scalarbeam.h
19.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
#ifndef RTS_BEAM
#define RTS_BEAM
#include <boost/math/special_functions/bessel.hpp>
#include "../math/vec3.h"
#include "../optics/scalarwave.h"
#include "../math/bessel.h"
#include "../math/legendre.h"
#include "../cuda/cudatools/devices.h"
#include "../cuda/cudatools/timer.h"
#include "../optics/scalarfield.h"
#include <cublas_v2.h>
#include <math_constants.h>
#include <vector>
#include <stdlib.h>
namespace stim{
/// Function returns the value of the scalar field produced by a beam with the specified parameters
template<typename T>
std::vector< stim::vec3<T> > generate_focusing_vectors(size_t N, stim::vec3<T> d, T NA, T NA_in = 0){
std::vector< stim::vec3<T> > dirs(N); //allocate an array to store the focusing vectors
///compute the rotation operator to transform (0, 0, 1) to k
T cos_angle = d.dot(vec3<T>(0, 0, 1));
stim::matrix<T, 3> rotation;
//if the cosine of the angle is -1, the rotation is just a flip across the z axis
if(cos_angle == -1){
rotation(2, 2) = -1;
}
else if(cos_angle != 1.0)
{
vec3<T> r_axis = vec3<T>(0, 0, 1).cross(d).norm(); //compute the axis of rotation
T angle = acos(cos_angle); //compute the angle of rotation
quaternion<T> quat; //create a quaternion describing the rotation
quat.CreateRotation(angle, r_axis);
rotation = quat.toMatrix3(); //compute the rotation matrix
}
//find the phi values associated with the cassegrain ring
T PHI[2];
PHI[0] = (T)asin(NA);
PHI[1] = (T)asin(NA_in);
//calculate the z-axis cylinder coordinates associated with these angles
T Z[2];
Z[0] = cos(PHI[0]);
Z[1] = cos(PHI[1]);
T range = Z[0] - Z[1];
//draw a distribution of random phi, z values
T z, phi, theta;
//T kmag = stim::TAU / lambda;
for(int i=0; i<N; i++){ //for each sample
z = (T)((double)rand() / (double)RAND_MAX) * range + Z[1]; //find a random position on the surface of a cylinder
theta = (T)(((double)rand() / (double)RAND_MAX) * stim::TAU);
phi = acos(z); //project onto the sphere, computing phi in spherical coordinates
//compute and store cartesian coordinates
vec3<T> spherical(1, theta, phi); //convert from spherical to cartesian coordinates
vec3<T> cart = spherical.sph2cart();
dirs[i] = rotation * cart; //create a sample vector
}
return dirs;
}
/// Calculate the [0 Nl] terms for the aperture integral based on the give numerical aperture and center obscuration (optional)
/// @param C is a pointer to Nl + 1 values where the terms will be stored
template<typename T>
CUDA_CALLABLE void cpu_aperture_integral(T* C, int Nl, T NA, T NA_in = 0){
size_t table_bytes = (Nl + 1) * sizeof(T); //calculate the number of bytes required to store the terms
T cos_alpha_1 = cos(asin(NA_in)); //calculate the cosine of the angle subtended by the central obscuration
T cos_alpha_2 = cos(asin(NA)); //calculate the cosine of the angle subtended by the aperture
// the aperture integral is computed using four individual Legendre polynomials, each a function of the angles subtended
// by the objective and central obscuration
