cost.h
4.72 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#include <assert.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <stdio.h>
#include "../visualization/colormap.h"
#include <sstream>
#include "../math/vector.h"
#include "../cuda/devices.h"
#include "../cuda/threads.h"
///Cost function that works with the gl-spider class to find index of the item with min-cost.
typedef unsigned char uchar;
texture<uchar, cudaTextureType2D, cudaReadModeElementType> texIn;
float *result;
cudaArray* srcArray;
bool testing = false;
inline void checkCUDAerrors(const char *msg)
{
cudaError_t err = cudaGetLastError();
if (cudaSuccess != err){
fprintf(stderr, "Cuda error: %s: %s.\n", msg, cudaGetErrorString(err) );
exit(1);
}
}
///A virtual representation of a uniform template.
///Returns the value of the template pixel.
///@param x, location of a pixel.
__device__ float Template(int x)
{
if(x < 16/6 || x > 16*5/6 || (x > 16*2/6 && x < 16*4/6)){
return 1.0;
}else{
return 0.0;
}
}
///Find the difference of the given set of samples and the template
///using cuda acceleration.
///@param *result, a pointer to the memory that stores the result.
__global__
void get_diff (float *result)
{
//float* shared = SharedMemory();
__shared__ float shared[16][8];
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
int x_t = threadIdx.x;
int y_t = threadIdx.y;
//int idx = y*16+x;
int g_idx = blockIdx.y;
float valIn = tex2D(texIn, x, y)/255.0;
float valTemp = Template(x);
shared[x_t][y_t] = abs(valIn-valTemp);
__syncthreads();
for(unsigned int step = blockDim.x/2; step >= 1; step >>= 1)
{
__syncthreads();
if (x_t < step)
{
shared[x_t][y_t] += shared[x_t + step][y_t];
}
__syncthreads();
}
__syncthreads();
for(unsigned int step = blockDim.y/2; step >= 1; step >>= 1)
{
__syncthreads();
if(y_t < step)
{
shared[x_t][y_t] += shared[x_t][y_t + step];
}
__syncthreads();
}
__syncthreads();
if(x_t == 0 && y_t == 0)
result[g_idx] = shared[0][0];
// //result[idx] = abs(valIn);
}
///Initialization function, allocates the memory and passes the necessary
///handles from OpenGL and Cuda.
///@param src, cudaGraphicsResource that handles the shared OpenGL/Cuda Texture
///@param DIM_Y, integer controlling how much memory to allocate.
void initArray(cudaGraphicsResource_t src, int DIM_Y)
{
HANDLE_ERROR(
cudaGraphicsMapResources(1, &src)
);
HANDLE_ERROR(
cudaGraphicsSubResourceGetMappedArray(&srcArray, src, 0, 0)
);
HANDLE_ERROR(
cudaBindTextureToArray(texIn, srcArray)
);
cudaMalloc( (void**) &result, DIM_Y*sizeof(float));
checkCUDAerrors("Memory Allocation Issue 1");
//HANDLE_ERROR(
// cudaBindTextureToArray(texIn, ptr, &channelDesc)
// );
}
///Deinit function that frees the memery used and releases the texture resource
///back to OpenGL.
///@param src, cudaGraphicsResource that handles the shared OpenGL/Cuda Texture
void cleanUP(cudaGraphicsResource_t src)
{
HANDLE_ERROR(
cudaFree(result)
);
HANDLE_ERROR(
cudaGraphicsUnmapResources(1,&src)
);
HANDLE_ERROR(
cudaUnbindTexture(texIn)
);
}
///External access-point to the cuda function
///@param src, cudaGraphicsResource that handles the shared OpenGL/Cuda Texture
///@param DIM_Y, the number of samples in the template.
///@inter temporary paramenter that tracks the number of times cost.h was called.
extern "C"
stim::vec<int> get_cost(cudaGraphicsResource_t src, int DIM_Y)
{
// int minGridSize;
// int blockSize;
// cudaOccupancyMaxPotentialBlockSize(&minGridSize, &blockSize, get_diff, 0, 20*DIM_Y*10);
// std::cout << blockSize << std::endl;
// std::cout << minGridSize << std::endl;
// stringstream name; //for debugging
// name << "Test.bmp";
// dim3 block(4,4);
// dim3 grid(20/4, DIM_Y*10/4);
// int gridSize = (DIM_Y*10*20 + 1024 - 1)/1024;
// dim3 grid(26, 26);
// dim3 grid = GenGrid1D(DIM_Y*10*20);
// stim::gpu2image<float>(result, name.str(), 20,DIM_Y*10,0,1);
// name.clear();
// name << "sample_" << inter << "_" << idx << ".bmp";
// stim::gpu2image<float>(v_dif, name.str(), 20,10,0,1);
//float output[DIM_Y];
float *output;
output = (float* ) malloc(DIM_Y*sizeof(float));
stim::vec<int> ret(0, 0);
float mini = 10000000000000000.0;
int idx = 0;
initArray(src, DIM_Y*8);
dim3 numBlocks(1, DIM_Y);
dim3 threadsPerBlock(16, 8);
get_diff <<< numBlocks, threadsPerBlock >>> (result);
cudaMemcpy(output, result, DIM_Y*sizeof(float), cudaMemcpyDeviceToHost);
for( int i = 0; i<DIM_Y; i++){
// std::cout << output[i] << std::endl;
if(output[i] < mini){
mini = output[i];
idx = i;
}
}
// std::cout << "hello" << std::endl;
//output[idx] = get_sum(result+(16*8*idx));
cleanUP(src);
ret[0] = idx; ret[1] = (int) output[idx];
std::cout << output[idx] << std::endl;
free(output);
return ret;
}