network.h 38.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
#ifndef STIM_NETWORK_H
#define STIM_NETWORK_H

#include <stdlib.h>
#include <assert.h>
#include <sstream>
#include <fstream>
#include <algorithm>
#include <string.h>
#include <math.h>
#include <stim/math/vec3.h>
#include <stim/visualization/obj.h>
#include <stim/visualization/swc.h>
#include <stim/visualization/cylinder.h>
#include <stim/structures/kdtree.cuh>
#include <stim/cuda/cudatools/timer.h>


#ifdef __CUDACC__
//device gaussian function
__device__ float gaussianFunction(float x, float std){ return expf(-x/(2*std*std));}

//compute metric in parallel
template <typename T>
__global__ void d_metric(T* M, size_t n, T* D, float sigma){
	size_t x = blockDim.x * blockIdx.x + threadIdx.x;
	if(x >= n) return;
	M[x] = 1.0f - gaussianFunction(D[x], sigma);
}

//find the corresponding edge index from array index
__global__ void d_findedge(size_t* I, size_t n, unsigned* R, size_t* E, size_t ne){
	size_t x = blockDim.x * blockIdx.x + threadIdx.x;
	if(x >= n) return;
	unsigned i = 0;
	size_t N = 0;
	for(unsigned e = 0; e < ne; e++){
		N += E[e];
		if(I[x] < N){
			R[x] = i;
			break;
		}
		i++;
	}
}
#endif

//hard-coded factor
int threshold_fac = 0;

namespace stim{
/** This is the a class that interfaces with gl_spider in order to store the currently
 *   segmented network. The following data is stored and can be extracted:
 *   1)Network geometry and centerline.
 *   2)Network connectivity (a graph of nodes and edges), reconstructed using ANN library.
*/

template<typename T>
class network{

	///Each edge is a fiber with two nodes.
	///Each node is an in index to the endpoint of the fiber in the nodes array.
	class edge : public cylinder<T>
	{
		public:
		unsigned v[2];		//unique id's designating the starting and ending
		// default constructor
		edge() : cylinder<T>() {
			v[1] = (unsigned)(-1); v[0] = (unsigned)(-1);
		}
		/// Constructor - creates an edge from a list of points by calling the stim::fiber constructor

		///@param p is an array of positions in space
		edge(stim::centerline<T> p) : cylinder<T>(p){}

		/// Copy constructor creates an edge from a cylinder
		edge(stim::cylinder<T> f) : cylinder<T>(f) {}

		/// Resamples an edge by calling the fiber resampling function
		edge resample(T spacing){
			edge e(cylinder<T>::resample(spacing));	//call the fiber->edge constructor
			e.v[0] = v[0];					//copy the vertex data
			e.v[1] = v[1];

			return e;						//return the new edge
		}

		/// Output the edge information as a string
		std::string str(){
			std::stringstream ss;
			ss<<"("<<cylinder<T>::size()<<")\tl = "<<this->length()<<"\t"<<v[0]<<"----"<<v[1];
			return ss.str();
		}

		std::vector<edge> split(unsigned int idx){
		
			std::vector< stim::cylinder<T> > C;
			C.resize(2);
			C =	(*this).cylinder<T>::split(idx);
			std::vector<edge> E(C.size());

			for(unsigned e = 0; e < E.size(); e++){
				E[e] = C[e];
			}
			return E;
		}

	};

	///Node class that stores the physical position of the node as well as the edges it is connected to (edges that connect to it), As well as any additional data necessary.
	class vertex : public stim::vec3<T>
	{
		public:
			//std::vector<unsigned int> edges;					//indices of edges connected to this node.
			std::vector<unsigned int> e[2];						//indices of edges going out (e[0]) and coming in (e[1])
			//stim::vec3<T> p;							//position of this node in physical space.

			//constructor takes a stim::vec
			vertex(stim::vec3<T> p) : stim::vec3<T>(p){}

			/// Output the vertex information as a string
			std::string	str(){
				std::stringstream ss;
				ss<<"\t(x, y, z) = "<<stim::vec3<T>::str();

				if(e[0].size() > 0){
					ss<<"\t> ";
					for(unsigned int o = 0; o < e[0].size(); o++)
						ss<<e[0][o]<<" ";
				}
				if(e[1].size() > 0){
					ss<<"\t< ";
					for(unsigned int i = 0; i < e[1].size(); i++)
						ss<<e[1][i]<<" ";
				}

				return ss.str();
			}


	};

protected:

	std::vector<edge> E;       //list of edges
	std::vector<vertex> V;	   //list of vertices.
	//std::vector<int> NT;	   //stores a list of neuronal type for each point in the centerline (will set value only when centerline is built from swc file)

public:

	///default constructor
	network()
	{
		
	}

	///constructor with a file to load.
	network(std::string fileLocation)
	{
		load_obj(fileLocation);
	}