T* Pln_a1 = (T*) malloc(table_bytes);
stim::legendre<T>(Nl-1, cos_alpha_1, &Pln_a1[1]);
Pln_a1[0] = 1;
T* Pln_a2 = (T*) malloc(table_bytes);
stim::legendre<T>(Nl-1, cos_alpha_2, &Pln_a2[1]);
Pln_a2[0] = 1;
T* Plp_a1 = (T*) malloc(table_bytes+sizeof(T));
stim::legendre<T>(Nl+1, cos_alpha_1, Plp_a1);
T* Plp_a2 = (T*) malloc(table_bytes+sizeof(T));
stim::legendre<T>(Nl+1, cos_alpha_2, Plp_a2);
for(size_t l = 0; l <= Nl; l++){
C[l] = Plp_a1[l+1] - Plp_a2[l+1] - Pln_a1[l] + Pln_a2[l];
}
free(Pln_a1);
free(Pln_a2);
free(Plp_a1);
free(Plp_a2);
}
/// performs linear interpolation into a look-up table
template<typename T>
CUDA_CALLABLE void lut_lookup(T* lut_values, T* lut, T val, size_t N, T min_val, T delta, size_t n_vals){
T idx = ((val - min_val) / delta);
size_t i = (size_t) idx;
T a1 = idx - i;
T a0 = 1 - a1;
size_t n0 = i * n_vals;
size_t n1 = (i+1) * n_vals;
for(size_t n = 0; n < n_vals; n++){
lut_values[n] = lut[n0 + n] * a0 + lut[n1 + n] * a1;
}
}
template <typename T>
CUDA_CALLABLE stim::complex<T> clerp(stim::complex<T> v0, stim::complex<T> v1, T t) {
return stim::complex<T>( fmaf(t, v1.r, fmaf(-t, v0.r, v0.r)), fmaf(t, v1.i, fmaf(-t, v0.i, v0.i)) );
}
template <typename T>
CUDA_CALLABLE T lerp(T v0, T v1, T t) {
return fmaf(t, v1, fmaf(-t, v0, v0));
}
#ifdef CUDA_FOUND
template<typename T>
__global__ void cuda_scalar_psf(stim::complex<T>* E, size_t N, T* r, T* phi, T A, size_t Nl,
T* C,
T* lut_j, size_t Nj, T min_r, T dr){
size_t i = blockIdx.x * blockDim.x + threadIdx.x; //get the index into the array
if(i >= N) return; //exit if this thread is outside the array
T cos_phi = cos(phi[i]); //calculate the thread value for cos(phi)
stim::complex<T> Ei = 0; //initialize the value of the field to zero
size_t NC = Nl + 1; //calculate the number of coefficients to be used
T fij = (r[i] - min_r)/dr; //FP index into the spherical bessel LUT
size_t ij = (size_t) fij; //convert to an integral index
T a = fij - ij; //calculate the fractional portion of the index
size_t n0j = ij * (NC); //start of the first entry in the LUT
size_t n1j = (ij+1) * (NC); //start of the second entry in the LUT
T jl; //declare register to store the spherical bessel function
T Pl_2, Pl_1; //declare registers to store the previous two Legendre polynomials
T Pl = 1; //initialize the current value for the Legendre polynomial
stim::complex<T> im(0, 1); //declare i (imaginary 1)
stim::complex<T> i_pow(1, 0); //i_pow stores the current value of i^l so it doesn't have to be re-computed every iteration
for(int l = 0; l <= Nl; l++){ //for each order
jl = lerp<T>( lut_j[n0j + l], lut_j[n1j + l], a ); //read jl from the LUT and interpolate the result
Ei += i_pow * jl * Pl * C[l]; //calculate the value for the field and sum
i_pow *= im; //multiply i^l * i for the next iteration
Pl_2 = Pl_1; //shift Pl_1 -> Pl_2 and Pl -> Pl_1
Pl_1 = Pl;
if(l == 0){ //computing Pl is done recursively, where the recursive relation
Pl = cos_phi; // requires the first two orders. This defines the second.
