cylinder.h 21.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
#ifndef STIM_CYLINDER_H
#define STIM_CYLINDER_H
#include <iostream>
#include <stim/math/circle.h>
#include <stim/biomodels/centerline.h>
#include <stim/visualization/obj.h>


namespace stim
{
template<typename T>
class cylinder : public centerline<T> {
protected:

	std::vector< stim::vec3<T> > U;					//stores the array of U vectors defining the Frenet frame
	std::vector< std::vector<T> > M;				//stores a list of magnitudes for each point in the centerline (assuming mags[0] is the radius)

	using stim::centerline<T>::findIdx;
	
	//calculates the U values for each point to initialize the frenet frame
	//	this function assumes that the centerline has already been set
	void init() {
		U.resize(size());								//allocate space for the frenet frame vectors
	
		stim::circle<T> c;								//create a circle
		stim::vec3<T> d0, d1;
		for (size_t i = 0; i < size() - 1; i++) {		//for each line segment in the centerline
			c.rotate(d(i));								//rotate the circle to match that normal
			U[i] = c.U;									//save the U vector from the circle
		}
		U[size() - 1] = c.U;							//for the last point, duplicate the final frenet frame vector
	}

public:

	using stim::centerline<T>::size;
	using stim::centerline<T>::at;

	cylinder() : centerline(){}
	
	cylinder(centerline& c) : centerline(c) {
		init();
	}

	cylinder(centerline& c, T r) : centerline(c) {
		init();
		add_mag(r);
	}

	//initialize a cylinder with a list of points and magnitude values
	cylinder(centerline& c, std::vector<T> r) : centerline(c){
		init();
		add_mag(r);
	}

	///Returns magnitude i at the given length into the fiber (based on the pvalue).
	///Interpolates the position along the line.
	///@param l: the location of the in the cylinder.
	///@param idx: integer location of the point closest to l but prior to it.
	T m(T l, int idx, size_t i) {
		T a = (l - L[idx]) / (L[idx + 1] - L[idx]);
		T v2 = (M[idx][i] + (M[idx + 1][i] - M[idx][i])*a);
		
		return v2;
	}

	///Returns the ith magnitude at the given p-value (p value ranges from 0 to 1).
	///interpolates the radius along the line.
	///@param pvalue: the location of the in the cylinder, from 0 (beginning to 1).
	T m(T pvalue, unsigned i = 0) {
		if (pvalue <= 0.0) return M[0][i];
		if (pvalue >= 1.0) return M[size() - 1][i];

		T l = pvalue*L[L.size() - 1];
		int idx = findIdx(l);
		return m(l, idx, i);
	}

	///	Returns the magnitude at the given index
	///	@param i is the index of the desired point
	/// @param m is the index of the magnitude value
	T m(unsigned i, unsigned m) {
		return M[i][m];
	}

	///adds a magnitude to each point in the cylinder
	void add_mag(T val = 0) {
		if (M.size() == 0) M.resize(size());	//if the magnitude vector isn't initialized, resize it to match the centerline
		for (size_t i = 0; i < size(); i++)		//for each point
			M[i].push_back(val);				//add this value to the magnitude vector at each point
	}

	//adds a magnitude based on a list of magnitudes for each point
	void add_mag(std::vector<T> val) {
		if (M.size() == 0) M.resize(size());	//if the magnitude vector isn't initialized, resize it to match the centerline
		for (size_t i = 0; i < size(); i++)		//for each point
			M[i].push_back(val[i]);				//add this value to the magnitude vector at each point
	}

	//sets the value of magnitude m at point i
	void set_mag(size_t m, size_t i, T v) {
		M[i][m] = v;
	}

	size_t nmags() {
		if (M.size() == 0) return 0;
		else return M[0].size();
	}

	///Returns a circle representing the cylinder cross section at point i
	stim::circle<T> circ(size_t i, size_t m = 0) {
		return stim::circle<T>(at(i), M[i][m], d(i), U[i]);
	}