	///Returns the number of edges in the network.
	unsigned int edges(){
		return E.size();
	}

	///Returns the number of nodes in the network.
	unsigned int vertices(){
		return V.size();
	}

	///Returns the radius at specific point in the edge
	T get_R(unsigned e, unsigned i) {
		return E[e].r(i);
	}

	///Returns the average radius of specific edge
	T get_average_R(unsigned e) {
		T result = 0.0;
		unsigned n = E[e].size();
		for (unsigned p = 0; p < n; p++)
			result += E[e].r(p);

		return (T)result / n;
	}

	///Returns the length of current edge
	T get_L(unsigned e) {
		return E[e].length();
	}

	///Returns the start vertex of current edge
	size_t get_start_vertex(unsigned e) {
		return E[e].v[0];
	}

	///Returns the end vertex of current edge
	size_t get_end_vertex(unsigned e) {
		return E[e].v[1];
	}

	///Returns one vertex
	stim::vec3<T> get_vertex(unsigned i) {
		return V[i];
	}

	///Returns the boundary vertices' indices
	std::vector<unsigned> get_boundary_vertex() {
		std::vector<unsigned> result;

		for (unsigned v = 0; v < V.size(); v++) {
			if (V[v].e[0].size() + V[v].e[1].size() == 1) {	// boundary vertex
				result.push_back(v);
			}
		}

		return result;
	}

	//scale the network by some constant value
	//	I don't think these work??????
	/*std::vector<vertex> operator*(T s){
		for (unsigned i=0; i< vertices; i ++ ){
			V[i] = V[i] * s;
		}
		return V;
	}

	std::vector<vertex> operator*(vec<T> s){
		for (unsigned i=0; i< vertices; i ++ ){
			for (unsigned dim = 0 ; dim< 3; dim ++){
				V[i][dim] = V[i][dim] * s[dim];
			}
		}
		return V;
	}*/

	// Returns an average of branching index in the network
	double BranchingIndex(){
		double B=0;
		for(unsigned v=0; v < V.size(); v ++){
			B += ((V[v].e[0].size()) + (V[v].e[1].size()));
		}
		B = B / V.size();
		return B;

	}

	// Returns number of branch points in thenetwork
	unsigned int BranchP(){
		unsigned int B=0;
		unsigned int c;
		for(unsigned v=0; v < V.size(); v ++){
			c = ((V[v].e[0].size()) + (V[v].e[1].size()));
			if (c > 2){
			B += 1;}
		}		
		return B;

	}

	// Returns number of end points (tips) in thenetwork
	unsigned int EndP(){
		unsigned int B=0;
		unsigned int c;
		for(unsigned v=0; v < V.size(); v ++){
			c = ((V[v].e[0].size()) + (V[v].e[1].size()));
			if (c == 1){
			B += 1;}
		}		
		return B;

	}

	//// Returns a dictionary with the key as the vertex
	//std::map<std::vector<vertex>,unsigned int> DegreeDict(){
	//	std::map<std::vector<vertex>,unsigned int> dd;
	//	unsigned int c = 0;
	//	for(unsigned v=0; v < V.size(); v ++){
	//		c = ((V[v].e[0].size()) + (V[v].e[1].size()));
	//		dd[V[v]] = c;
	//	}
	//	return dd;
	//}

	//// Return number of branching stems
	//unsigned int Stems(){
	//	unsigned int s = 0;
	//	std::map<std::vector<vertex>,unsigned int> dd;
	//	dd = DegreeDict();
	//	//for(unsigned v=0; v < V.size(); v ++){
	//	//	V[v].e[0].
	//	return s;
	//}

	//Calculate Metrics---------------------------------------------------
	// Returns an average of fiber/edge lengths in the network
	double Lengths(){
		stim::vec<T> L;
		double sumLength = 0;
		for(unsigned e = 0; e < E.size(); e++){				//for each edge in the network
			L.push_back(E[e].length());						//append the edge length
			sumLength = sumLength + E[e].length();
		}
		double avg = sumLength / E.size();
		return avg;
	}


	// Returns an average of tortuosities in the network
	double Tortuosities(){
		stim::vec<T> t;
		stim::vec<T> id1, id2;                        // starting and ending vertices of the edge
		double distance;double tortuosity;double sumTortuosity = 0;
		for(unsigned e = 0; e < E.size(); e++){				//for each edge in the network
			id1 = E[e][0];									//get the edge starting point
			id2 = E[e][E[e].size() - 1];					//get the edge ending point
			distance = (id1 - id2).len();                   //displacement between the starting and ending points
			if(distance > 0){
				tortuosity = E[e].length()/	distance	;		// tortuoisty = edge length / edge displacement
			}
			else{
				tortuosity = 0;}
			t.push_back(tortuosity);
			sumTortuosity += tortuosity;
		}
		double avg = sumTortuosity / E.size();
		return avg;
	}