}
else{ //if this is not the first iteration, use the recursive relation to calculate Pl
Pl = ( (2 * (l+1) - 1) * cos_phi * Pl_1 - (l) * Pl_2 ) / (l+1);
}
}
E[i] = Ei * A * 2 * CUDART_PI_F; //scale the integral by the amplitude
}
template<typename T>
void gpu_scalar_psf_local(stim::complex<T>* E, size_t N, T* r, T* phi, T lambda, T A, T NA, T NA_in, int Nl, T r_spacing){
//Find the minimum and maximum values of r
cublasStatus_t stat;
cublasHandle_t handle;
stat = cublasCreate(&handle); //create a cuBLAS handle
if (stat != CUBLAS_STATUS_SUCCESS){ //test for failure
printf ("CUBLAS initialization failed\n");
exit(1);
}
int i_min, i_max;
stat = cublasIsamin(handle, (int)N, r, 1, &i_min);
if (stat != CUBLAS_STATUS_SUCCESS){ //test for failure
printf ("CUBLAS Error: failed to calculate minimum r value.\n");
exit(1);
}
stat = cublasIsamax(handle, (int)N, r, 1, &i_max);
if (stat != CUBLAS_STATUS_SUCCESS){ //test for failure
printf ("CUBLAS Error: failed to calculate maximum r value.\n");
exit(1);
}
cublasDestroy(handle);
i_min--; //cuBLAS uses 1-based indexing for Fortran compatibility
i_max--;
T r_min, r_max; //allocate space to store the minimum and maximum values
HANDLE_ERROR( cudaMemcpy(&r_min, r + i_min, sizeof(T), cudaMemcpyDeviceToHost) ); //copy the min and max values from the device to the CPU
HANDLE_ERROR( cudaMemcpy(&r_max, r + i_max, sizeof(T), cudaMemcpyDeviceToHost) );
T k = (T)stim::TAU / lambda; //calculate the wavenumber from lambda
size_t C_bytes = (Nl + 1) * sizeof(T);
T* C = (T*) malloc( C_bytes ); //allocate space for the aperture integral terms
cpu_aperture_integral(C, Nl, NA, NA_in); //calculate the aperture integral terms
size_t Nlut_j = (size_t)((r_max - r_min) / r_spacing + 1); //number of values in the look-up table based on the user-specified spacing along r
size_t lutj_bytes = sizeof(T) * (Nl+1) * Nlut_j;
T* j_lut = (T*) malloc(lutj_bytes); //pointer to the look-up table
T dr = (r_max - r_min) / (Nlut_j-1); //distance between values in the LUT
T jl;
unsigned l;
for(size_t ri = 0; ri < Nlut_j; ri++){ //for each value in the LUT
for(l = 0; l <= (unsigned)Nl; l++){ //for each order
jl = boost::math::sph_bessel<T>(l, k*(r_min + ri * dr)); //use boost to calculate the spherical bessel function
j_lut[ri * (Nl + 1) + l] = jl; //store the bessel function result
}
}
//stim::cpu2image<T>(j_lut, "j_lut.bmp", Nl+1, Nlut_j, stim::cmBrewer);
//Allocate device memory and copy everything to the GPU
T* gpu_C;
HANDLE_ERROR( cudaMalloc(&gpu_C, C_bytes) );
HANDLE_ERROR( cudaMemcpy(gpu_C, C, C_bytes, cudaMemcpyHostToDevice) );
T* gpu_j_lut;
HANDLE_ERROR( cudaMalloc(&gpu_j_lut, lutj_bytes) );
HANDLE_ERROR( cudaMemcpy(gpu_j_lut, j_lut, lutj_bytes, cudaMemcpyHostToDevice) );
int threads = stim::maxThreadsPerBlock(); //get the maximum number of threads per block for the CUDA device
dim3 blocks( (unsigned)(N / threads + 1)); //calculate the optimal number of blocks
cuda_scalar_psf<T><<< blocks, threads >>>(E, N, r, phi, A, Nl, gpu_C, gpu_j_lut, Nlut_j, r_min, dr);
//free the LUT and condenser tables
HANDLE_ERROR( cudaFree(gpu_C) );
HANDLE_ERROR( cudaFree(gpu_j_lut) );
}
