centerline.h
7.66 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#ifndef STIM_CENTERLINE_H
#define STIM_CENTERLINE_H
#include <vector>
#include <stim/math/vec3.h>
namespace stim{
/** This class stores information about a single fiber represented as a set of geometric points
* between two branch or end points. This class is used as a fundamental component of the stim::network
* class to describe an interconnected (often biological) network.
*/
template<typename T>
class centerline : public std::vector< stim::vec3<T> >{
protected:
std::vector<T> L; //stores the integrated length along the fiber (used for parameterization)
///Return the normalized direction vector at point i (average of the incoming and outgoing directions)
vec3<T> d(size_t i) {
if (size() <= 1) return vec3<T>(0, 0, 0); //if there is insufficient information to calculate the direction, return a null vector
if (size() == 2) return (at(1) - at(0)).norm(); //if there are only two points, the direction vector at both is the direction of the line segment
if (i == 0) return (at(1) - at(0)).norm(); //the first direction vector is oriented towards the first line segment
if (i == size() - 1) return (at(size() - 1) - at(size() - 2)).norm(); //the last direction vector is oriented towards the last line segment
//all other direction vectors are the average direction of the two joined line segments
vec3<T> a = at(i) - at(i - 1);
vec3<T> b = at(i + 1) - at(i);
vec3<T> ab = a.norm() + b.norm();
return ab.norm();
}
//initializes the integrated length vector to make parameterization easier, starting with index idx (all previous indices are assumed to be correct)
void update_L(size_t start = 0) {
L.resize(size()); //allocate space for the L array
if (start == 0) {
L[0] = 0; //initialize the length value for the first point to zero (0)
start++;
}
stim::vec3<T> d;
for (size_t i = start; i < size(); i++) { //for each line segment in the centerline
d = at(i) - at(i - 1);
L[i] = L[i - 1] + d.len(); //calculate the running length total
}
}
void init() {
if (size() == 0) return; //return if there aren't any points
update_L();
}
/// Returns a stim::vec representing the point at index i
/// @param i is an index of the desired centerline point
stim::vec<T> get_vec(unsigned i){
return std::vector< stim::vec3<T> >::at(i);
}
///finds the index of the point closest to the length l on the lower bound.
///binary search.
size_t findIdx(T l) {
for (size_t i = 1; i < L.size(); i++) { //for each point in the centerline
if (L[i] > l) return i - 1; //if we have passed the desired length value, return i-1
}
return L.size() - 1;
/*size_t i = L.size() / 2;
size_t max = L.size() - 1;
size_t min = 0;
while (i < L.size() - 1){
if (l < L[i]) {
max = i;
i = min + (max - min) / 2;
}
else if (L[i] <= l && L[i + 1] >= l) {
break;
}
else {
min = i;
i = min + (max - min) / 2;
}
}
return i;*/
}
///Returns a position vector at the given length into the fiber (based on the pvalue).
///Interpolates the radius along the line.
///@param l: the location of the in the cylinder.
///@param idx: integer location of the point closest to l but prior to it.
stim::vec3<T> p(T l, int idx) {
T rat = (l - L[idx]) / (L[idx + 1] - L[idx]);
stim::vec3<T> v1 = at(idx);
stim::vec3<T> v2 = at(idx + 1);
return(v1 + (v2 - v1)*rat);
}
public:
using std::vector< stim::vec3<T> >::at;
using std::vector< stim::vec3<T> >::size;
centerline() : std::vector< stim::vec3<T> >() {
init();
}
centerline(size_t n) : std::vector< stim::vec3<T> >(n){
init();
}
//overload the push_back function to update the length vector
void push_back(stim::vec3<T> p) {
std::vector< stim::vec3<T> >::push_back(p);
update_L(size() - 1);
}
///Returns a position vector at the given p-value (p value ranges from 0 to 1).
///interpolates the position along the line.
///@param pvalue: the location of the in the cylinder, from 0 (beginning to 1).
stim::vec3<T> p(T pvalue) {
if (pvalue <= 0.0) return at(0); //return the first element
if (pvalue >= 1.0) return back(); //return the last element
T l = pvalue*L[L.size() - 1];
int idx = findIdx(l);
return p(l, idx);
}
///Update centerline internal parameters (currently the L vector)
void update() {
init();
}
///Return the length of the entire centerline
T length() {
return L.back();
}
/// Split the fiber at the specified index. If the index is an end point, only one fiber is returned
std::vector< stim::centerline<T> > split(unsigned int idx){
std::vector< stim::centerline<T> > fl; //create an array to store up to two fibers
size_t N = size();
//if the index is an end point, only the existing fiber is returned
if(idx == 0 || idx == N-1){
fl.resize(1); //set the size of the fiber to 1
fl[0] = *this; //copy the current fiber
}
//if the index is not an end point
else{
unsigned int N1 = idx + 1; //calculate the size of both fibers
unsigned int N2 = N - idx;
fl.resize(2); //set the array size to 2
fl[0] = stim::centerline<T>(N1); //set the size of each fiber
fl[1] = stim::centerline<T>(N2);
//copy both halves of the fiber
unsigned int i;
//first half
for(i = 0; i < N1; i++) //for each centerline point
fl[0][i] = std::vector< stim::vec3<T> >::at(i);
fl[0].init(); //initialize the length vector
//second half
for(i = 0; i < N2; i++)
fl[1][i] = std::vector< stim::vec3<T> >::at(idx+i);
fl[1].init(); //initialize the length vector
}
return fl; //return the array
}
/// Outputs the fiber as a string
std::string str(){
std::stringstream ss;
size_t N = std::vector< stim::vec3<T> >::size();
ss << "---------[" << N << "]---------" << std::endl;
for (size_t i = 0; i < N; i++)
ss << std::vector< stim::vec3<T> >::at(i) << std::endl;
ss << "--------------------" << std::endl;
return ss.str();
}
/// Back method returns the last point in the fiber
stim::vec3<T> back(){
return std::vector< stim::vec3<T> >::back();
}
////resample a fiber in the network
stim::centerline<T> resample(T spacing)
{
//std::cout<<"fiber::resample()"<<std::endl;
stim::vec3<T> v; //v-direction vector of the segment
stim::vec3<T> p; //- intermediate point to be added
stim::vec3<T> p1; // p1 - starting point of an segment on the fiber,
stim::vec3<T> p2; // p2 - ending point,
//double sum=0; //distance summation
size_t N = size();
centerline<T> new_c; // initialize list of new resampled points on the fiber
// for each point on the centerline (skip if it is the last point on centerline)
for(unsigned int f=0; f< N-1; f++)
{
p1 = at(f);
p2 = at(f+1);
v = p2 - p1;
T lengthSegment = v.len(); //find Length of the segment as distance between the starting and ending points of the segment
if(lengthSegment >= spacing){ // if length of the segment is greater than standard deviation resample
// repeat resampling until accumulated stepsize is equsl to length of the segment
for(T step=0.0; step<lengthSegment; step+=spacing){
// calculate the resampled point by travelling step size in the direction of normalized gradient vector
p = p1 + v * (step / lengthSegment);
// add this resampled points to the new fiber list
new_c.push_back(p);
}
}
else // length of the segment is now less than standard deviation, push the ending point of the segment and proceed to the next point in the fiber
new_c.push_back(at(f));
}
new_c.push_back(at(N-1)); //add the last point on the fiber to the new fiber list
//centerline newFiber(newPointList);
return new_c;
}
};
} //end namespace stim
#endif