	// Returns average contraction of the network
	double Contractions(){
	stim::vec<T> t;
	stim::vec<T> id1, id2;                        // starting and ending vertices of the edge
	double distance;double contraction;double sumContraction = 0;
	for(unsigned e = 0; e < E.size(); e++){				//for each edge in the network
		id1 = E[e][0];									//get the edge starting point
		id2 = E[e][E[e].size() - 1];					//get the edge ending point
		distance = (id1 - id2).len();                   //displacement between the starting and ending points
		contraction = distance / E[e].length();		// tortuoisty = edge length / edge displacement
		t.push_back(contraction);
		sumContraction += contraction;
	}
	double avg = sumContraction / E.size();
	return avg;
	}

	// returns average fractal dimension of the branches of the network
	double FractalDimensions(){
	stim::vec<T> t;
	stim::vec<T> id1, id2;                        // starting and ending vertices of the edge
	double distance;double fract;double sumFractDim = 0;
	for(unsigned e = 0; e < E.size(); e++){				//for each edge in the network
		id1 = E[e][0];									//get the edge starting point
		id2 = E[e][E[e].size() - 1];					//get the edge ending point
		distance = (id1 - id2).len();                   //displacement between the starting and ending points
		fract = std::log(distance) / std::log(E[e].length());		// tortuoisty = edge length / edge displacement
		t.push_back(sumFractDim);
		sumFractDim += fract;
	}
	double avg = sumFractDim / E.size();
	return avg;
	}

	//returns a cylinder represented a given fiber (based on edge index)
	stim::cylinder<T> get_cylinder(unsigned e){
		return E[e];									//return the specified edge (casting it to a fiber)
	}

	//load a network from an OBJ file
	void load_obj(std::string filename){

		stim::obj<T> O;									//create an OBJ object
		O.load(filename);								//load the OBJ file as an object

		std::vector<unsigned> id2vert;							//this list stores the OBJ vertex ID associated with each network vertex

		unsigned i[2];									//temporary, IDs associated with the first and last points in an OBJ line

		//for each line in the OBJ object
		for(unsigned int l = 1; l <= O.numL(); l++){

			std::vector< stim::vec<T> > c;						//allocate an array of points for the vessel centerline
			O.getLine(l, c);							//get the fiber centerline

			stim::centerline<T> c3(c.size());
			for(size_t j = 0; j < c.size(); j++)
				c3[j] = c[j];
			c3.update();

	//		edge new_edge = c3;		///This is dangerous.
			edge new_edge(c3);
					
			//create an edge from the given centerline
			unsigned int I = new_edge.size();					//calculate the number of points on the centerline

			//get the first and last vertex IDs for the line
			std::vector< unsigned > id;						//create an array to store the centerline point IDs
			O.getLinei(l, id);							//get the list of point IDs for the line
			i[0] = id.front();							//get the OBJ ID for the first element of the line
			i[1] = id.back();							//get the OBJ ID for the last element of the line

			std::vector<unsigned>::iterator it;					//create an iterator for searching the id2vert array
			unsigned it_idx;							//create an integer for the id2vert entry index

			//find out if the nodes for this fiber have already been created
			it = find(id2vert.begin(), id2vert.end(), i[0]);	//look for the first node
			if(it == id2vert.end()){							//if i[0] hasn't already been used
				vertex new_vertex = new_edge[0];				//create a new vertex, assign it a position
				new_vertex.e[0].push_back(E.size());				//add the current edge as outgoing
				new_edge.v[0] = V.size();					//add the new edge to the edge
				V.push_back(new_vertex);					//add the new vertex to the vertex list
				id2vert.push_back(i[0]);					//add the ID to the ID->vertex conversion list
			}
			else{									//if the vertex already exists
				it_idx = std::distance(id2vert.begin(), it);
				V[it_idx].e[0].push_back(E.size());				//add the current edge as outgoing
				new_edge.v[0] = it_idx;
			}

			it = find(id2vert.begin(), id2vert.end(), i[1]);			//look for the second ID
			if(it == id2vert.end()){						//if i[1] hasn't already been used
				vertex new_vertex = new_edge[I-1];				//create a new vertex, assign it a position
				new_vertex.e[1].push_back(E.size());				//add the current edge as incoming
				new_edge.v[1] = V.size();                                  	//add the new vertex to the edge
				V.push_back(new_vertex);					//add the new vertex to the vertex list
				id2vert.push_back(i[1]);					//add the ID to the ID->vertex conversion list
			}
			else{									//if the vertex already exists
				it_idx = std::distance(id2vert.begin(), it);
				V[it_idx].e[1].push_back(E.size());				//add the current edge as incoming
				new_edge.v[1] = it_idx;
			}