	///Returns an OBJ object representing the cylinder with a radial tesselation value of N using magnitude m
	stim::obj<T> OBJ(size_t N, size_t m = 0) {
		stim::obj<T> out;								//create an OBJ object
		stim::circle<T> c0, c1;
		std::vector< stim::vec3<T> > p0, p1;			//allocate space for the point sets representing the circles bounding each cylinder segment
		T u0, u1, v0, v1;											//allocate variables to store running texture coordinates
		for (size_t i = 1; i < size(); i++) {			//for each line segment in the cylinder
			c0 = circ(i - 1);							//get the two circles bounding the line segment
			c1 = circ(i);

			p0 = c0.points(N);							//get t points for each of the end caps
			p1 = c1.points(N);

			u0 = L[i - 1] / length();						//calculate the texture coordinate (u, v) where u runs along the cylinder length
			u1 = L[i] / length();
				
			for (size_t n = 1; n < N; n++) {				//for each point in the circle
				v0 = (double)(n-1) / (double)(N - 1);			//v texture coordinate runs around the cylinder
				v1 = (double)(n) / (double)(N - 1);
				out.Begin(OBJ_FACE);						//start a face (quad)
					out.TexCoord(u0, v0);
					out.Vertex(p0[n - 1][0], p0[n - 1][1], p0[n - 1][2]);	//output the points composing a strip of quads wrapping the cylinder segment
					out.TexCoord(u1, v0);
					out.Vertex(p1[n - 1][0], p1[n - 1][1], p1[n - 1][2]);
				
					out.TexCoord(u0, v1);
					out.Vertex(p1[n][0], p1[n][1], p1[n][2]);
					out.TexCoord(u1, v1);
					out.Vertex(p0[n][0], p0[n][1], p0[n][2]);
				out.End();
			}
			v0 = (double)(N - 2) / (double)(N - 1);			//v texture coordinate runs around the cylinder
			v1 = 1.0;
			out.Begin(OBJ_FACE);
				out.TexCoord(u0, v0);
				out.Vertex(p0[N - 1][0], p0[N - 1][1], p0[N - 1][2]);	//output the points composing a strip of quads wrapping the cylinder segment
				out.TexCoord(u1, v0);
				out.Vertex(p1[N - 1][0], p1[N - 1][1], p1[N - 1][2]);

				out.TexCoord(u0, v1);
				out.Vertex(p1[0][0], p1[0][1], p1[0][2]);
				out.TexCoord(u1, v1);
				out.Vertex(p0[0][0], p0[0][1], p0[0][2]);
			out.End();
		}
		return out;
	}

	std::string str() {
		std::stringstream ss;
		size_t N = std::vector< stim::vec3<T> >::size();
		ss << "---------[" << N << "]---------" << std::endl;
		for (size_t i = 0; i < N; i++)
			ss << std::vector< stim::vec3<T> >::at(i) << "   r = " << M[i][0] << "   u = " << U[i] << std::endl;
		ss << "--------------------" << std::endl;

		return ss.str();
	}

	/// Integrates a magnitude value along the cylinder.
	/// @param m is the magnitude value to be integrated (this is usually the radius)
	T integrate(size_t m = 0) {

		T sum = 0;						//initialize the integral to zero
		T m0, m1;						//allocate space for both magnitudes in a single segment
		m0 = M[0][m];					//initialize the first point and magnitude to the first point in the cylinder
		T len = L[1];					//allocate space for the segment length

											
		for (unsigned p = 1; p < size(); p++) {				//for every consecutive point in the cylinder
			m1 = M[p][m];
			if (p > 1) len = (L[p] - L[p - 1]);				//calculate the segment length using the L array
			sum += (m0 + m1) / (T)2.0 * len;				//add the average magnitude, weighted by the segment length
			m0 = m1;										//move to the next segment by shifting points
		}
		return sum;			//return the integral
	}

	/// Resamples the cylinder to provide a maximum distance of "spacing" between centerline points. All current
	///		centerline points are guaranteed to exist in the new cylinder
	/// @param spacing is the maximum spacing allowed between sample points
	cylinder<T> resample(T spacing) {
		cylinder<T> c = stim::centerline<T>::resample(spacing);			//resample the centerline and use it to create a new cylinder

		size_t nm = nmags();											//get the number of magnitude values in the current cylinder
		if (nm > 0) {													//if there are magnitude values
			std::vector<T> magvec(nm, 0);							//create a magnitude vector for a single point
			c.M.resize(c.size(), magvec);									//allocate space for a magnitude vector at each point of the new cylinder
		}