#endif
/// Calculate the analytical solution to a scalar point spread function given a set of spherical coordinates about the PSF (beam propagation along phi = theta = 0)
template<typename T>
void cpu_scalar_psf_local(stim::complex<T>* F, size_t N, T* r, T* phi, T lambda, T A, T NA, T NA_in, int Nl){
T k = (T)stim::TAU / lambda;
size_t C_bytes = (Nl + 1) * sizeof(T);
T* C = (T*) malloc( C_bytes ); //allocate space for the aperture integral terms
cpu_aperture_integral(C, Nl, NA, NA_in); //calculate the aperture integral terms
memset(F, 0, N * sizeof(stim::complex<T>));
T jl, Pl, kr, cos_phi;
double vm;
double* jv = (double*) malloc( (Nl + 1) * sizeof(double) );
double* yv = (double*) malloc( (Nl + 1) * sizeof(double) );
double* djv= (double*) malloc( (Nl + 1) * sizeof(double) );
double* dyv= (double*) malloc( (Nl + 1) * sizeof(double) );
T* Pl_cos_phi = (T*) malloc((Nl + 1) * sizeof(T));
for(size_t n = 0; n < N; n++){ //for each point in the field
kr = k * r[n]; //calculate kr (the optical distance between the focal point and p)
cos_phi = std::cos(phi[n]); //calculate the cosine of phi
stim::bessjyv_sph<double>(Nl, kr, vm, jv, yv, djv, dyv); //compute the list of spherical bessel functions from [0 Nl]
stim::legendre<T>(Nl, cos_phi, Pl_cos_phi); //calculate the [0 Nl] legendre polynomials for this point
for(int l = 0; l <= Nl; l++){
jl = (T)jv[l];
Pl = Pl_cos_phi[l];
F[n] += pow(complex<T>(0, 1), l) * jl * Pl * C[l];
}
F[n] *= A * stim::TAU;
}
free(C);
free(Pl_cos_phi);
}
/// Converts a set of cartesian points into spherical coordinates surrounding a point spread function (PSF)
/// @param r is the output distance from the PSF
/// @param phi is the non-symmetric direction about the PSF
/// @param x (x, y, z) are the cartesian coordinates in world space
/// @f is the focal point of the PSF in cartesian coordinates
/// @d is the propagation direction of the PSF in cartesian coordinates
template<typename T>
__global__ void cuda_cart2psf(T* r, T* phi, size_t N, T* x, T* y, T* z, stim::vec3<T> f, stim::quaternion<T> q){
size_t i = blockIdx.x * blockDim.x + threadIdx.x; //get the index into the array
if(i >= N) return; //exit if this thread is outside the array
stim::vec3<T> p; //declare a 3D point
(x == NULL) ? p[0] = 0 : p[0] = x[i]; // test for NULL values and set positions
(y == NULL) ? p[1] = 0 : p[1] = y[i];
(z == NULL) ? p[2] = 0 : p[2] = z[i];
p = p - f; //shift the point to the center of the PSF (focal point)
p = q.toMatrix3() * p; //rotate the point to align with the propagation direction
stim::vec3<T> ps = p.cart2sph(); //convert from cartesian to spherical coordinates
r[i] = ps[0]; //store r
phi[i] = ps[2]; //phi = [0 pi]
}
#ifdef CUDA_FOUND
/// Calculate the analytical solution to a point spread function given a set of points in cartesian coordinates
template<typename T>
void gpu_scalar_psf_cart(stim::complex<T>* E, size_t N, T* x, T* y, T* z, T lambda, T A, stim::vec3<T> f, stim::vec3<T> d, T NA, T NA_in, int Nl, T r_spacing = 1){
T* gpu_r; //allocate space for the coordinates in r
HANDLE_ERROR( cudaMalloc(&gpu_r, sizeof(T) * N) );
T* gpu_phi;