			E.push_back(new_edge);							//push the edge to the list

		}
	}

	//load a network from an SWC file
	void load_swc(std::string filename) {
		stim::swc<T> S;										// create swc variable
		S.load(filename);									// load the node information
		S.create_tree();									// link those node according to their linking relationships as a tree
		S.resample();

		//NT.push_back(S.node[0].type);						// set the neuronal_type value to the first vertex in the network
		std::vector<unsigned> id2vert;						// this list stores the SWC vertex ID associated with each network vertex
		unsigned i[2];										// temporary, IDs associated with the first and last points

		for (unsigned int l = 0; l < S.numE(); l++) {		// for every edge
			//NT.push_back(S.node[l].type);

			std::vector< stim::vec3<T> > c;
			S.get_points(l, c);

			stim::centerline<T> c3(c.size());				// new fiber
			
			for (unsigned j = 0; j < c.size(); j++)
				c3[j] = c[j];								// copy the points
		
			c3.update();									// update the L information
			
			stim::cylinder<T> C3(c3);						// create a new cylinder in order to copy the origin radius information
			// upadate the R information
			std::vector<T> radius;
			S.get_radius(l, radius);

			C3.copy_r(radius);

			edge new_edge(C3);								// new edge	

			//create an edge from the given centerline
			unsigned int I = new_edge.size();				//calculate the number of points on the centerline
			
			//get the first and last vertex IDs for the line
			i[0] = S.E[l].front();
			i[1] = S.E[l].back();

			std::vector<unsigned>::iterator it;				//create an iterator for searching the id2vert array
			unsigned it_idx;								//create an integer for the id2vert entry index

			//find out if the nodes for this fiber have already been created
			it = find(id2vert.begin(), id2vert.end(), i[0]);	//look for the first node
			if (it == id2vert.end()) {							//if i[0] hasn't already been used
				vertex new_vertex = new_edge[0];				//create a new vertex, assign it a position
				new_vertex.e[0].push_back(E.size());			//add the current edge as outgoing
				new_edge.v[0] = V.size();						//add the new edge to the edge
				V.push_back(new_vertex);						//add the new vertex to the vertex list
				id2vert.push_back(i[0]);						//add the ID to the ID->vertex conversion list
			}
			else {									//if the vertex already exists
				it_idx = std::distance(id2vert.begin(), it);
				V[it_idx].e[0].push_back(E.size());				//add the current edge as outgoing
				new_edge.v[0] = it_idx;
			}

			it = find(id2vert.begin(), id2vert.end(), i[1]);	//look for the second ID
			if (it == id2vert.end()) {							//if i[1] hasn't already been used
				vertex new_vertex = new_edge[I - 1];			//create a new vertex, assign it a position
				new_vertex.e[1].push_back(E.size());			//add the current edge as incoming
				new_edge.v[1] = V.size();                       //add the new vertex to the edge
				V.push_back(new_vertex);						//add the new vertex to the vertex list
				id2vert.push_back(i[1]);						//add the ID to the ID->vertex conversion list
			}
			else {									//if the vertex already exists
				it_idx = std::distance(id2vert.begin(), it);
				V[it_idx].e[1].push_back(E.size());				//add the current edge as incoming
				new_edge.v[1] = it_idx;
			}

			E.push_back(new_edge);								//push the edge to the list
		}
	}

	/// Get adjacency matrix of the network
	std::vector< typename std::vector<int> > get_adj_mat() {
		
		unsigned n = V.size();		// get the number of vertices in the networks

		std::vector< typename std::vector<int> > result(n, std::vector<int>(n, 0));	// initialize every entry in the matrix to be 0
		result.resize(n);			// resize rows
		for (unsigned i = 0; i < n; i++)
			result[i].resize(n);	// resize columns
		
		for (unsigned i = 0; i < n; i++) {			// for every vertex
			unsigned num_out = V[i].e[0].size();	// number of outgoing edges of current vertex
			if (num_out != 0) {
				for (unsigned j = 0; j < num_out; j++) {
					int edge_idx = V[i].e[0][j];		// get the jth out-going edge index of current vertex
					int vertex_idx = E[edge_idx].v[1];	// get the ending vertex of specific out-going edge
					result[i][vertex_idx] = 1;			// can simply set to 1 if it is simple-graph
					result[vertex_idx][i] = 1;			// symmetric
				}
			}
		}

		return result;
	}

	/// Output the network as a string
	std::string str(){

		std::stringstream ss;
		ss<<"Nodes ("<<V.size()<<")--------"<<std::endl;
		for(unsigned int v = 0; v < V.size(); v++){
			ss<<"\t"<<v<<V[v].str()<<std::endl;
		}

		ss<<"Edges ("<<E.size()<<")--------"<<std::endl;
		for(unsigned e = 0; e < E.size(); e++){
			ss<<"\t"<<e<<E[e].str()<<std::endl;
		}

		return ss.str();
	}

	/// This function resamples all fibers in a network given a desired minimum spacing
	/// @param spacing is the minimum distance between two points on the network
	stim::network<T> resample(T spacing){
		stim::network<T> n;								//create a new network that will be an exact copy, with resampled fibers
		n.V = V;									//copy all vertices
		//n.NT = NT;										//copy all the neuronal type information
		n.E.resize(edges());								//allocate space for the edge list