		T l, t;
		for (size_t i = 0; i < c.size(); i++) {							//for each point in the new cylinder
			l = c.L[i];													//get the length along the new cylinder
			t = l / length();										//calculate the parameter value along the new cylinder
			for (size_t mag = 0; mag < nm; mag++) {							//for each magnitude value
				c.M[i][mag] = m(t, mag);								//retrieve the interpolated magnitude from the current cylinder and store it in the new one
			}
		}


		return c;
	}

	std::vector< stim::cylinder<T> > split(unsigned int idx){
			
		unsigned N = size();
		std::vector< stim::centerline<T> > LL;
		LL.resize(2);
		LL = (*this).centerline<T>::split(idx);
		std::vector< stim::cylinder<T> > C(LL.size());
		unsigned i = 0;
		C[0] = LL[0];
		C[0].M.resize(idx);
		for( ; i < idx; i++){
			//for(unsigned d = 0; d < 3; d++)
				//C[0][i][d] = LL[0].c[i][d];
			C[0].M[i] = M[i];
			C[0].M[i].resize(1);
		}
		if(C.size() == 2){
			C[1] = LL[1];
			C[1].M.resize(N  - idx);
			for( ; i < N; i++){
				//for(unsigned d = 0; d < 3; d++)
					//C[1][i - idx][d] = LL[1].c[i - idx][d];
				C[1].M[i - idx] = M[i];
				C[1].M[i - idx].resize(1);
			}
		}

		return C;
	}


		/*
		///inits the cylinder from a list of points (std::vector of stim::vec3 --inP) and magnitudes (inM)
		void
		init(centerline inP, std::vector< std::vector<T> > inM) {
			M = inM;									//the magnitude vector can be copied directly
			(*this) = inP;								//the centerline can be copied to this class directly
			stim::vec3<float> v1;
			stim::vec3<float> v2;
			e.resize(inP.size());

			norms.resize(inP.size());
			Us.resize(inP.size());

			if(inP.size() < 2)
				return;

			//calculate each L.
			L.resize(inP.size());						//the number of precomputed lengths will equal the number of points
			T temp = (T)0;								//length up to that point
			L[0] = temp;
			for(size_t i = 1; i < L.size(); i++)
			{
				temp += (inP[i-1] - inP[i]).len();
				L[i] = temp;
			}

			stim::vec3<T> dr = (inP[1] - inP[0]).norm();
			s = stim::circle<T>(inP[0], inM[0][0], dr, stim::vec3<T>(1,0,0));
			norms[0] = s.N;
			e[0] = s;
			Us[0] = e[0].U;
			for(size_t i = 1; i < inP.size()-1; i++)
			{
				s.center(inP[i]);
				v1 = (inP[i] - inP[i-1]).norm();
				v2 = (inP[i+1] - inP[i]).norm();
				dr = (v1+v2).norm();
				s.normal(dr);

				norms[i] = s.N;

				s.scale(inM[i][0]/inM[i-1][0]);
				e[i] = s;
				Us[i] = e[i].U;
			}
			
			int j = inP.size()-1;
			s.center(inP[j]);
			dr = (inP[j] - inP[j-1]).norm();
			s.normal(dr);

			norms[j] = s.N;

