colormap.h 13.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
#ifndef STIM_COLORMAP_H
#define STIM_COLORMAP_H

#include <string>
#include <stdlib.h>
#include <cmath>

#ifdef _WIN32
	#include <float.h>
#endif

#ifdef __CUDACC__
#include "cublas_v2.h"
#include <stim/cuda/cudatools/error.h>
#endif

//saving an image to a file uses the CImg library
	//this currently throws a lot of "unreachable" warnings (as of GCC 4.8.2, nvcc 6.5.12)
#include <stim/image/image.h>


#define BREWER_CTRL_PTS 11

static float  BREWERCP[BREWER_CTRL_PTS*4] = {0.192157f, 0.211765f, 0.584314f, 1.0f,
                                      0.270588f, 0.458824f, 0.705882f, 1.0f,
                                      0.454902f, 0.678431f, 0.819608f, 1.0f,
                                      0.670588f, 0.85098f, 0.913725f, 1.0f,
                                      0.878431f, 0.952941f, 0.972549f, 1.0f,
                                      1.0f, 1.0f, 0.74902f, 1.0f,
                                      0.996078f, 0.878431f, 0.564706f, 1.0f,
                                      0.992157f, 0.682353f, 0.380392f, 1.0f,
                                      0.956863f, 0.427451f, 0.262745f, 1.0f,
                                      0.843137f, 0.188235f, 0.152941f, 1.0f,
                                      0.647059f, 0.0f, 0.14902f, 1.0f};

//static float  BREWERCP[BREWER_CTRL_PTS * 4] = { 0.192157f, 0.584314f, 0.211765f, 1.0f,
//										0.270588f, 0.705882f, 0.458824f, 1.0f,
//										0.454902f, 0.819608f, 0.678431f, 1.0f,
//										0.670588f, 0.913725f, 0.85098f, 1.0f,
//										0.878431f, 0.972549f, 0.952941f, 1.0f,
//										1.0f, 0.74902f, 1.0f, 1.0f,
//										0.996078f, 0.878431f, 0.564706f, 1.0f,
//										0.992157f, 0.682353f, 0.380392f, 1.0f,
//										0.956863f, 0.427451f, 0.262745f, 1.0f,
//										0.843137f, 0.188235f, 0.152941f, 1.0f,
//										0.647059f, 0.0f, 0.14902f, 1.0f };

//static float  BREWERCP[BREWER_CTRL_PTS * 4] = { 0.0f, 0.407843f, 0.215686f, 1.0f,
//										0.101960f, 0.596078f, 0.313725f, 1.0f,
//										0.4f, 0.741176f, 0.388235f, 1.0f,
//										0.650980f, 0.850980f, 0.415686f, 1.0f,
//										0.850980f, 0.937254f, 0.545098f, 1.0f,
//										1.0f, 1.0f, 0.749019f, 1.0f,
//										0.996078f, 0.878431f, 0.545098f, 1.0f,
//										0.992156f, 0.682352f, 0.380392f, 1.0f,
//										0.956862f, 0.427450f, 0.262745f, 1.0f,
//										0.843137f, 0.188235f, 0.152941f, 1.0f,
//										0.647058f, 0.0f, 0.149019f, 1.0f };


#ifdef __CUDACC__
texture<float4, cudaTextureType1D> cudaTexBrewer;
static cudaArray* gpuBrewer;
#endif

namespace stim{

enum colormapType {cmBrewer, cmGrayscale, cmRainbow};

static void buffer2image(unsigned char* buffer, std::string filename, size_t width, size_t height)
{
	/*unsigned char* non_interleaved = (unsigned char*)malloc(x_size * y_size * 3);
	unsigned int S = x_size * y_size;

	for(unsigned int i = 0; i < S; i++){
		non_interleaved[i + 0 * S] = buffer[i * 3 + 0];
		non_interleaved[i + 1 * S] = buffer[i * 3 + 1];
		non_interleaved[i + 2 * S] = buffer[i * 3 + 2];
	}*/

	//create an image object
	//cimg_library::CImg<unsigned char> image(non_interleaved, x_size, y_size, 1, 3);
	//image.save(filename.c_str());
    image<unsigned char> I;
    I.set_interleaved_rgb(buffer, width, height);
	I.save(filename);
}