		//copy all fibers, resampling them in the process
		for(unsigned e = 0; e < edges(); e++){						//for each edge in the edge list
			n.E[e] = E[e].resample(spacing);					//resample the edge and copy it to the new network
		}

		return n;							              	//return the resampled network
	}

	// host gaussian function
	__host__ float gaussianFunction(float x, float std = 25){ return exp(-x/(2*std*std));}  // std default value is 25

	/// Calculate the total number of points on all edges.
	unsigned total_points(){
		unsigned n = 0;
		for(unsigned e = 0; e < E.size(); e++)
			n += E[e].size();
		return n;
	}

	//Copy the point cloud representing the centerline for the network into an array
	void centerline_cloud(T* dst) {
		size_t p;										//stores the current edge point
		size_t P;										//stores the number of points in an edge
		size_t i = 0;									//index into the output array of points
		for (size_t e = 0; e < E.size(); e++) {			//for each edge in the network
			P = E[e].size();							//get the number of points in this edge
			for (p = 0; p < P; p++) {
				dst[i * 3 + 0] = E[e][p][0];		
				dst[i * 3 + 1] = E[e][p][1];
				dst[i * 3 + 2] = E[e][p][2];
				i++;
			}
		}
	}

    // convert vec3 to array
	void stim2array(float *a, stim::vec3<T> b){
		a[0] = b[0];
		a[1] = b[1];
		a[2] = b[2];
	}

	// convert vec3 to array in bunch
	void edge2array(T* a, edge b){
		size_t n = b.size();
		for(size_t i = 0; i < n; i++){
			a[i * 3 + 0] = b[i][0];
			a[i * 3 + 1] = b[i][1];
			a[i * 3 + 2] = b[i][2];	 
		}
	}

	/// Calculate the average magnitude across the entire network.
	/// @param m is the magnitude value to use. The default is 0 (usually radius).
	T average(unsigned m = 0){

		T M, L;										//allocate space for the total magnitude and length
		M = L = 0;									//initialize both the initial magnitude and length to zero
		for(unsigned e = 0; e < E.size(); e++){						//for each edge in the network
			M += E[e].integrate();							//get the integrated magnitude
			L += E[e].length();							//get the edge length
		}

		return M / L;									//return the average magnitude
	}

	/// This function compares two networks and returns the percentage of the current network that is missing from A.
	/// @param A is the network to compare to - the field is generated for A
	/// @param sigma is the user-defined tolerance value - smaller values provide a stricter comparison
	stim::network<T> compare(stim::network<T> A, float sigma, int device = -1){

		stim::network<T> R;										//generate a network storing the result of the comparison
		R = (*this);											//initialize the result with the current network

		T *c;						                 			// centerline (array of double pointers) - points on kdtree must be double
		size_t n_data = A.total_points();          				// set the number of points
		c = (T*) malloc(sizeof(T) * n_data * 3);				// allocate an array to store all points in the data set				

		unsigned t = 0;
		for(unsigned e = 0; e < A.E.size(); e++){				//for each edge in the network
			for(unsigned p = 0; p < A.E[e].size(); p++){		//for each point in the edge
				for(unsigned d = 0; d < 3; d++){				//for each coordinate

					c[t * 3 + d] = A.E[e][p][d];				//copy the point into the array c
				}
				t++;
			}
		}

		//generate a KD-tree for network A
		size_t MaxTreeLevels = 3;								// max tree level
		
#ifdef __CUDACC__
		cudaSetDevice(device);
		stim::kdtree<T, 3> kdt;								// initialize a pointer to a kd tree

		kdt.create(c, n_data, MaxTreeLevels);				// build a KD tree

		for(unsigned e = 0; e < R.E.size(); e++){					//for each edge in A
			//R.E[e].add_mag(0);							//add a new magnitude for the metric
			//size_t errormag_id = R.E[e].nmags() - 1;		//get the id for the new magnitude
			
			size_t n = R.E[e].size();						// the number of points in current edge
			T* queryPt = new T[3 * n];
			T* m1 = new T[n];
			T* dists = new T[n];
			size_t* nnIdx = new size_t[n];

			T* d_dists;										
			T* d_m1;										
			cudaMalloc((void**)&d_dists, n * sizeof(T));
			cudaMalloc((void**)&d_m1, n * sizeof(T));

			edge2array(queryPt, R.E[e]);
			kdt.search(queryPt, n, nnIdx, dists);		

			cudaMemcpy(d_dists, dists, n * sizeof(T), cudaMemcpyHostToDevice);					// copy dists from host to device

