image.h
11.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
#ifndef STIM_IMAGE_H
#define STIM_IMAGE_H
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <vector>
#include <iostream>
#include <limits>
#include <typeinfo>
namespace stim{
/// This static class provides the STIM interface for loading, saving, and storing 2D images.
/// Data is stored in an interleaved (BIP) format (default for saving and loading is RGB).
//currently this interface uses CImg
// T = data type (usually unsigned char)
template <class T>
class image{
//cimg_library::CImg<T> img;
T* img; //pointer to the image data (assumes RGB for loading/saving)
size_t R[3];
size_t X() const { return R[1]; }
size_t Y() const { return R[2]; }
size_t C() const { return R[0]; }
void init(){ //initializes all variables, assumes no memory is allocated
memset(R, 0, sizeof(size_t) * 3); //set the resolution and number of channels to zero
img = NULL;
}
void unalloc(){ //frees any resources associated with the image
if(img) free(img); //if memory has been allocated, free it
}
void clear(){ //clears all image data
unalloc(); //unallocate previous memory
init(); //re-initialize the variables
}
void allocate(){
unalloc();
img = (T*) malloc( sizeof(T) * R[0] * R[1] * R[2] ); //allocate memory
}
void allocate(size_t x, size_t y, size_t c){ //allocate memory based on the resolution
R[0] = c; R[1] = x; R[2] = y; //set the resolution
allocate(); //allocate memory
}
size_t bytes(){ return size() * sizeof(T); }
size_t idx(size_t x, size_t y, size_t c = 0){
return y * C() * X() + x * C() + c;
}
int cv_type(){
// The following is C++ 11 code, but causes problems on some compilers (ex. nvcc). Below is my best approximation to a solution
//if(std::is_same<T, unsigned char>::value) return CV_MAKETYPE(CV_8U, (int)C());
//if(std::is_same<T, char>::value) return CV_MAKETYPE(CV_8S, (int)C());
//if(std::is_same<T, unsigned short>::value) return CV_MAKETYPE(CV_16U, (int)C());
//if(std::is_same<T, short>::value) return CV_MAKETYPE(CV_16S, (int)C());
//if(std::is_same<T, int>::value) return CV_MAKETYPE(CV_32S, (int)C());
//if(std::is_same<T, float>::value) return CV_MAKETYPE(CV_32F, (int)C());
//if(std::is_same<T, double>::value) return CV_MAKETYPE(CV_64F, (int)C());
if(typeid(T) == typeid(unsigned char)) return CV_MAKETYPE(CV_8U, (int)C());
if(typeid(T) == typeid(char)) return CV_MAKETYPE(CV_8S, (int)C());
if(typeid(T) == typeid(unsigned short)) return CV_MAKETYPE(CV_16U, (int)C());
if(typeid(T) == typeid(short)) return CV_MAKETYPE(CV_16S, (int)C());
if(typeid(T) == typeid(int)) return CV_MAKETYPE(CV_32S, (int)C());
if(typeid(T) == typeid(float)) return CV_MAKETYPE(CV_32F, (int)C());
if(typeid(T) == typeid(double)) return CV_MAKETYPE(CV_64F, (int)C());
std::cout<<"ERROR in stim::image::cv_type - no valid data type found"<<std::endl;
exit(1);
}
/// Returns the value for "white" based on the dynamic range (assumes white is 1.0 for floating point images)
T white(){
// The following is C++ 11 code, but causes problems on some compilers (ex. nvcc). Below is my best approximation to a solution
//if(std::is_same<T, unsigned char>::value) return UCHAR_MAX;
//if(std::is_same<T, unsigned short>::value) return SHRT_MAX;
//if(std::is_same<T, unsigned>::value) return UINT_MAX;
//if(std::is_same<T, unsigned long>::value) return ULONG_MAX;
//if(std::is_same<T, unsigned long long>::value) return ULLONG_MAX;
//if(std::is_same<T, float>::value) return 1.0f;
//if(std::is_same<T, double>::value) return 1.0;
if(typeid(T) == typeid(unsigned char)) return UCHAR_MAX;
if(typeid(T) == typeid(unsigned short)) return SHRT_MAX;
if(typeid(T) == typeid(unsigned)) return UINT_MAX;
if(typeid(T) == typeid(unsigned long)) return ULONG_MAX;
