flow.h
8.89 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#ifndef STIM_FLOW_H
#define STIM_FLOW_H
#include <vector>
#include <algorithm>
//STIM include
#include <stim/math/vec3.h>
#include <stim/parser/arguments.h>
#include <stim/biomodels/network.h>
#ifdef __CUDACC__
#include <cublas_v2.h>
#include <stim/cuda/cudatools/error.h>
#endif
namespace stim {
template <typename A, typename B, typename C>
struct triple {
A first;
B second;
C third;
};
template <typename T>
struct bridge {
std::vector<unsigned> v; // vertices' indices
std::vector<typename stim::vec3<T> > V; // vertices' coordinates
T l; // length
T r; // radii
T deltaP; // pressure drop
T Q; // volume flow rate
};
template <typename T>
class flow {
private:
// calculate the cofactor of elemen[row][col]
void get_minor(T** src, T** dest, int row, int col, int order) {
// index of element to be copied
int rowCount = 0;
int colCount = 0;
for (int i = 0; i < order; i++) {
if (i != row) {
colCount = 0;
for (int j = 0; j < order; j++) {
// when j is not the element
if (j != col) {
dest[rowCount][colCount] = src[i][j];
colCount++;
}
}
rowCount++;
}
}
}
// calculate the det()
T determinant(T** mat, int order) {
// degenate case when n = 1
if (order == 1)
return mat[0][0];
T det = 0.0; // determinant value
// allocate the cofactor matrix
T** minor = (T**)malloc((order - 1) * sizeof(T*));
for (int i = 0; i < order - 1; i++)
minor[i] = (T*)malloc((order - 1) * sizeof(T));
for (int i = 0; i < order; i++) {
// get minor of element(0, i)
get_minor(mat, minor, 0, i, order);
// recursion
det += (i % 2 == 1 ? -1.0 : 1.0) * mat[0][i] * determinant(minor, order - 1);
}
// release memory
for (int i = 0; i < order - 1; i++)
free(minor[i]);
free(minor);
return det;
}
public:
T** C; // Conductance
std::vector<typename stim::triple<unsigned, unsigned, float> > Q; // volume flow rate
std::vector<T> QQ; // Q' vector
std::vector<T> P; // initial pressure
std::vector<T> pressure; // final pressure
//std::vector<typename stim::triple<unsigned, unsigned, T> > V; // velocity
//std::vector<typename stim::triple<unsigned, unsigned, T> > Q; // volume flow rate
//std::vector<typename stim::triple<unsigned, unsigned, T> > deltaP; // pressure drop
flow() {} // default constructor
void init(unsigned n_e, unsigned n_v) {
C = new T*[n_v]();
for (unsigned i = 0; i < n_v; i++) {
C[i] = new T[n_v]();
}
QQ.resize(n_v);
P.resize(n_v);
pressure.resize(n_v);
Q.resize(n_e);
}
/// Calculate the inverse of A and store the result in C
void inversion(T** A, int order, T* C) {
#ifdef __CUDACC__
// convert from double pointer to single pointer, make it flat
T* Aflat = (T*)malloc(order * order * sizeof(T));
for (unsigned i = 0; i < order; i++)
for (unsigned j = 0; j < order; j++)
Aflat[i * order + j] = A[i][j];
//T* Cflat = C;// (T*)malloc(order * order * sizeof(T));
// create device pointer
T* d_Aflat; // flat original matrix
T* d_Cflat; // flat inverse matrix
T** d_A; // put the flat original matrix into another array of pointer
T** d_C;
int *d_P;
int *d_INFO;
// allocate memory on device
HANDLE_ERROR(cudaMalloc((void**)&d_Aflat, order * order * sizeof(T)));
HANDLE_ERROR(cudaMalloc((void**)&d_Cflat, order * order * sizeof(T)));
HANDLE_ERROR(cudaMalloc((void**)&d_A, sizeof(T*)));
HANDLE_ERROR(cudaMalloc((void**)&d_C, sizeof(T*)));
HANDLE_ERROR(cudaMalloc((void**)&d_P, order * 1 * sizeof(int)));
HANDLE_ERROR(cudaMalloc((void**)&d_INFO, 1 * sizeof(int)));
// copy matrix from host to device
HANDLE_ERROR(cudaMemcpy(d_Aflat, Aflat, order * order * sizeof(T), cudaMemcpyHostToDevice));
// copy matrix from device to device
HANDLE_ERROR(cudaMemcpy(d_A, &d_Aflat, sizeof(T*), cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(d_C, &d_Cflat, sizeof(T*), cudaMemcpyHostToDevice));
// calculate the inverse of matrix based on cuBLAS
cublasHandle_t handle;
CUBLAS_HANDLE_ERROR(cublasCreate_v2(&handle)); // create cuBLAS handle object
CUBLAS_HANDLE_ERROR(cublasSgetrfBatched(handle, order, d_A, order, d_P, d_INFO, 1));
int INFO = 0;
HANDLE_ERROR(cudaMemcpy(&INFO, d_INFO, sizeof(int), cudaMemcpyDeviceToHost));
if (INFO == order)
{
std::cout << "Factorization Failed : Matrix is singular." << std::endl;
cudaDeviceReset();
exit(1);
}
CUBLAS_HANDLE_ERROR(cublasSgetriBatched(handle, order, (const T **)d_A, order, d_P, d_C, order, d_INFO, 1));