			// configuration parameters
			size_t threads = (1024>n)?n:1024;
			size_t blocks = n/threads + (n%threads)?1:0;

			d_metric<<<blocks, threads>>>(d_m1, n, d_dists, sigma);					//calculate the metric value based on the distance

			cudaMemcpy(m1, d_m1, n * sizeof(T), cudaMemcpyDeviceToHost);

			for(unsigned p = 0; p < n; p++){
				R.E[e].set_r(p, m1[p]);
			}

			//d_set_mag<<<blocks, threads>>>(R.E[e].M, errormag_id, n, m1);
		}

#else
		stim::kdtree<T, 3> kdt;
		kdt.create(c, n_data, MaxTreeLevels);
	
		for(unsigned e = 0; e < R.E.size(); e++){			//for each edge in A

			size_t n = R.E[e].size();						// the number of points in current edge
			T* query = new T[3 * n];
			T* m1 = new T[n];
			T* dists = new T[n];
			size* nnIdx = new size_t[n];

			edge2array(queryPt, R.E[e]);

			kdt.cpu_search(queryPt, n, nnIdx, dists);			//find the distance between A and the current network

			for(unsigned p = 0; p < R.E[e].size(); p++){
				m1[p] = 1.0f - gaussianFunction((T)dists[p], sigma);	//calculate the metric value based on the distance
				R.E[e].set_r(p, m1[p]);					//set the error for the second point in the segment
			}
		}
#endif
		return R;		//return the resulting network
	}

	/// This function compares two networks and split the current one according to the nearest neighbor of each point in each edge
	/// @param A is the network to split
	/// @param B is the corresponding mapping network
	/// @param sigma is the user-defined tolerance value - smaller values provide a stricter comparison
	/// @param device is the device that user want to use
	void split(stim::network<T> A, stim::network<T> B, float sigma, int device, float threshold){

		T *c;						                 	
		size_t n_data = B.total_points();          				
		c = (T*) malloc(sizeof(T) * n_data * 3); 				

		size_t NB = B.E.size();								// the number of edges in B
		unsigned t = 0;
		for(unsigned e = 0; e < NB; e++){					// for every edge in B			
			for(unsigned p = 0; p < B.E[e].size(); p++){	// for every points in B.E[e]
				for(unsigned d = 0; d < 3; d++){				

					c[t * 3 + d] = B.E[e][p][d];			// convert to array
				}
				t++;
			}
		}
		size_t MaxTreeLevels = 3;							// max tree level

#ifdef __CUDACC__
		cudaSetDevice(device);
		stim::kdtree<T, 3> kdt;								// initialize a pointer to a kd tree
	
		//compare each point in the current network to the field produced by A
		kdt.create(c, n_data, MaxTreeLevels);				// build a KD tree

		std::vector<std::vector<unsigned> > relation;		// the relationship between GT and T corresponding to NN
		relation.resize(A.E.size());										

		for(unsigned e = 0; e < A.E.size(); e++){			//for each edge in A
			//A.E[e].add_mag(0);								//add a new magnitude for the metric
			//size_t errormag_id = A.E[e].nmags() - 1;
			
			size_t n = A.E[e].size();						// the number of edges in A

			T* queryPt = new T[3 * n];							// set of all the points in current edge
			T* m1 = new T[n];								// array of metrics for every point in current edge
			T* dists = new T[n];							// store the distances for every point in current edge
			size_t* nnIdx = new size_t[n];					// store the indices for every point in current edge
			
			// define pointers in device
			T* d_dists;														
			T* d_m1;
			size_t* d_nnIdx;

			// allocate memory for defined pointers
			cudaMalloc((void**)&d_dists, n * sizeof(T));
			cudaMalloc((void**)&d_m1, n * sizeof(T));
			cudaMalloc((void**)&d_nnIdx, n * sizeof(size_t));

			edge2array(queryPt, A.E[e]);						// convert edge to array
			kdt.search(queryPt, n, nnIdx, dists);				// search the tree to find the NN for every point in current edge

			cudaMemcpy(d_dists, dists, n * sizeof(T), cudaMemcpyHostToDevice);					// copy dists from host to device
			cudaMemcpy(d_nnIdx, nnIdx, n * sizeof(size_t), cudaMemcpyHostToDevice);				// copy Idx from host to device

