colormap.h
10.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#ifndef STIM_COLORMAP_H
#define STIM_COLORMAP_H
#include <string>
#include <stdlib.h>
#include <cmath>
#ifdef _WIN32
#include <float.h>
#endif
#ifdef __CUDACC__
#include <stim/cuda/cudatools/error.h>
#endif
//saving an image to a file uses the CImg library
//this currently throws a lot of "unreachable" warnings (as of GCC 4.8.2, nvcc 6.5.12)
#include <stim/image/image.h>
#define BREWER_CTRL_PTS 11
static float BREWERCP[BREWER_CTRL_PTS*4] = {0.192157f, 0.211765f, 0.584314f, 1.0f,
0.270588f, 0.458824f, 0.705882f, 1.0f,
0.454902f, 0.678431f, 0.819608f, 1.0f,
0.670588f, 0.85098f, 0.913725f, 1.0f,
0.878431f, 0.952941f, 0.972549f, 1.0f,
1.0f, 1.0f, 0.74902f, 1.0f,
0.996078f, 0.878431f, 0.564706f, 1.0f,
0.992157f, 0.682353f, 0.380392f, 1.0f,
0.956863f, 0.427451f, 0.262745f, 1.0f,
0.843137f, 0.188235f, 0.152941f, 1.0f,
0.647059f, 0.0f, 0.14902f, 1.0f};
#ifdef __CUDACC__
texture<float4, cudaTextureType1D> cudaTexBrewer;
static cudaArray* gpuBrewer;
#endif
namespace stim{
enum colormapType {cmBrewer, cmGrayscale, cmRainbow};
static void buffer2image(unsigned char* buffer, std::string filename, size_t width, size_t height)
{
/*unsigned char* non_interleaved = (unsigned char*)malloc(x_size * y_size * 3);
unsigned int S = x_size * y_size;
for(unsigned int i = 0; i < S; i++){
non_interleaved[i + 0 * S] = buffer[i * 3 + 0];
non_interleaved[i + 1 * S] = buffer[i * 3 + 1];
non_interleaved[i + 2 * S] = buffer[i * 3 + 2];
}*/
//create an image object
//cimg_library::CImg<unsigned char> image(non_interleaved, x_size, y_size, 1, 3);
//image.save(filename.c_str());
image<unsigned char> I;
I.set_interleaved_rgb(buffer, width, height);
I.save(filename);
}
#ifdef __CUDACC__
static void initBrewer()
{
//initialize the Brewer colormap
//allocate CPU space
float4 cpuColorMap[BREWER_CTRL_PTS];
//define control rtsPoints
cpuColorMap[0] = make_float4(0.192157f, 0.211765f, 0.584314f, 1.0f);
cpuColorMap[1] = make_float4(0.270588f, 0.458824f, 0.705882f, 1.0f);
cpuColorMap[2] = make_float4(0.454902f, 0.678431f, 0.819608f, 1.0f);
cpuColorMap[3] = make_float4(0.670588f, 0.85098f, 0.913725f, 1.0f);
cpuColorMap[4] = make_float4(0.878431f, 0.952941f, 0.972549f, 1.0f);
cpuColorMap[5] = make_float4(1.0f, 1.0f, 0.74902f, 1.0f);
cpuColorMap[6] = make_float4(0.996078f, 0.878431f, 0.564706f, 1.0f);
cpuColorMap[7] = make_float4(0.992157f, 0.682353f, 0.380392f, 1.0f);
cpuColorMap[8] = make_float4(0.956863f, 0.427451f, 0.262745f, 1.0f);
cpuColorMap[9] = make_float4(0.843137f, 0.188235f, 0.152941f, 1.0f);
cpuColorMap[10] = make_float4(0.647059f, 0.0f, 0.14902f, 1.0f);
int width = BREWER_CTRL_PTS;
int height = 0;
// allocate array and copy colormap data
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 32, 32, 32, cudaChannelFormatKindFloat);
HANDLE_ERROR(cudaMallocArray(&gpuBrewer, &channelDesc, width, height));
HANDLE_ERROR(cudaMemcpyToArray(gpuBrewer, 0, 0, cpuColorMap, sizeof(float4)*width, cudaMemcpyHostToDevice));
// set texture parameters
cudaTexBrewer.addressMode[0] = cudaAddressModeClamp;
//texBrewer.addressMode[1] = cudaAddressModeClamp;
cudaTexBrewer.filterMode = cudaFilterModeLinear;
cudaTexBrewer.normalized = true; // access with normalized texture coordinates
// Bind the array to the texture
HANDLE_ERROR(cudaBindTextureToArray( cudaTexBrewer, gpuBrewer, channelDesc));