if(typeid(T) == typeid(unsigned long long)) return ULLONG_MAX;
if(typeid(T) == typeid(float)) return 1.0f;
if(typeid(T) == typeid(double)) return 1.0;
std::cout<<"ERROR in stim::image::white - no white value known for this data type"<<std::endl;
exit(1);
}
public:
/// Default constructor - creates an empty image object
image(){ init(); } //initialize all variables to zero, don't allocate any memory
/// Constructor with a filename - loads the specified file
image(std::string filename){ //constructor initialize the image with an image file
init();
load(filename);
}
/// Create a new image from scratch given a number of samples and channels
image(size_t x, size_t y = 1, size_t c = 1){
init();
allocate(x, y, c);
}
/// Create a new image with the data given in 'data'
image(T* data, size_t x, size_t y, size_t c = 1){
init();
allocate(x, y, c);
memcpy(img, data, bytes());
}
/// Copy constructor - duplicates an image object
image(const stim::image<T>& I){
init();
allocate(I.X(), I.Y(), I.C());
memcpy(img, I.img, bytes());
}
/// Destructor - clear memory
~image(){
free(img);
}
stim::image<T>& operator=(const stim::image<T>& I){
init();
if(&I == this) //handle self-assignment
return *this;
allocate(I.X(), I.Y(), I.C());
memcpy(img, I.img, bytes());
return *this;
}
/// Load an image from a file
void load(std::string filename){
cv::Mat cvImage = cv::imread(filename, CV_LOAD_IMAGE_UNCHANGED); //use OpenCV to open the image file
if(!cvImage.data){
std::cout<<"ERROR stim::image::load() - unable to find image "<<filename<<std::endl;
exit(1);
}
allocate(cvImage.cols, cvImage.rows, cvImage.channels()); //allocate space for the image
unsigned char* cv_ptr = (unsigned char*)cvImage.data;
if(C() == 1) //if this is a single-color image, just copy the data
memcpy(img, cv_ptr, bytes());
if(C() == 3) //if this is a 3-color image, OpenCV uses BGR interleaving
from_opencv(cv_ptr, X(), Y());
}
void from_opencv(unsigned char* buffer, size_t width, size_t height){
allocate(width, height, 3);
T value;
size_t i;
for(size_t c = 0; c < C(); c++){ //copy directly
for(size_t y = 0; y < Y(); y++){
for(size_t x = 0; x < X(); x++){
i = y * X() * C() + x * C() + (2-c);
value = buffer[i];
img[idx(x, y, c)] = value;
}
}
}
}
//save a file
void save(std::string filename){
//OpenCV uses an interleaved format, so convert first and then output
T* buffer = (T*) malloc(bytes());
if(C() == 1)
memcpy(buffer, img, bytes());
else if(C() == 3)
get_interleaved_bgr(buffer);
cv::Mat cvImage((int)Y(), (int)X(), cv_type(), buffer);
cv::imwrite(filename, cvImage);
}
void set_interleaved(T* buffer, size_t width, size_t height, size_t channels){
allocate(width, height, channels);
memcpy(img, buffer, bytes());
}
//create an image from an interleaved buffer
void set_interleaved_rgb(T* buffer, size_t width, size_t height){
set_interleaved(buffer, width, height, 3);
}
void set_interleaved_bgr(T* buffer, size_t width, size_t height){
allocate(width, height, 3);
T value;
size_t i;
for(size_t c = 0; c < C(); c++){ //copy directly
for(size_t y = 0; y < Y(); y++){
for(size_t x = 0; x < X(); x++){
i = y * X() * C() + x * C() + (2-c);
value = buffer[i];
img[idx(x, y, c)] = value;
}
}
}
}
void set_interleaved(T* buffer, size_t width, size_t height){
set_interleaved_rgb(buffer, width, height);
}
void get_interleaved_bgr(T* data){
//for each channel
for(size_t y = 0; y < Y(); y++){
for(size_t x = 0; x < X(); x++){
for(size_t c = 0; c < C(); c++){
data[y * X() * C() + x * C() + (2-c)] = img[idx(x, y, c)];
}
}
}
}
void get_interleaved_rgb(T* data){
memcpy(data, img, bytes());
}
//copies data in the given channel order as a non-interleaved image
void get_noninterleaved(T* data){