HANDLE_ERROR( cudaMalloc(&gpu_phi, sizeof(T) * N) );
//stim::complex<T>* gpu_E;
//HANDLE_ERROR( cudaMalloc(&gpu_E, sizeof(stim::complex<T>) * N) );
stim::quaternion<T> q; //create a quaternion
q.CreateRotation(d, stim::vec3<T>(0, 0, 1)); //create a mapping from the propagation direction to the PSF space
stim::matrix<T, 3> rot = q.toMatrix3();
int threads = stim::maxThreadsPerBlock(); //get the maximum number of threads per block for the CUDA device
dim3 blocks( (unsigned)(N / threads + 1)); //calculate the optimal number of blocks
cuda_cart2psf<T> <<< blocks, threads >>> (gpu_r, gpu_phi, N, x, y, z, f, q); //call the CUDA kernel to move the cartesian coordinates to PSF space
gpu_scalar_psf_local(E, N, gpu_r, gpu_phi, lambda, A, NA, NA_in, Nl, r_spacing);
HANDLE_ERROR( cudaFree(gpu_r) );
HANDLE_ERROR( cudaFree(gpu_phi) );
}
#endif
template<typename T>
void cpu_scalar_psf_cart(stim::complex<T>* E, size_t N, T* x, T* y, T* z, T lambda, T A, stim::vec3<T> f, stim::vec3<T> d, T NA, T NA_in, int Nl, T r_spacing = 1){
// If CUDA is available, copy the cartesian points to the GPU and evaluate them in a kernel
#ifdef CUDA_FOUND
T* gpu_x = NULL;
if(x != NULL){
HANDLE_ERROR( cudaMalloc(&gpu_x, sizeof(T) * N) );
HANDLE_ERROR( cudaMemcpy(gpu_x, x, sizeof(T) * N, cudaMemcpyHostToDevice) );
}
T* gpu_y = NULL;
if(y != NULL){
HANDLE_ERROR( cudaMalloc(&gpu_y, sizeof(T) * N) );
HANDLE_ERROR( cudaMemcpy(gpu_y, y, sizeof(T) * N, cudaMemcpyHostToDevice) );
}
T* gpu_z = NULL;
if(z != NULL){
HANDLE_ERROR( cudaMalloc(&gpu_z, sizeof(T) * N) );
HANDLE_ERROR( cudaMemcpy(gpu_z, z, sizeof(T) * N, cudaMemcpyHostToDevice) );
}
stim::complex<T>* gpu_E;
HANDLE_ERROR( cudaMalloc(&gpu_E, sizeof(stim::complex<T>) * N) );
HANDLE_ERROR( cudaMemcpy(gpu_E, E, sizeof(stim::complex<T>) * N, cudaMemcpyHostToDevice) );
gpu_scalar_psf_cart<T>(gpu_E, N, gpu_x, gpu_y, gpu_z, lambda, A, f, d, NA, NA_in, Nl, r_spacing);
HANDLE_ERROR( cudaMemcpy(E, gpu_E, sizeof(stim::complex<T>) * N, cudaMemcpyDeviceToHost) );
HANDLE_ERROR( cudaFree(gpu_x) );
HANDLE_ERROR( cudaFree(gpu_y) );
HANDLE_ERROR( cudaFree(gpu_z) );
HANDLE_ERROR( cudaFree(gpu_E) );
#else
T* r = (T*) malloc(N * sizeof(T)); //allocate space for p in spherical coordinates
T* phi = (T*) malloc(N * sizeof(T)); // only r and phi are necessary (the scalar PSF is symmetric about theta)
stim::quaternion<T> q;
q.CreateRotation(d, stim::vec3<T>(0, 0, 1));
stim::matrix<T, 3> R = q.toMatrix3();
stim::vec3<T> p, ps, ds;
for(size_t i = 0; i < N; i++){
(x == NULL) ? p[0] = 0 : p[0] = x[i]; // test for NULL values and set positions
(y == NULL) ? p[1] = 0 : p[1] = y[i];
(z == NULL) ? p[2] = 0 : p[2] = z[i];
p = p - f;
p = R * p; //rotate the cartesian point
ps = p.cart2sph(); //convert from cartesian to spherical coordinates
r[i] = ps[0]; //store r
phi[i] = ps[2]; //phi = [0 pi]
}
cpu_scalar_psf_local(E, N, r, phi, lambda, A, NA, NA_in, Nl); //call the spherical coordinate CPU function
free(r);
free(phi);
#endif
}
/// Class stim::beam represents a beam of light focused at a point and composed of several plane waves
template<typename T>
class scalarbeam
{
public:
//enum beam_type {Uniform, Bartlett, Hamming, Hanning};