			// configuration parameters
			size_t threads = (1024>n)?n:1024;													// test to see whether the number of point in current edge is more than 1024
			size_t blocks = n/threads + (n%threads)?1:0;

			d_metric<<<blocks, threads>>>(d_m1, n, d_dists, sigma);								// calculate the metrics in parallel

			cudaMemcpy(m1, d_m1, n * sizeof(T), cudaMemcpyDeviceToHost);

			for(unsigned p = 0; p < n; p++){
				A.E[e].set_r(p, m1[p]);											// set the error(radius) value to every point in current edge
			}

			relation[e].resize(n);																// resize every edge relation size

			unsigned* d_relation;
			cudaMalloc((void**)&d_relation, n * sizeof(unsigned));								// allocate memory

			std::vector<size_t> edge_point_num(NB);												// %th element is the number of points that %th edge has
			for(unsigned ee = 0; ee < NB; ee++)
				edge_point_num[ee] = B.E[ee].size();

			size_t* d_edge_point_num;
			cudaMalloc((void**)&d_edge_point_num, NB * sizeof(size_t));
			cudaMemcpy(d_edge_point_num, &edge_point_num[0], NB * sizeof(size_t), cudaMemcpyHostToDevice);

			d_findedge<<<blocks, threads>>>(d_nnIdx, n, d_relation, d_edge_point_num, NB);			// find the edge corresponding to the array index in parallel

			cudaMemcpy(&relation[e][0], d_relation, n * sizeof(unsigned), cudaMemcpyDeviceToHost);	//copy relationship from device to host
		}
#else
		stim::kdtree<T, 3> kdt;
		kdt.create(c, n_data, MaxTreeLevels);
	
		std::vector<std::vector<unsigned>> relation;		// the mapping relationship between two networks
		relation.resize(A.E.size());										
		for(unsigned i = 0; i < A.E.size(); i++)
			relation[i].resize(A.E[i].size());

		std::vector<size_t> edge_point_num(NB);				//%th element is the number of points that %th edge has
		for(unsigned ee = 0; ee < NB; ee++)
			edge_point_num[ee] = B.E[ee].size();

		for(unsigned e = 0; e < A.E.size(); e++){			//for each edge in A
			
			size_t n = A.E[e].size();						//the number of edges in A

			T* queryPt = new T[3 * n];
			T* m1 = new T[n];
			T* dists = new T[n];							//store the distances
			size_t* nnIdx = new size_t[n];					//store the indices
			
			edge2array(queryPt, A.E[e]);
			kdt.search(queryPt, n, nnIdx, dists);		

			for(unsigned p = 0; p < A.E[e].size(); p++){
				m1[p] = 1.0f - gaussianFunction((T)dists[p], sigma);	//calculate the metric value based on the distance
				A.E[e].set_r(p, m1[p]);									//set the error for the second point in the segment
				
				unsigned id = 0;																	//mapping edge's idx
				size_t num = 0;																		//total number of points before #th edge
				for(unsigned i = 0; i < NB; i++){
					num += B.E[i].size();
					if(nnIdx[p] < num){																//find the edge it belongs to
						relation[e][p] = id;
						break;
					}
					id++;																			//current edge won't be the one, move to next edge
				}
			}
		}
#endif
		E = A.E;
		V = A.V;

		unsigned int id = 0;									// split value								
		for(unsigned e = 0; e < E.size(); e++){					// for every edge
			for(unsigned p = 0; p < E[e].size() - 1; p++){		// for every point in each edge
				int t = E[e].length() / sigma * 2;
				if (t <= 20)
					threshold_fac = E[e].size();
				else
					threshold_fac = (E[e].length() / sigma * 2)/10;
				if(relation[e][p] != relation[e][p + 1]){		// find the nearest edge changing point
					id = p + 1;									// if there is no change in NN
					if(id < threshold_fac || (E[e].size() - id) < threshold_fac)				
						id = E[e].size() - 1;																			// extreme situation is not acceptable
					else
						break;
				}
				if(p == E[e].size() - 2)																// if there is no splitting index, set the id to the last point index of current edge
					id = E[e].size() - 1;
			}
			//unsigned errormag_id = E[e].nmags() - 1;
			T G = 0;																					// test to see whether it has its nearest neighbor
			for(unsigned i = 0; i < E[e].size(); i++)
				G += E[e].r(i);																			// won't split special edges
			if(G / E[e].size() > threshold)															// should based on the color map
				id = E[e].size() - 1;																	// set split idx to outgoing direction vertex

			std::vector<edge> tmpe;
			tmpe.resize(2);
			tmpe = E[e].split(id);
			vertex tmpv = stim::vec3<T>(-1, -1, 0);														// store the split point as vertex
			if(tmpe.size() == 2){
				relation.resize(relation.size() + 1);
				for(unsigned d = id; d < E[e].size(); d++)
					relation[relation.size() - 1].push_back(relation[e][d]);
				tmpe[0].v[0] = E[e].v[0];																// begining vertex of first half edge -> original begining vertex
				tmpe[1].v[1] = E[e].v[1];																// ending vertex of second half edge -> original ending vertex
				tmpv = E[e][id];
				V.push_back(tmpv);
				tmpe[0].v[1] = (unsigned)V.size() - 1;													// ending vertex of first half edge -> new vertex
				tmpe[1].v[0] = (unsigned)V.size() - 1;													// begining vertex of second half edge -> new vertex
				edge tmp(E[e]);
				E[e] = tmpe[0];																			// replace original edge by first half edge
				E.push_back(tmpe[1]);																	// push second half edge to the last
				V[V.size() - 1].e[1].push_back(e);														// push first half edge to the incoming of new vertex
				V[V.size() - 1].e[0].push_back((unsigned)E.size() - 1);									// push second half edge to the outgoing of new vertex
				for(unsigned i = 0; i < V[tmp.v[1]].e[1].size(); i++)									// find the incoming edge of original ending vertex
					if(V[tmp.v[1]].e[1][i] == e)
						V[tmp.v[1]].e[1][i] = (unsigned)E.size() - 1;									// set to new edge
			}
		}
	}