//for each channel
for(size_t y = 0; y < Y(); y++){
for(size_t x = 0; x < X(); x++){
for(size_t c = 0; c < C(); c++){
data[c * Y() * X() + y * X() + x] = img[idx(x, y, c)];
}
}
}
}
image<T> channel(size_t c){
//create a new image
image<T> r(X(), Y(), 1);
for(size_t x = 0; x < X(); x++){
for(size_t y = 0; y < Y(); y++){
r.img[r.idx(x, y, 0)] = img[idx(x, y, c)];
}
}
return r;
}
T& operator()(size_t x, size_t y, size_t c = 0){
return img[idx(x, y, c)];
}
/// Set all elements in the image to a given scalar value
/// @param v is the value used to set all values in the image
image<T> operator=(T v){
size_t N = size();
for(size_t n = 0; n < N; n++)
img[n] = v;
return *this;
}
/// Copy the given data to the specified channel
/// @param c is the channel number that the data will be copied to
/// @param buffer is a pointer to the image to be copied to channel c
void set_channel(T* buffer, size_t c){
size_t x, y;
for(y = 0; y < Y(); y++){
for(x = 0; x < X(); x++){
img[idx(x, y, c)] = buffer[c];
}
}
}
size_t channels(){
return C();
}
size_t width(){
return X();
}
size_t height(){
return Y();
}
T* data(){
return img;
}
//returns the size (number of values) of the image
size_t size(){ return C() * X() * Y(); }
/// Returns the number of nonzero values
size_t nnz(){
size_t N = X() * Y() * C();
size_t nz = 0;
for(size_t n = 0; n < N; n++)
if(img[n] != 0) nz++;
return nz; //return the number of nonzero pixels
}
//this function returns indices of pixels that have nonzero values
std::vector<size_t> sparse_idx(){
std::vector<size_t> s; //allocate an array
s.resize(nnz()); //allocate space in the array
size_t N = size();
//size_t C = channels();
//T* ptr = img.data(); //get a pointer to the image data
size_t i = 0;
for(size_t n = 0; n < N; n++){
if(img[n] != 0){
s[i] = n;
i++;
}
}
return s; //return the index list
}
/// Returns the maximum pixel value in the image
T maxv(){
T max_val = img[0]; //initialize the maximum value to the first one
size_t N = size(); //get the number of pixels
for (size_t n=0; n<N; n++){ //for every value
if (img[n] > max_val){ //if the value is higher than the current max
max_val = img[n];
}
}
return max_val;
}
/// Returns the maximum pixel value in the image
T minv(){
T min_val = img[0]; //initialize the maximum value to the first one
size_t N = size(); //get the number of pixels
for (size_t n=0; n<N; n++){ //for every value
if (img[n] < min_val){ //if the value is higher than the current max
min_val = img[n];
}
}
return min_val;
}
/// Invert an image by calculating I1 = alpha - I0, where alpha is the maximum image value
image<T> invert(T white_val){
size_t N = size(); //calculate the total number of values in the image
image<T> r(X(), Y(), C()); //allocate space for the resulting image
for(size_t n = 0; n < N; n++)
r.img[n] = white_val - img[n]; //perform the inversion
return r; //return the inverted image
}
image<T> srgb2lab(){
std::cout<<"ERROR stim::image::srgb2lab - function has been broken, re-implement."<<std::endl;
exit(1);
}
image<T> convolve2(image<T> mask){
std::cout<<"ERROR stim::image::convolve2 - function has been broken, and shouldn't really be in here."<<std::endl;
exit(1);
}
image<T> rotate(float angle, float cx, float cy){
std::cout<<"ERROR stim::image::rotate - function has been broken, and shouldn't really be in here."<<std::endl;
exit(1);
}
// leila's code for non_interleaving data in 3D
//create an data set from an interleaved buffer
void set_interleaved3(T* buffer, size_t width, size_t height, size_t depth, size_t channels = 3){
std::cout<<"ERROR stim::image::set_interleaved3 - stim::image no longer supports 3D images."<<std::endl;
exit(1);
}
};
}; //end namespace stim
#endif