}
static void destroyBrewer()
{
HANDLE_ERROR(cudaFreeArray(gpuBrewer));
}
template<class T>
__global__ static void applyBrewer(T* gpuSource, unsigned char* gpuDest, unsigned int N, T minVal = 0, T maxVal = 1)
{
int i = blockIdx.y * gridDim.x * blockDim.x + blockIdx.x * blockDim.x + threadIdx.x;
if(i >= N) return;
//compute the normalized value on [minVal maxVal]
float a = (gpuSource[i] - minVal) / (maxVal - minVal);
//compensate for the additional space at the edges
a *= (T)(BREWER_CTRL_PTS - 1)/(T)(BREWER_CTRL_PTS);
//lookup the color
float shift = (T)1/(2*BREWER_CTRL_PTS);
float4 color = tex1D(cudaTexBrewer, a+shift);
//float4 color = tex1D(cudaTexBrewer, a);
gpuDest[i * 3 + 0] = 255 * color.x;
gpuDest[i * 3 + 1] = 255 * color.y;
gpuDest[i * 3 + 2] = 255 * color.z;
}
template<class T>
__global__ static void applyGrayscale(T* gpuSource, unsigned char* gpuDest, unsigned int N, T minVal = 0, T maxVal = 1)
{
int i = blockIdx.y * gridDim.x * blockDim.x + blockIdx.x * blockDim.x + threadIdx.x;
if(i >= N) return;
//compute the normalized value on [minVal maxVal]
float a = (gpuSource[i] - minVal) / (maxVal - minVal);
//threshold
if(a > 1)
a = 1;
if(a < 0)
a = 0;
gpuDest[i * 3 + 0] = 255 * a;
gpuDest[i * 3 + 1] = 255 * a;
gpuDest[i * 3 + 2] = 255 * a;
}
template<class T>
static void gpu2gpu(T* gpuSource, unsigned char* gpuDest, unsigned int nVals, T minVal = 0, T maxVal = 1, colormapType cm = cmGrayscale, int blockDim = 128)
{
//This function converts a scalar field on the GPU to a color image on the GPU
int gridX = (nVals + blockDim - 1)/blockDim;
int gridY = 1;
if(gridX > 65535)
{
gridY = (gridX + 65535 - 1) / 65535;
gridX = 65535;
}
dim3 dimGrid(gridX, gridY);
//int gridDim = (nVals + blockDim - 1)/blockDim;
if(cm == cmGrayscale)
applyGrayscale<<<dimGrid, blockDim>>>(gpuSource, gpuDest, nVals, minVal, maxVal);
else if(cm == cmBrewer)
{
initBrewer();
applyBrewer<<<dimGrid, blockDim>>>(gpuSource, gpuDest, nVals, minVal, maxVal);
//HANDLE_ERROR(cudaMemset(gpuDest, 0, sizeof(unsigned char) * nVals * 3));
destroyBrewer();
}
}
template<class T>
static void gpu2cpu(T* gpuSource, unsigned char* cpuDest, unsigned int nVals, T minVal, T maxVal, colormapType cm = cmGrayscale)
{
//this function converts a scalar field on the GPU to a color image on the CPU
//first create the color image on the GPU
//allocate GPU memory for the color image
unsigned char* gpuDest;
HANDLE_ERROR(cudaMalloc( (void**)&gpuDest, sizeof(unsigned char) * nVals * 3 ));
//HANDLE_ERROR(cudaMemset(gpuSource, 0, sizeof(T) * nVals));
//create the image on the gpu
gpu2gpu(gpuSource, gpuDest, nVals, minVal, maxVal, cm);
//HANDLE_ERROR(cudaMemset(gpuDest, 0, sizeof(unsigned char) * nVals * 3));
//copy the image from the GPU to the CPU
HANDLE_ERROR(cudaMemcpy(cpuDest, gpuDest, sizeof(unsigned char) * nVals * 3, cudaMemcpyDeviceToHost));
HANDLE_ERROR(cudaFree( gpuDest ));
}
template<typename T>
static void gpu2image(T* gpuSource, std::string fileDest, unsigned int x_size, unsigned int y_size, T valMin, T valMax, colormapType cm = cmGrayscale)
{
//allocate a color buffer
unsigned char* cpuBuffer = NULL;
cpuBuffer = (unsigned char*) malloc(sizeof(unsigned char) * 3 * x_size * y_size);
//do the mapping
gpu2cpu<T>(gpuSource, cpuBuffer, x_size * y_size, valMin, valMax, cm);
//copy the buffer to an image
