planewave.h 14.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
#ifndef TIRA_PLANEWAVE_H
#define TIRA_PLANEWAVE_H

#include <string>
#include <sstream>
#include <cmath>

#include "../math/vec3.h"
#include "../math/quaternion.h"
#include "../math/constants.h"
#include "../math/plane.h"
#include <complex>


namespace tira{
	namespace optics{


		/// evaluate the scalar field produced by a plane wave at a point (x, y, z)

		/// @param x is the x-coordinate of the point
		/// @param y is the y-coordinate of the point
		/// @param z is the z-coordinate of the point
		/// @param A is the amplitude of the plane wave, specifically the field at (0, 0, 0)
		/// @param kx is the k-vector component in the x direction
		/// @param ky is the k-vector component in the y direction
		/// @param kz is the k-vector component in the z direction
		template<typename T>
		std::complex<T> planewave_scalar(T x, T y, T z, std::complex<T> A, T kx, T ky, T kz){
			T d = x * kx + y * ky + z * kz;						//calculate the dot product between k and p = (x, y, z) to find the distance p is along the propagation direction
			std::complex<T> di = std::complex<T>(0, d);		//calculate the phase shift that will have to be applied to propagate the wave distance d
			return A * exp(di);									//multiply the phase term by the amplitude at (0, 0, 0) to propagate the wave to p
		}

		/// evaluate the scalar field produced by a plane wave at several positions

		/// @param field is a pre-allocated block of memory that will store the complex field at all points
		/// @param N is the number of field values to be evaluated
		/// @param x is a set of x coordinates defining positions within the field (NULL implies that all values are zero)
		/// @param y is a set of y coordinates defining positions within the field (NULL implies that all values are zero)
		/// @param z is a set of z coordinates defining positions within the field (NULL implies that all values are zero)
		/// @param A is the amplitude of the plane wave, specifically the field at (0, 0, 0)
		/// @param kx is the k-vector component in the x direction
		/// @param ky is the k-vector component in the y direction
		/// @param kz is the k-vector component in the z direction
		template<typename T>
		void cpu_planewave_scalar(std::complex<T>* field, size_t N, T* x, T* y = NULL, T* z = NULL, std::complex<T> A = 1.0, T kx = 0.0, T ky = 0.0, T kz = 0.0){
			T px, py, pz;
			for(size_t i = 0; i < N; i++){										// for each element in the array
				(x == NULL) ? px = 0 : px = x[i];								// test for NULL values
				(y == NULL) ? py = 0 : py = y[i];
				(z == NULL) ? pz = 0 : pz = z[i];

				field[i] = planewave_scalar(px, py, pz, A, kx, ky, kz);			// call the single-value plane wave function
			}
		}


template<typename T>
class planewave{

protected:

	cvec3<T> m_k;					//k-vector, pointed in propagation direction with magnitude |k| = tau / lambda = 2pi / lambda
	cvec3<T> m_E;					//amplitude (for a scalar plane wave, only E0[0] is used)

	/// Bend a plane wave via refraction, given that the new propagation direction is known
	CUDA_CALLABLE planewave<T> bend(vec3<T> v) const {

		vec3<T> k_real(m_k.get(0).real(), m_k.get(1).real(), m_k.get(2).real());			//force the vector to be real (can only refract real directions)

		vec3<T> kn_hat = v.direction();					//normalize the new k
		vec3<T> k_hat = k_real.direction();				//normalize the current k

		planewave<T> new_p;								//create a new plane wave

		T k_dot_kn = k_hat.dot(kn_hat);					//if kn is equal to k or -k, handle the degenerate case

		//if k . n < 0, then the bend is a reflection
		if(k_dot_kn < 0) k_hat = -k_hat;				//flip k_hat

		if(k_dot_kn == -1){
			new_p.m_k = -m_k;
			new_p.m_E = m_E;
			return new_p;
		}
		else if(k_dot_kn == 1){
			new_p.m_k = m_k;
			new_p.m_E = m_E;
			return new_p;
		}

		vec3<T> r = k_hat.cross(kn_hat);					//compute the rotation vector
		T theta = asin(r.len());							//compute the angle of the rotation about r
		quaternion<T> q;									//create a quaternion to capture the rotation
		q.CreateRotation(theta, r.direction());	
		matrix_sq<T, 3> R = q.toMatrix3();
		vec3< std::complex<T> > E(m_E.get(0), m_E.get(1), m_E.get(2));
		vec3< std::complex<T> > E0n = R * E;					//apply the rotation to E0
		//new_p.m_k = kn_hat * kmag();
		//new_p.m_E = E0n;
		new_p.m_k[0] = kn_hat[0] * kmag();
		new_p.m_k[1] = kn_hat[1] * kmag();
		new_p.m_k[2] = kn_hat[2] * kmag();

		new_p.m_E[0] = E0n[0];
		new_p.m_E[1] = E0n[1];
		new_p.m_E[2] = E0n[2];


		return new_p;
	}

public:

	
	
	///constructor: create a plane wave propagating along k
	CUDA_CALLABLE planewave(std::complex<T> kx, std::complex<T> ky, std::complex<T> kz,
		std::complex<T> Ex, std::complex<T> Ey, std::complex<T> Ez) {

		m_k = cvec3<T>(kx, ky, kz);
		m_E = cvec3<T>(Ex, Ey, Ez);
		force_orthogonal();
	}

	CUDA_CALLABLE planewave() : planewave(0, 0, 1, 1, 0, 0) {}

	//copy constructor
	CUDA_CALLABLE planewave(const planewave& other) {
		m_k = other.m_k;
		m_E = other.m_E;
	}

	/// Assignment operator
	CUDA_CALLABLE planewave& operator=(const planewave& rhs) {
		m_k = rhs.m_k;
		m_E = rhs.m_E;

		return *this;
	}

	/// Forces the k and E vectors to be orthogonal
	CUDA_CALLABLE void force_orthogonal() {

		/*if (m_E.norm2() == 0) return;

		cvec3<T> k_dir = m_k.direction();							//calculate the normalized direction vectors for k and E
		cvec3<T> E_dir = m_E.direction();
		cvec3<T> side = k_dir.cross(E_dir);						//calculate a side vector for projection
		cvec3<T> side_dir = side.direction();					//normalize the side vector
		E_dir = side_dir.cross(k_dir);								//calculate the new E vector direction
		T E_norm = m_E.norm2();
		m_E = E_dir * E_norm;								//apply the new direction to the existing E vector
		*/
	}

	CUDA_CALLABLE cvec3<T> k() {
		return m_k;
	}

	CUDA_CALLABLE cvec3<T> E() {
		return m_E;
	}

	CUDA_CALLABLE cvec3<T> evaluate(T x, T y, T z) {
		
		std::complex<T> k_dot_r = m_k[0] * x + m_k[1] * y + m_k[2] * z;
		std::complex<T> e_k_dot_r = std::exp(std::complex<T>(0, 1) * k_dot_r);

		cvec3<T> result;
		result[0] = m_E[0] * e_k_dot_r;
		result[1] = m_E[1] * e_k_dot_r;
		result[2] = m_E[2] * e_k_dot_r;
		return result;
	}

	CUDA_CALLABLE T kmag() const {
		return std::sqrt(std::real(m_k.get(0) * std::conj(m_k.get(0)) + m_k.get(1) * std::conj(m_k.get(1)) + m_k.get(2) * std::conj(m_k.get(2))));
	}

	/// Return a plane wave with the origin translated by (x, y, z)
	CUDA_CALLABLE planewave<T> translate(T x, T y, T z) const {
		planewave<T> result;
		cvec3<T> k = m_k;
		result.m_k = k;
		std::complex<T> k_dot_r = k[0] * (-x) + k[1] * (-y) + k[2] * (-z);
		std::complex<T> exp_k_dot_r = std::exp(std::complex<T>(0.0, 1.0) * k_dot_r);

		cvec3<T> E = m_E;
		result.m_E[0] = E[0] * exp_k_dot_r;
		result.m_E[1] = E[1] * exp_k_dot_r;
		result.m_E[2] = E[2] * exp_k_dot_r;
		return result;
	}

	///multiplication operator: scale E0
    CUDA_CALLABLE planewave<T>& operator* (const T& rhs) {
		m_E = m_E * rhs;
		return *this;
	}

	///return a plane wave with the applied refractive index (scales the k-vector by the input)
	CUDA_CALLABLE planewave<T> ri(T n) {
		planewave<T> result;
		result.m_E = m_E;
		result.m_k = m_k * n;
		return result;
	}
	CUDA_CALLABLE planewave<T> refract(vec3<T> kn) const {
		return bend(kn);
	}

	/*CUDA_CALLABLE T lambda() const{
		return stim::TAU / k.len();
	}

	CUDA_CALLABLE T kmag() const{
		return k.len();
	}

	CUDA_CALLABLE vec< complex<T> > E(){
		return E0;
	}

	CUDA_CALLABLE vec<T> kvec(){
		return k;
	}

	/// calculate the value of the field produced by the plane wave given a three-dimensional position
	CUDA_CALLABLE vec< complex<T> > pos(T x, T y, T z){
		return pos( stim::vec<T>(x, y, z) );
	}