			s.scale(inM[j][0]/inM[j-1][0]);
			e[j] = s;
			Us[j] = e[j].U;
		}
		
		///returns the direction vector at point idx.
		stim::vec3<T>
		d(int idx)
		{
			if(idx == 0)
			{
				stim::vec3<T> temp(
						c[idx+1][0]-c[idx][0],	
						c[idx+1][1]-c[idx][1],	
						c[idx+1][2]-c[idx][2]
						);	
//				return (e[idx+1].P - e[idx].P).norm();
				return (temp.norm());
			}
			else if(idx == N-1)
			{
				stim::vec3<T> temp(
						c[idx][0]-c[idx+1][0],	
						c[idx][1]-c[idx+1][1],	
						c[idx][2]-c[idx+1][2]
						);	
			//	return (e[idx].P - e[idx-1].P).norm();
				return (temp.norm());
			}
			else
			{
//				return (e[idx+1].P - e[idx].P).norm();
//				stim::vec3<float> v1 = (e[idx].P-e[idx-1].P).norm();
				stim::vec3<T> v1(
						c[idx][0]-c[idx-1][0],	
						c[idx][1]-c[idx-1][1],	
						c[idx][2]-c[idx-1][2]
						);	
						
//				stim::vec3<float> v2 = (e[idx+1].P-e[idx].P).norm();
				stim::vec3<T> v2(
						c[idx+1][0]-c[idx][0],	
						c[idx+1][1]-c[idx][1],	
						c[idx+1][2]-c[idx][2]
						);
					
				return (v1.norm()+v2.norm()).norm();			
			} 
	//		return e[idx].N;	

		}

		stim::vec3<T>
		d(T l, int idx)
		{
			if(idx == 0 || idx == N-1)
			{
				return norms[idx];
//				return e[idx].N;
			}
			else
			{
				
				T rat = (l-L[idx])/(L[idx+1]-L[idx]);
				return(	norms[idx] + (norms[idx+1] - norms[idx])*rat);
//				return(	e[idx].N + (e[idx+1].N - e[idx].N)*rat);
			} 
		}


		///finds the index of the point closest to the length l on the lower bound.
		///binary search.
		int
		findIdx(T l)
		{
			unsigned int i = L.size()/2;
			unsigned int max = L.size()-1;
			unsigned int min = 0;
			while(i > 0 && i < L.size()-1)
			{
//				std::cerr << "Trying " << i << std::endl;
//				std::cerr << "l is " << l << ", L[" << i << "]" << L[i] << std::endl;
				if(l < L[i])
				{
					max = i;
					i = min+(max-min)/2;
				}
				else if(L[i] <= l && L[i+1] >= l)
				{
					break;
				}
				else
				{
					min = i;
					i = min+(max-min)/2;
				}
			}
			return i;
		}

	public:
		///default constructor
		cylinder()
		// : centerline<T>()
		{

		}

		///constructor to create a cylinder from a set of points, radii, and the number of sides for the cylinder.
		///@param inP:  Vector of stim vec3 composing the points of the centerline.
		///@param inM:  Vector of stim vecs composing the radii of the centerline.
		cylinder(std::vector<stim::vec3<T> > inP, std::vector<stim::vec<T> > inM)
			: centerline<T>(inP)
		{
			init(inP, inM);
		}

		///constructor to create a cylinder from a set of points, radii, and the number of sides for the cylinder.
		///@param inP:  Vector of stim vec3 composing the points of the centerline.
		///@param inM:  Vector of stim vecs composing the radii of the centerline.
		cylinder(std::vector<stim::vec3<T> > inP, std::vector< T > inM)
			: centerline<T>(inP)
		{
			std::vector<stim::vec<T> > temp;
			stim::vec<T> zero(0.0,0.0);
			temp.resize(inM.size(), zero);
			for(int i = 0; i < inM.size(); i++)
				temp[i][0] = inM[i];
			init(inP, temp);
		}


		///Constructor defines a cylinder with centerline inP and magnitudes of zero
		///@param inP: Vector of stim vec3 composing the points of the centerline
		cylinder(std::vector< stim::vec3<T> > inP)
			: centerline<T>(inP)
		{
			std::vector< stim::vec<T> > inM;						//create an array of arbitrary magnitudes

			stim::vec<T> zero;
			zero.push_back(0);

			inM.resize(inP.size(), zero);								//initialize the magnitude values to zero
			init(inP, inM);
		}

		//assignment operator creates a cylinder from a centerline (default radius is zero)
		cylinder& operator=(stim::centerline<T> c) {
			init(c);
		}