#ifdef __CUDACC__
static void initBrewer()
{
	//initialize the Brewer colormap

	//allocate CPU space
	float4 cpuColorMap[BREWER_CTRL_PTS];

	//define control rtsPoints
	cpuColorMap[0] = make_float4(0.192157f, 0.211765f, 0.584314f, 1.0f);
	cpuColorMap[1] = make_float4(0.270588f, 0.458824f, 0.705882f, 1.0f);
	cpuColorMap[2] = make_float4(0.454902f, 0.678431f, 0.819608f, 1.0f);
	cpuColorMap[3] = make_float4(0.670588f, 0.85098f, 0.913725f, 1.0f);
	cpuColorMap[4] = make_float4(0.878431f, 0.952941f, 0.972549f, 1.0f);
	cpuColorMap[5] = make_float4(1.0f, 1.0f, 0.74902f, 1.0f);
	cpuColorMap[6] = make_float4(0.996078f, 0.878431f, 0.564706f, 1.0f);
	cpuColorMap[7] = make_float4(0.992157f, 0.682353f, 0.380392f, 1.0f);
	cpuColorMap[8] = make_float4(0.956863f, 0.427451f, 0.262745f, 1.0f);
	cpuColorMap[9] = make_float4(0.843137f, 0.188235f, 0.152941f, 1.0f);
	cpuColorMap[10] = make_float4(0.647059f, 0.0f, 0.14902f, 1.0f);


	int width = BREWER_CTRL_PTS;
	int height = 0;


	// allocate array and copy colormap data
	cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 32, 32, 32, cudaChannelFormatKindFloat);

	HANDLE_ERROR(cudaMallocArray(&gpuBrewer, &channelDesc, width, height));

	HANDLE_ERROR(cudaMemcpyToArray(gpuBrewer, 0, 0, cpuColorMap, sizeof(float4)*width, cudaMemcpyHostToDevice));

	// set texture parameters
    cudaTexBrewer.addressMode[0] = cudaAddressModeClamp;
	//texBrewer.addressMode[1] = cudaAddressModeClamp;
    cudaTexBrewer.filterMode = cudaFilterModeLinear;
    cudaTexBrewer.normalized = true;  // access with normalized texture coordinates

	// Bind the array to the texture
    HANDLE_ERROR(cudaBindTextureToArray( cudaTexBrewer, gpuBrewer, channelDesc));

}

static void destroyBrewer()
{
    HANDLE_ERROR(cudaFreeArray(gpuBrewer));
}

template<class T>
__global__ static void applyBrewer(T* gpuSource, unsigned char* gpuDest, unsigned int N, T minVal = 0, T maxVal = 1)
{

	int i = blockIdx.y * gridDim.x * blockDim.x + blockIdx.x * blockDim.x + threadIdx.x;
    if(i >= N) return;

	//compute the normalized value on [minVal maxVal]
	float a = (gpuSource[i] - minVal) / (maxVal - minVal);

    //compensate for the additional space at the edges
    a *= (T)(BREWER_CTRL_PTS - 1)/(T)(BREWER_CTRL_PTS);

	//lookup the color
	float shift = (T)1/(2*BREWER_CTRL_PTS);
	float4 color = tex1D(cudaTexBrewer, a+shift);
	//float4 color = tex1D(cudaTexBrewer, a);

	gpuDest[i * 3 + 0] = 255 * color.x;
	gpuDest[i * 3 + 1] = 255 * color.y;
	gpuDest[i * 3 + 2] = 255 * color.z;
}

template<class T>
__global__ static void applyGrayscale(T* gpuSource, unsigned char* gpuDest, unsigned int N, T minVal = 0, T maxVal = 1)
{
    int i = blockIdx.y * gridDim.x * blockDim.x + blockIdx.x * blockDim.x + threadIdx.x;
    if(i >= N) return;

	//compute the normalized value on [minVal maxVal]
	float a = (gpuSource[i] - minVal) / (maxVal - minVal);