	CUDA_CALLABLE vec< complex<T> > pos(vec<T> p = vec<T>(0, 0, 0)){
		vec< complex<T> > result;

		T kdp = k.dot(p);
		complex<T> x = complex<T>(0, kdp);
		complex<T> expx = exp(x);

		result[0] = E0[0] * expx;
		result[1] = E0[1] * expx;
		result[2] = E0[2] * expx;

		return result;
	}

	//scales k based on a transition from material ni to material nt
	CUDA_CALLABLE planewave<T> n(T ni, T nt){
		return planewave<T>(k * (nt / ni), E0);
	}

	

	/// Calculate the result of a plane wave hitting an interface between two refractive indices

	/// @param P is a plane representing the position and orientation of the surface
	/// @param n0 is the refractive index outside of the surface (in the direction of the normal)
	/// @param n1 is the refractive index inside the surface (in the direction away from the normal)
	/// @param r is the reflected component of the plane wave
	/// @param t is the transmitted component of the plane wave
	void scatter(stim::plane<T> P, T n0, T n1, planewave<T> &r, planewave<T> &t){
		scatter(P, n1/n0, r, t);
	}*/

	/// Calculate the scattering result when nr = n1/n0

	/// @param P is a plane representing the position and orientation of the surface
	/// @param r is the ratio n1/n0
	/// @param n1 is the refractive index inside the surface (in the direction away from the normal)
	/// @param r is the reflected component of the plane wave
	/// @param t is the transmitted component of the plane wave
	
	int scatter(vec3<T> plane_normal, vec3<T> plane_position, std::complex<T> nr, planewave<T>& r, planewave<T>& t) {
		
		if (m_k[0].imag() != 0.0 || m_k[1].imag() != 0.0 || m_k[2].imag() != 0) {
			std::cout << "ERROR: cannot scatter a plane wave with an imaginary k-vector." << std::endl;
		}

		vec3<T> ki(m_k[0].real(), m_k[1].real(), m_k[2].real());	//force the current k vector to be real
		vec3<T> kr;
		cvec3<T> kt, Ei, Er, Et;

		plane_normal = plane_normal.direction();
		vec3<T> k_dir = ki.direction();								//calculate the direction of the incident plane wave

		//int facing = plane_face(k_dir, plane_normal);				//determine which direction the plane wave is coming in
		if (k_dir.dot(plane_normal) > 0) {							//if the wave hits the back of the plane, invert the plane and nr
			std::cout << "ERROR: k-vector intersects the wrong side of the boundary." << std::endl;
			return -1;												//the plane wave is impacting the wrong side of the surface
		}

		//use Snell's Law to calculate the transmitted angle
		T cos_theta_i = k_dir.dot(-plane_normal);					//compute the cosine of theta_i
		T sin_theta_i = std::sqrt(1 - cos_theta_i * cos_theta_i);
		T theta_i = acos(cos_theta_i);								//compute theta_i

		//handle the degenerate case where theta_i is 0 (the plane wave hits head-on)
		if (theta_i == 0) {
			std::complex<T> rp = (1.0 - nr) / (1.0 + nr);			//compute the Fresnel coefficients
			std::complex<T> tp = 2.0 / (1.0 + nr);

			kr = -ki;												//the reflection vector is the inverse of the incident vector
			kt[0] = ki[0] * nr;
			kt[1] = ki[1] * nr;
			kt[2] = ki[2] * nr;
			
			Er = m_E * rp;											//compute the E vectors based on the Fresnel coefficients
			Et = m_E * tp;

			//calculate the phase offset based on the plane positions
			T phase_r = plane_position.dot(ki - kr);
			std::complex<T> phase_t =
				plane_position[0] * (ki[0] - kt[0]) +
				plane_position[1] * (ki[1] - kt[1]) +
				plane_position[2] * (ki[2] - kt[2]);
		}
		else {
			T cos_theta_r = cos_theta_i;
			T sin_theta_r = sin_theta_i;
			T theta_r = theta_i;

			std::complex<T> sin_theta_t = (1.0/nr) * sin(theta_i);		//compute the sine of theta_t using Snell's law
			std::complex<T> cos_theta_t = std::sqrt(1.0 - sin_theta_t * sin_theta_t);
			std::complex<T> theta_t = asin(sin_theta_t);				//compute the cosine of theta_t