CUBLAS_HANDLE_ERROR(cublasDestroy_v2(handle));
// copy inverse matrix from device to device
HANDLE_ERROR(cudaMemcpy(&d_Cflat, d_C, sizeof(T*), cudaMemcpyDeviceToHost));
// copy inverse matrix from device to host
HANDLE_ERROR(cudaMemcpy(C, d_Cflat, order * order * sizeof(T), cudaMemcpyDeviceToHost));
//for(unsigned i = 0; i < order; i++)
// memcpy(C[i], &Cflat[i*order], order * sizeof(T*));
// clear up
free(Aflat);
//free(Cflat);
HANDLE_ERROR(cudaFree(d_Aflat));
HANDLE_ERROR(cudaFree(d_Cflat));
HANDLE_ERROR(cudaFree(d_A));
HANDLE_ERROR(cudaFree(d_C));
HANDLE_ERROR(cudaFree(d_P));
HANDLE_ERROR(cudaFree(d_INFO));
#else
// get the determinant of a
double det = 1.0 / determinant(A, order);
// memory allocation
T* tmp = (T*)malloc((order - 1)*(order - 1) * sizeof(T));
T** minor = (T**)malloc((order - 1) * sizeof(T*));
for (int i = 0; i < order - 1; i++)
minor[i] = tmp + (i * (order - 1));
for (int j = 0; j < order; j++) {
for (int i = 0; i < order; i++) {
// get the co-factor (matrix) of A(j,i)
get_minor(A, minor, j, i, order);
C[i][j] = det * determinant(minor, order - 1);
if ((i + j) % 2 == 1)
C[i][j] = -C[i][j];
}
}
// release memory
free(tmp);
free(minor);
#endif
}
};
}
#endif
//// calculate the flow rate of 3D model(circle cross section)
//void calculate_flow_rate(unsigned e, T r) {
// stim::triple<unsigned, unsigned, T> tmp_Q;
// tmp_Q.first = V[e].first; // copy the vertices information
// tmp_Q.second = V[e].second;
// tmp_Q.third = V[e].third * stim::PI * pow(r, 2); // UNITS: uL/s
// Q.push_back(tmp_Q); // push back the volume flow rate information for every edge
//}
//// calculate the flow rate of 2D model(rectangular cross section)
//void calculate_flow_rate(unsigned e, T r, T h) {
// stim::triple<unsigned, unsigned, T> tmp_Q;
// tmp_Q.first = V[e].first; // copy the vertices information
// tmp_Q.second = V[e].second;
// tmp_Q.third = V[e].third * h * r; // UNITS: uL/s = mm^3/s
// Q.push_back(tmp_Q); // push back the volume flow rate information for every edge
//}
//// calculate the pressure drop of 3D model(circle cross section)
//void calculate_deltaP(unsigned e, T u, T l, T r) {
// stim::triple<unsigned, unsigned, T> tmp_deltaP;
// tmp_deltaP.first = V[e].first; // copy the vertices information
// tmp_deltaP.second = V[e].second;
// tmp_deltaP.third = (8 * u * l * Q[e].third) / (stim::PI * pow(r, 4)); // UNITS: g/mm/s^2 = Pa
// deltaP.push_back(tmp_deltaP); // push back the volume flow rate information for every edge
//}
//// calculate the pressure drop of 2D model(rectangular cross section)
//void calculate_deltaP(unsigned e, T u, T l, T r, T h) {
// stim::triple<unsigned, unsigned, T> tmp_deltaP;
// tmp_deltaP.first = V[e].first; // copy the vertices information
// tmp_deltaP.second = V[e].second;
// tmp_deltaP.third = (12 * u * l * Q[e].third) / (h * pow(r, 3)); // UNITS: g/mm/s^2 = Pa
// deltaP.push_back(tmp_deltaP); // push back the volume flow rate information for every edge
//}
//// better way to do this???
//// find the maximum and minimum pressure positions
//void find_max_min_pressure(size_t n_e, size_t n_v, unsigned& max, unsigned& min) {
// std::vector<T> P(n_v, FLT_MAX);
// // set one to reference
// P[Q[0].first] = 0.0;
// unsigned first = 0;
// unsigned second = 0;
// // calculate all the relative pressure in brute force manner
// for (unsigned e = 0; e < n_e; e++) {
// // assuming the obj file stores in a straight order, in other words, like swc file
// first = Q[e].first;
// second = Q[e].second;
// if (P[first] != FLT_MAX) // if pressure at start vertex is known
// P[second] = P[first] - deltaP[e].third;
// else if (P[second] != FLT_MAX) // if pressure at end vertex is known
// P[first] = P[second] + deltaP[e].third;
// }
// // find the maximum and minimum pressure position
// auto m1 = std::max_element(P.begin(), P.end()); // temporarily max number
// auto m2 = std::min_element(P.begin(), P.end()); // temporarily min number
// max = std::distance(P.begin(), m1);
// min = std::distance(P.begin(), m2);
// T tmp_m = *m2;
// // Now set the lowest pressure port to reference pressure(0.0 Pa)
// for (unsigned i = 0; i < n_v; i++)
// P[i] -= tmp_m;
// for (unsigned i = 0; i < n_v; i++)
// pressure.push_back(P[i]);
//}