private:
T NA[2]; //numerical aperature of the focusing optics
vec3<T> f; //focal point
vec3<T> d; //propagation direction
T A; //beam amplitude
T lambda; //beam wavelength
public:
///constructor: build a default beam (NA=1.0)
scalarbeam(T wavelength = 1, T amplitude = 1, vec3<T> focal_point = vec3<T>(0, 0, 0), vec3<T> direction = vec3<T>(0, 0, 1), T numerical_aperture = 1, T center_obsc = 0){
lambda = wavelength;
A = amplitude;
f = focal_point;
d = direction.norm(); //make sure that the direction vector is normalized (makes calculations more efficient later on)
NA[0] = numerical_aperture;
NA[1] = center_obsc;
}
///Numerical Aperature functions
void setNA(T na)
{
NA[0] = (T)0;
NA[1] = na;
}
void setNA(T na0, T na1)
{
NA[0] = na0;
NA[1] = na1;
}
//Monte-Carlo decomposition into plane waves
std::vector< scalarwave<T> > mc(size_t N = 100000) const{
std::vector< stim::vec3<T> > dirs = generate_focusing_vectors(N, d, NA[0], NA[1]); //generate a random set of N vectors forming a focus
std::vector< scalarwave<T> > samples(N); //create a vector of plane waves
T kmag = (T)stim::TAU / lambda; //calculate the wavenumber
stim::complex<T> apw; //allocate space for the amplitude at the focal point
T a = (T)(stim::TAU * ( (1 - cos(asin(NA[0]))) - (1 - cos(asin(NA[1])))) / (double)N); //constant value weights plane waves based on the aperture and number of samples (N)
stim::vec3<T> kpw; //declare the new k-vector based on the focused plane wave direction
for(size_t i=0; i<N; i++){ //for each sample
kpw = dirs[i] * kmag; //calculate the k-vector for the new plane wave
apw = a * exp(stim::complex<T>(0, kpw.dot(-f))); //calculate the amplitude for the new plane wave
samples[i] = scalarwave<T>(kpw, apw); //create a plane wave based on the direction
}
return samples;
}
void eval(stim::scalarfield<T>& E, T* X, T* Y, T* Z, int order = 500){
cpu_scalar_psf_cart<T>(E.ptr(), E.size(), X, Y, Z, lambda, A, f, d, NA[0], NA[1], order, E.spacing());
}
/// Evaluate the beam to a scalar field using Debye focusing
void eval(stim::scalarfield<T>& E, int order = 500){
E.meshgrid(); //calculate a meshgrid if one isn't created
if(E.gpu())
gpu_scalar_psf_cart<T>(E.ptr(), E.size(), E.x(), E.y(), E.z(), lambda, A, f, d, NA[0], NA[1], order, E.spacing());
else
cpu_scalar_psf_cart<T>(E.ptr(), E.size(), E.x(), E.y(), E.z(), lambda, A, f, d, NA[0], NA[1], order, E.spacing());
//eval(E, E.x(), E.y(), E.z(), order);
}
/// Calculate the field at a given point
/// @param x is the x-coordinate of the field point
/// @O is the approximation accuracy
stim::complex<T> field(T x, T y, T z, size_t O){
std::vector< scalarwave<T> > W = mc(O);
T result = 0; //initialize the result to zero (0)
for(size_t i = 0; i < O; i++){ //for each plane wave
result += W[i].pos(x, y, z);
}
return result;
}
std::string str()
{
std::stringstream ss;
ss<<"Beam:"<<std::endl;
//ss<<" Central Plane Wave: "<<beam::E0<<" e^i ( "<<beam::k<<" . r )"<<std::endl;
ss<<" Beam Direction: "<<d<<std::endl;
if(NA[0] == 0)
ss<<" NA: "<<NA[1];
else
ss<<" NA: "<<NA[0]<<" -- "<<NA[1];
return ss.str();
}
}; //end beam
} //end namespace stim
#endif