			//Define the basis vectors for the calculation (plane of incidence)
			vec3<T> z_hat = -plane_normal;
			vec3<T> plane_perpendicular = plane_normal * k_dir.dot(plane_normal);
			vec3<T> y_hat = (k_dir - plane_perpendicular).direction();
			vec3<T> x_hat = y_hat.cross(z_hat);

			//calculate the k-vector magnitudes
			T ki_mag = ki.norm2();
			T kr_mag = ki_mag;
			std::complex<T> kt_mag = ki_mag * nr;

			//calculate the k vector directions
			vec3<T> ki_dir = y_hat * sin_theta_i + z_hat * cos_theta_i;
			vec3<T> kr_dir = y_hat * sin_theta_r - z_hat * cos_theta_r;
			cvec3<T> kt_dir;
			kt_dir[0] = y_hat[0] * sin_theta_t + z_hat[0] * cos_theta_t;
			kt_dir[1] = y_hat[1] * sin_theta_t + z_hat[1] * cos_theta_t;
			kt_dir[2] = y_hat[2] * sin_theta_t + z_hat[2] * cos_theta_t;

			//calculate the k vectors
			ki = ki_dir * ki_mag;
			kr = kr_dir * kr_mag;
			kt = kt_dir * kt_mag;

			//calculate the Fresnel coefficients
			std::complex<T> rs = std::sin(theta_t - theta_i) / std::sin(theta_t + theta_i);
			std::complex<T> rp = std::tan(theta_t - theta_i) / std::tan(theta_t + theta_i);
			std::complex<T> ts = (2.0 * (sin_theta_t * cos_theta_i)) / std::sin(theta_t + theta_i);
			std::complex<T> tp = ((2.0 * sin_theta_t * cos_theta_i) / (std::sin(theta_t + theta_i) * std::cos(theta_t - theta_i)));

			//calculate the p component directions for each E vector
			vec3<T> Eip_dir = y_hat * cos_theta_i - z_hat * sin_theta_i;
			vec3<T> Erp_dir = y_hat * cos_theta_r + z_hat * sin_theta_r;
			cvec3<T> Etp_dir;
			Etp_dir[0] = y_hat[0] * cos_theta_t - z_hat[0] * sin_theta_t;
			Etp_dir[1] = y_hat[1] * cos_theta_t - z_hat[1] * sin_theta_t;
			Etp_dir[2] = y_hat[2] * cos_theta_t - z_hat[2] * sin_theta_t;

			//calculate the s and t components of each E vector
			std::complex<T> Ei_s = m_E.dot(x_hat);
			std::complex<T> Ei_p = m_E.dot(Eip_dir);
			std::complex<T> Er_s = rs * Ei_s;
			std::complex<T> Er_p = rp * Ei_p;
			std::complex<T> Et_s = ts * Ei_s;
			std::complex<T> Et_p = tp * Ei_p;

			//calculate the E vector for each plane wave
			Er[0] = Erp_dir[0] * Er_p + x_hat[0] * Er_s;
			Er[1] = Erp_dir[1] * Er_p + x_hat[1] * Er_s;
			Er[2] = Erp_dir[2] * Er_p + x_hat[2] * Er_s;

			Et[0] = Etp_dir[0] * Et_p + x_hat[0] * Et_s;
			Et[1] = Etp_dir[1] * Et_p + x_hat[1] * Et_s;
			Et[2] = Etp_dir[2] * Et_p + x_hat[2] * Et_s;
		}


		//calculate the phase offset based on the plane positions
		T phase_r = plane_position.dot(ki - kr);
		std::complex<T> phase_t =
			plane_position[0] * (ki[0] - kt[0]) +
			plane_position[1] * (ki[1] - kt[1]) +
			plane_position[2] * (ki[2] - kt[2]);

		//apply the phase offset
		Er = Er * std::exp(std::complex<T>(0, 1) * phase_r);
		Et = Et * std::exp(std::complex<T>(0, 1) * phase_t);

		//generate the reflected and transmitted waves
		r = planewave<T>(kr[0], kr[1], kr[2], Er[0], Er[1], Er[2]);
		t = planewave<T>(kt[0], kt[1], kt[2], Et[0], Et[1], Et[2]);

		return 0;
	}

	std::string str()
	{
		std::stringstream ss;
		ss << "k: " << m_k << std::endl;
		ss << "E: " << m_E << std::endl;
		return ss.str();
	}
};					//end planewave class
}					//end namespace optics
}					//end namespace tira

template <typename T>
std::ostream& operator<<(std::ostream& os, tira::optics::planewave<T> p)
{
    os<<p.str();
    return os;
}

#endif