		///Returns the number of points on the cylinder centerline

		unsigned int size(){
			return N;
		}

		
		///Returns a position vector at the given p-value (p value ranges from 0 to 1).
		///interpolates the position along the line.
		///@param pvalue: the location of the in the cylinder, from 0 (beginning to 1).
		stim::vec3<T>
		p(T pvalue)
		{
			if(pvalue < 0.0 || pvalue > 1.0)
			{
				return stim::vec3<float>(-1,-1,-1);
			}
			T l = pvalue*L[L.size()-1];
			int idx = findIdx(l);
			return (p(l,idx));
		}

		///Returns a position vector at the given length into the fiber (based on the pvalue).
		///Interpolates the radius along the line.
		///@param l: the location of the in the cylinder.
		///@param idx: integer location of the point closest to l but prior to it.
		stim::vec3<T>
		p(T l, int idx)
		{
				T rat = (l-L[idx])/(L[idx+1]-L[idx]);
				stim::vec3<T> v1(
						c[idx][0],	
						c[idx][1],	
						c[idx][2]
						);	
						
				stim::vec3<T> v2(
						c[idx+1][0],	
						c[idx+1][1],	
						c[idx+1][2]
						);
//			return(	e[idx].P + (e[idx+1].P-e[idx].P)*rat);
			return(	v1 + (v2-v1)*rat);
//			return(
//			return (pos[idx] + (pos[idx+1]-pos[idx])*((l-L[idx])/(L[idx+1]- L[idx])));
		}

		///Returns a radius at the given p-value (p value ranges from 0 to 1).
		///interpolates the radius along the line.
		///@param pvalue: the location of the in the cylinder, from 0 (beginning to 1).
		T
		r(T pvalue)
		{
			if(pvalue < 0.0 || pvalue > 1.0){
				std::cerr<<"Error, value "<<pvalue<<" is outside of [0 1]."<<std::endl;
				exit(1);
			}
			T l = pvalue*L[L.size()-1];
			int idx = findIdx(l);
			return (r(l,idx));
		}

		///Returns a radius at the given length into the fiber (based on the pvalue).
		///Interpolates the position along the line.
		///@param l: the location of the in the cylinder.
		///@param idx: integer location of the point closest to l but prior to it.
		T
		r(T l, int idx)
		{
				T rat = (l-L[idx])/(L[idx+1]-L[idx]);
			T v1 = (e[idx].U.len() + (e[idx+1].U.len() - e[idx].U.len())*rat);
			T v3 = (Us[idx].len() + (Us[idx+1].len() - Us[idx].len())*rat);
			T v2 = (mags[idx][0] + (mags[idx+1][0]-mags[idx][0])*rat);
//			std::cout << (float)v1 = (float) v2 << std::endl;
			if(abs(v3 - v1) >= 10e-6)
			{
				std::cout << "-------------------------" << std::endl;
				std::cout << e[idx].str() << std::endl << std::endl;
				std::cout << Us[idx].str() << std::endl;
				std::cout << (float)v1 - (float) v2 << std::endl;
				std::cout << "failed" << std::endl;
			}
//			std::cout << e[idx].U.len() << " " << mags[idx][0] << std::endl;
//			std::cout << v2 << std::endl;
			return(v2);
//			return (mags[idx][0] + (mags[idx+1][0]-mags[idx][0])*rat);
	//	(
		}

		///	Returns the magnitude at the given index
		///	@param i is the index of the desired point
		/// @param m is the index of the magnitude value
		T ri(unsigned i, unsigned m = 0){
			return mags[i][m];
		}

		/// Adds a new magnitude value to all points
		/// @param m is the starting value for the new magnitude
		void add_mag(T m = 0){
			for(unsigned int p = 0; p < N; p++)
				mags[p].push_back(m);
		}

		/// Sets a magnitude value
		/// @param val is the new value for the magnitude
		/// @param p is the point index for the magnitude to be set
		/// @param m is the index for the magnitude
		void set_mag(T val, unsigned p, unsigned m = 0){
			mags[p][m] = val;
		}

		/// Returns the number of magnitude values at each point
		unsigned nmags(){
			return mags[0].size();
		}

