''.join(list(map(str.strip, waves))) #strip all white space from the string list
i0 = waves.rindex('{')
i1 = waves.rindex('}')
waves = waves[i0 + 1 : i1]
self.wavelength = list(map(float, waves.split(',')))
li += 1
f.close()
class envi:
def __init__(self, filename, headername = "", maskname = ""):
self.open(filename, headername)
if maskname == "":
self.mask = numpy.ones((self.header.samples, self.header.lines), dtype=numpy.bool)
else:
self.mask = scipy.misc.imread(maskname, flatten=True).astype(numpy.bool)
def open(self, filename, headername = ""):
if headername == "":
headername = filename + ".hdr"
if not os.path.isfile(filename):
print("ERROR: " + filename + " not found")
return
if not os.path.isfile(headername):
print("ERROR: " + headername + " not found")
return
#open the file
self.header = envi_header(headername)
self.file = open(filename, "rb")
def loadall(self):
X = self.header.samples
Y = self.header.lines
B = self.header.bands
#load the data
D = numpy.fromfile(self.file, dtype=self.header.data_type)
if self.header.interleave == "bsq":
return numpy.reshape(D, (B, Y, X))
#return numpy.swapaxes(D, 0, 2)
elif self.header.interleave == "bip":
D = numpy.reshape(D, (Y, X, B))
return numpy.rollaxis(D, 2)
elif self.header.interleave == "bil":
D = numpy.reshape(D, (Y, B, X))
return numpy.rollaxis(D, 1)
#loads all of the pixels where mask != 0 and returns them as a matrix
def loadmask(self, mask):
X = self.header.samples
Y = self.header.lines
B = self.header.bands
P = numpy.count_nonzero(mask) #count the number of zeros in the mask file
M = numpy.zeros((B, P), dtype=self.header.data_type)
type_bytes = numpy.dtype(self.header.data_type).itemsize
self.file.seek(0)
if self.header.interleave == "bip":
spectrum = numpy.zeros(B, dtype=self.header.data_type)
flatmask = numpy.reshape(mask, (X * Y))
i = numpy.flatnonzero(flatmask)
bar = progressbar.ProgressBar(max_value = P)
for p in range(0, P):
self.file.seek(i[p] * B * type_bytes)
self.file.readinto(spectrum)
M[:, p] = spectrum
bar.update(p+1)
if self.header.interleave == "bsq":
band = numpy.zeros(mask.shape, dtype=self.header.data_type)
i = numpy.nonzero(mask)
bar = progressbar.ProgressBar(max_value=B)
for b in range(0, B):
self.file.seek(b * X * Y * type_bytes)
self.file.readinto(band)
M[b, :] = band[i]
bar.update(b+1)
if self.header.interleave == "bil":
plane = numpy.zeros((B, X), dtype=self.header.data_type)
p = 0
bar = progressbar.ProgressBar(max_value=Y)
for l in range(0, Y):
i = numpy.flatnonzero(mask[l, :])
self.file.readinto(plane)
M[:, p:p+i.shape[0]] = plane[:, i]
p = p + i.shape[0]
bar.update(l+1)
return M
def loadband(self, n):
X = self.header.samples
Y = self.header.lines
B = self.header.bands
band = numpy.zeros((Y, X), dtype=self.header.data_type)
type_bytes = numpy.dtype(self.header.data_type).itemsize
if self.header.interleave == "bsq":
self.file.seek(n * X * Y * type_bytes)
self.file.readinto(band)
return band
def __del__(self):
self.file.close()