	//threshold
	if(a > 1)
        a = 1;
    if(a < 0)
        a = 0;

	gpuDest[i * 3 + 0] = 255 * a;
	gpuDest[i * 3 + 1] = 255 * a;
	gpuDest[i * 3 + 2] = 255 * a;
}

template<class T>
static void gpu2gpu(T* gpuSource, unsigned char* gpuDest, unsigned int nVals, T minVal = 0, T maxVal = 1, colormapType cm = cmGrayscale, int blockDim = 128)
{
	//This function converts a scalar field on the GPU to a color image on the GPU
	int gridX = (nVals + blockDim - 1)/blockDim;
	int gridY = 1;
    if(gridX > 65535)
    {
        gridY = (gridX + 65535 - 1) / 65535;
        gridX = 65535;
    }
    dim3 dimGrid(gridX, gridY);
	if(cm == cmGrayscale)
		applyGrayscale<<<dimGrid, blockDim>>>(gpuSource, gpuDest, nVals, minVal, maxVal);
	else if(cm == cmBrewer)
	{
		initBrewer();
		applyBrewer<<<dimGrid, blockDim>>>(gpuSource, gpuDest, nVals, minVal, maxVal);
		destroyBrewer();
	}

}

template<class T>
static void gpu2cpu(T* gpuSource, unsigned char* cpuDest, unsigned int nVals, T minVal, T maxVal, colormapType cm = cmGrayscale)
{
    //this function converts a scalar field on the GPU to a color image on the CPU

    //first create the color image on the GPU

    //allocate GPU memory for the color image
    unsigned char* gpuDest;
    HANDLE_ERROR(cudaMalloc( (void**)&gpuDest, sizeof(unsigned char) * nVals * 3 ));

    //create the image on the gpu
    gpu2gpu(gpuSource, gpuDest, nVals, minVal, maxVal, cm);
	
    //copy the image from the GPU to the CPU
    HANDLE_ERROR(cudaMemcpy(cpuDest, gpuDest, sizeof(unsigned char) * nVals * 3, cudaMemcpyDeviceToHost));

	HANDLE_ERROR(cudaFree( gpuDest ));

}

template<typename T>
static void gpu2image(T* gpuSource, std::string fileDest, unsigned int x_size, unsigned int y_size, T valMin, T valMax, colormapType cm = cmGrayscale)
{
	//allocate a color buffer
	unsigned char* cpuBuffer = NULL;
	cpuBuffer = (unsigned char*) malloc(sizeof(unsigned char) * 3 * x_size * y_size);

	//do the mapping
	gpu2cpu<T>(gpuSource, cpuBuffer, x_size * y_size, valMin, valMax, cm);

	//copy the buffer to an image
	buffer2image(cpuBuffer, fileDest, x_size, y_size);

	free(cpuBuffer);
}

/// save a GPU image to a file using automatic scaling
template<typename T>
static void gpu2image(T* gpuSource, std::string fileDest, unsigned int x_size, unsigned int y_size, colormapType cm = cmGrayscale){
	size_t N = x_size * y_size;								//calculate the total number of elements in the image

	cublasStatus_t stat;
    cublasHandle_t handle;

	stat = cublasCreate(&handle);							//create a cuBLAS handle
	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
        printf ("CUBLAS initialization failed\n");
		exit(1);
	}

	int i_min, i_max;
	stat = cublasIsamin(handle, (int)N, gpuSource, 1, &i_min);
	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
        printf ("CUBLAS Error: failed to calculate minimum r value.\n");
		exit(1);
	}
	stat = cublasIsamax(handle, (int)N, gpuSource, 1, &i_max);
	if (stat != CUBLAS_STATUS_SUCCESS){						//test for failure
        printf ("CUBLAS Error: failed to calculate maximum r value.\n");
		exit(1);
	}
	cublasDestroy(handle);

	i_min--;				//cuBLAS uses 1-based indexing for Fortran compatibility
	i_max--;
	T v_min, v_max;											//allocate space to store the minimum and maximum values
	HANDLE_ERROR( cudaMemcpy(&v_min, gpuSource + i_min, sizeof(T), cudaMemcpyDeviceToHost) );		//copy the min and max values from the device to the CPU
	HANDLE_ERROR( cudaMemcpy(&v_max, gpuSource + i_max, sizeof(T), cudaMemcpyDeviceToHost) );



	gpu2image<T>(gpuSource, fileDest, x_size, y_size, min(v_min, v_max), max(v_min, v_max), cm);
}