		///returns the position of the point with a given pvalue and theta on the surface
		///in x, y, z coordinates. Theta is in degrees from 0 to 360.
		///@param pvalue: the location of the in the cylinder, from 0 (beginning to 1).
		///@param theta: the angle to the point of a circle.
		stim::vec3<T>
		surf(T pvalue, T theta)
		{
			if(pvalue < 0.0 || pvalue > 1.0)
			{
				return stim::vec3<float>(-1,-1,-1);
			} else {
			T l = pvalue*L[L.size()-1];
			int idx = findIdx(l);
			stim::vec3<T> ps = p(l, idx); 
			T m = r(l, idx);
			s = e[idx];
			s.center(ps);
			s.normal(d(l, idx));
			s.scale(m/e[idx].U.len());
			return(s.p(theta));
			}
		}

		///returns a vector of points necessary to create a circle at every position in the fiber.
		///@param sides: the number of sides of each circle.	
		std::vector<std::vector<vec3<T> > >
		getPoints(int sides)
		{
			std::vector<std::vector <vec3<T> > > points;
			points.resize(N);
			for(int i = 0; i < N; i++)
			{
				points[i] = e[i].getPoints(sides);
			}
			return points;
		}

		///returns the total length of the line at index j.
		T
		getl(int j)
		{
			return (L[j]);
		}
		/// Allows a point on the centerline to be accessed using bracket notation

		vec3<T> operator[](unsigned int i){
			return e[i].P;
		}

		/// Returns the total length of the cylinder centerline
		T length(){
			return L.back();
		}

		/// Integrates a magnitude value along the cylinder.
		/// @param m is the magnitude value to be integrated (this is usually the radius)
		T integrate(unsigned m = 0){

			T M = 0;						//initialize the integral to zero
			T m0, m1;						//allocate space for both magnitudes in a single segment

			//vec3<T> p0, p1;					//allocate space for both points in a single segment

			m0 = mags[0][m];				//initialize the first point and magnitude to the first point in the cylinder
			//p0 = pos[0];

			T len = L[0];						//allocate space for the segment length

			//for every consecutive point in the cylinder
			for(unsigned p = 1; p < N; p++){

				//p1 = pos[p];							//get the position and magnitude for the next point
				m1 = mags[p][m];

				if(p > 1) len = (L[p-1] - L[p-2]);		//calculate the segment length using the L array

				//add the average magnitude, weighted by the segment length
				M += (m0 + m1)/(T)2.0 * len;

				m0 = m1;								//move to the next segment by shifting points
			}
			return M;			//return the integral
		}

		/// Averages a magnitude value across the cylinder
		/// @param m is the magnitude value to be averaged (this is usually the radius)
		T average(unsigned m = 0){			

			//return the average magnitude
			return integrate(m) / L.back();
		}

		/// Resamples the cylinder to provide a maximum distance of "spacing" between centerline points. All current
		///		centerline points are guaranteed to exist in the new cylinder
		/// @param spacing is the maximum spacing allowed between sample points
		cylinder<T> resample(T spacing){

			std::vector< vec3<T> > result;

			vec3<T> p0 = e[0].P;									//initialize p0 to the first point on the centerline
			vec3<T> p1;
			unsigned N = size();									//number of points in the current centerline

			//for each line segment on the centerline
			for(unsigned int i = 1; i < N; i++){
				p1 = e[i].P;										//get the second point in the line segment

				vec3<T> v = p1 - p0;								//calculate the vector between these two points
				T d = v.len();										//calculate the distance between these two points (length of the line segment)

				size_t nsteps = (size_t)std::ceil(d / spacing);		//calculate the number of steps to take along the segment to meet the spacing criteria
				T stepsize = (T)1.0 / nsteps;						//calculate the parametric step size between new centerline points

				//for each step along the line segment
				for(unsigned s = 0; s < nsteps; s++){
					T alpha = stepsize * s;							//calculate the fraction of the distance along the line segment covered
					result.push_back(p0 + alpha * v);				//push the point at alpha position along the line segment
				}

				p0 = p1;											//shift the points to move to the next line segment
			}

			result.push_back(e[size() - 1].P);						//push the last point in the centerline

			return cylinder<T>(result);

		}*/

		
};

}
#endif