buffer2image(cpuBuffer, fileDest, x_size, y_size);
free(cpuBuffer);
}
#endif
template<class T>
static void cpuApplyBrewer(T* cpuSource, unsigned char* cpuDest, size_t N, T minVal = 0, T maxVal = 1)
{
for(size_t i=0; i<N; i++)
{
//compute the normalized value on [minVal maxVal]
float a;
if(minVal != maxVal)
a = (cpuSource[i] - minVal) / (maxVal - minVal);
else
a = 0.5;
#ifdef _WIN32
if(!_finite(a)) a = 1; //deal with infinite and NaN values (return maximum in all cases)
#else
if(!std::isfinite(a)) a = 1;
#endif
else if(a < 0) a = 0;
else if(a > 1) a = 1;
float c = a * (float)(BREWER_CTRL_PTS-1);
int ptLow = (int)c;
float m = c - (float)ptLow;
//std::cout<<m<<std::endl;
float r, g, b;
if(ptLow == BREWER_CTRL_PTS - 1)
{
r = BREWERCP[ptLow * 4 + 0];
g = BREWERCP[ptLow * 4 + 1];
b = BREWERCP[ptLow * 4 + 2];
}
else
{
r = BREWERCP[ptLow * 4 + 0] * (1-m) + BREWERCP[ (ptLow+1) * 4 + 0] * m;
g = BREWERCP[ptLow * 4 + 1] * (1-m) + BREWERCP[ (ptLow+1) * 4 + 1] * m;
b = BREWERCP[ptLow * 4 + 2] * (1-m) + BREWERCP[ (ptLow+1) * 4 + 2] * m;
}
cpuDest[i * 3 + 0] = (unsigned char)(255 * r);
cpuDest[i * 3 + 1] = (unsigned char)(255 * g);
cpuDest[i * 3 + 2] = (unsigned char)(255 * b);
}
}
template<class T>
static void cpu2cpu(T* cpuSource, unsigned char* cpuDest, size_t nVals, T valMin, T valMax, colormapType cm = cmGrayscale)
{
if(cm == cmBrewer)
cpuApplyBrewer(cpuSource, cpuDest, nVals, valMin, valMax);
else if(cm == cmGrayscale)
{
int i;
float a;
float range = valMax - valMin;
for(i = 0; i<nVals; i++)
{
//normalize to the range [valMin valMax]
if(range != 0)
a = (cpuSource[i] - valMin) / range;
else
a = 0.5;
if(a < 0) a = 0;
if(a > 1) a = 1;
cpuDest[i * 3 + 0] = (unsigned char)(255 * a);
cpuDest[i * 3 + 1] = (unsigned char)(255 * a);
cpuDest[i * 3 + 2] = (unsigned char)(255 * a);
}
}
}
template<class T>
static void cpu2cpu(T* cpuSource, unsigned char* cpuDest, unsigned long long nVals, colormapType cm = cmGrayscale)
{
//computes the max and min range automatically
//find the largest magnitude value
T maxVal = cpuSource[0];
T minVal = cpuSource[0];
for(int i=1; i<nVals; i++)
{
if(cpuSource[i] > maxVal)
maxVal = cpuSource[i];
if(cpuSource[i] < minVal)
minVal = cpuSource[i];
}
//if(positive)
// cpu2cpu(cpuSource, cpuDest, nVals, (T)0, maxVal, cm);
//else
// cpu2cpu(cpuSource, cpuDest, nVals, -maxVal, maxVal, cm);
cpu2cpu(cpuSource, cpuDest, nVals, minVal, maxVal, cm);
}
template<typename T>
static void cpu2image(T* cpuSource, std::string fileDest, size_t x_size, size_t y_size, T valMin, T valMax, colormapType cm = cmGrayscale)
{
//allocate a color buffer
unsigned char* cpuBuffer = (unsigned char*) malloc(sizeof(unsigned char) * 3 * x_size * y_size);
//do the mapping
cpu2cpu<T>(cpuSource, cpuBuffer, x_size * y_size, valMin, valMax, cm);
//copy the buffer to an image
buffer2image(cpuBuffer, fileDest, x_size, y_size);
free(cpuBuffer);
}
template<typename T>
static void cpu2image(T* cpuSource, std::string fileDest, size_t x_size, size_t y_size, colormapType cm = cmGrayscale)
{
//allocate a color buffer
unsigned char* cpuBuffer = (unsigned char*) malloc(sizeof(unsigned char) * 3 * x_size * y_size);
//do the mapping
cpu2cpu<T>(cpuSource, cpuBuffer, x_size * y_size, cm);
//copy the buffer to an image
buffer2image(cpuBuffer, fileDest, x_size, y_size);
free(cpuBuffer);
}
} //end namespace colormap and rts
#endif