#endif

template<class T>
static void cpuApplyBrewer(T* cpuSource, unsigned char* cpuDest, size_t N, T minVal = 0, T maxVal = 1)
{
    for(size_t i=0; i<N; i++)
    {
        //compute the normalized value on [minVal maxVal]
		float a;
		if(minVal != maxVal)
			a = (cpuSource[i] - minVal) / (maxVal - minVal);
		else
			a = 0.5;
#ifdef _WIN32
		if(!_finite(a)) a = 1;							//deal with infinite and NaN values (return maximum in all cases)
#else
		if(!std::isfinite(a)) a = 1;
#endif
		else if(a < 0) a = 0;
        else if(a > 1) a = 1;

        float c = a * (float)(BREWER_CTRL_PTS-1);
        int ptLow = (int)c;
        float m = c - (float)ptLow;
        //std::cout<<m<<std::endl;

        float r, g, b;
        if(ptLow == BREWER_CTRL_PTS - 1)
        {
            r = BREWERCP[ptLow * 4 + 0];
            g = BREWERCP[ptLow * 4 + 1];
            b = BREWERCP[ptLow * 4 + 2];
        }
        else
        {
            r = BREWERCP[ptLow * 4 + 0] * (1-m) + BREWERCP[ (ptLow+1) * 4 + 0] * m;
            g = BREWERCP[ptLow * 4 + 1] * (1-m) + BREWERCP[ (ptLow+1) * 4 + 1] * m;
            b = BREWERCP[ptLow * 4 + 2] * (1-m) + BREWERCP[ (ptLow+1) * 4 + 2] * m;
        }


        cpuDest[i * 3 + 0] = (unsigned char)(255 * r);
        cpuDest[i * 3 + 1] = (unsigned char)(255 * g);
        cpuDest[i * 3 + 2] = (unsigned char)(255 * b);

    }
}

template<class T>
static void cpu2cpu(T* cpuSource, unsigned char* cpuDest, size_t nVals, T valMin, T valMax, colormapType cm = cmGrayscale)
{

    if(cm == cmBrewer)
        cpuApplyBrewer(cpuSource, cpuDest, nVals, valMin, valMax);
    else if(cm == cmGrayscale)
    {
        int i;
        float a;
        float range = valMax - valMin;

        for(i = 0; i<nVals; i++)
        {
            //normalize to the range [valMin valMax]
			if(range != 0)
				a = (cpuSource[i] - valMin) / range;
			else
				a = 0.5;
	
            if(a < 0) a = 0;
            if(a > 1) a = 1;

            cpuDest[i * 3 + 0] = (unsigned char)(255 * a);
            cpuDest[i * 3 + 1] = (unsigned char)(255 * a);
            cpuDest[i * 3 + 2] = (unsigned char)(255 * a);
        }
    }
}

template<class T>
static void cpu2cpu(T* cpuSource, unsigned char* cpuDest, unsigned long long nVals, colormapType cm = cmGrayscale)
{
    //computes the max and min range automatically

    //find the largest magnitude value
    T maxVal = cpuSource[0];
    T minVal = cpuSource[0];
    for(int i=1; i<nVals; i++)
	{
        if(cpuSource[i] > maxVal)
            maxVal = cpuSource[i];
        if(cpuSource[i] < minVal)
            minVal = cpuSource[i];
	}

    cpu2cpu(cpuSource, cpuDest, nVals, minVal, maxVal, cm);

}



template<typename T>
static void cpu2image(T* cpuSource, std::string fileDest, size_t x_size, size_t y_size, T valMin, T valMax, colormapType cm = cmGrayscale)
{
    //allocate a color buffer
	unsigned char* cpuBuffer = (unsigned char*) malloc(sizeof(unsigned char) * 3 * x_size * y_size);

	//do the mapping
	cpu2cpu<T>(cpuSource, cpuBuffer, x_size * y_size, valMin, valMax, cm);

	//copy the buffer to an image
	buffer2image(cpuBuffer, fileDest, x_size, y_size);

	free(cpuBuffer);

}

template<typename T>
static void cpu2image(T* cpuSource, std::string fileDest, size_t x_size, size_t y_size, colormapType cm = cmGrayscale)
{
    //allocate a color buffer
	unsigned char* cpuBuffer = (unsigned char*) malloc(sizeof(unsigned char) * 3 * x_size * y_size);

	//do the mapping
	cpu2cpu<T>(cpuSource, cpuBuffer, x_size * y_size, cm);

	//copy the buffer to an image
	buffer2image(cpuBuffer, fileDest, x_size, y_size);

	free(cpuBuffer);

}

}	//end namespace colormap and rts

#endif