	/// This function compares two splitted networks and yields a mapping relationship between them according to NN
	/// @param B is the network that the current network is going to map to
	/// @param C is the mapping relationship: C[e1] = _e1 means e1 edge in current network is mapping the _e1 edge in B
	/// @param device is the device that user want to use
	void mapping(stim::network<T> B, std::vector<unsigned> &C, int device, float threshold){
		stim::network<T> A;								//generate a network storing the result of the comparison
		A = (*this);

		size_t n = A.E.size();							// the number of edges in A
		size_t NB = B.E.size();							// the number of edges in B

		C.resize(A.E.size());	

		T *c;						                 	// centerline (array of double pointers) - points on kdtree must be double
		size_t n_data = B.total_points();          		// set the number of points
		c = (T*) malloc(sizeof(T) * n_data * 3); 				

		unsigned t = 0;
		for(unsigned e = 0; e < NB; e++){					// for each edge in the network
			for(unsigned p = 0; p < B.E[e].size(); p++){	// for each point in the edge
				for(unsigned d = 0; d < 3; d++){			// for each coordinate

					c[t * 3 + d] = B.E[e][p][d];
				}
				t++;
			}
		}

		//generate a KD-tree for network A
		//float metric = 0.0;                               		// initialize metric to be returned after comparing the network
		size_t MaxTreeLevels = 3;									// max tree level
		
#ifdef __CUDACC__
		cudaSetDevice(device);
		stim::kdtree<T, 3> kdt;								// initialize a pointer to a kd tree
	
		kdt.create(c, n_data, MaxTreeLevels);				// build a KD tree

		for(unsigned e = 0; e < n; e++){					//for each edge in A
			//size_t errormag_id = A.E[e].nmags() - 1;		//get the id for the new magnitude
			
			//pre-judge to get rid of impossibly mapping edges
			T M = 0;
			for(unsigned p = 0; p < A.E[e].size(); p++)
				M += A.E[e].r(p);
			M = M / A.E[e].size();
			if(M > threshold)
				C[e] = (unsigned)-1;						//set the nearest edge of impossibly mapping edges to maximum of unsigned
			else{
				T* queryPt = new T[3];
				T* dists = new T[1];
				size_t* nnIdx = new size_t[1];

				stim2array(queryPt, A.E[e][A.E[e].size()/2]);
				kdt.search(queryPt, 1, nnIdx, dists);
				
				unsigned id = 0;							//mapping edge's idx
				size_t num = 0;								//total number of points before #th edge
				for(unsigned i = 0; i < NB; i++){
					num += B.E[i].size();
					if(nnIdx[0] < num){
						C[e] = id;
						break;
					}
					id++;
				}
			}
		}
#else
		stim::kdtree<T, 3> kdt;
		kdt.create(c, n_data, MaxTreeLevels);
		T *dists = new T[1];								// near neighbor distances
		size_t *nnIdx = new size_t[1];						// near neighbor indices // allocate near neigh indices

		stim::vec3<T> p0, p1;
		T* queryPt = new T[3];

		for(unsigned e = 0; e < R.E.size(); e++){			// for each edge in A
			T M;											// the sum of metrics of current edge
			for(unsigned p = 0; p < R.E[e].size(); p++)
				M += A.E[e].r(p);
			M = M / A.E[e].size();
			if(M > threshold)								
				C[e] = (unsigned)-1;
			else{											// if it should have corresponding edge in B, then...
				p1 = R.E[e][R.E[e].size()/2];							
				stim2array(queryPt, p1);
				kdt.cpu_search(queryPt, 1, nnIdx, dists);	// search the tree		
				
				unsigned id = 0;							//mapping edge's idx
				size_t num = 0;								//total number of points before #th edge
				for(unsigned i = 0; i < NB; i++){
					num += B.E[i].size();
					if(nnIdx[0] < num){
						C[e] = id;
						break;
					}
					id++;
				}
			}
		}
#endif
	}

	/// Returns the number of magnitude values stored in each edge. This should be uniform across the network.
	//unsigned nmags(){
	//	return E[0].nmags();
	//}
	// split a string in text by the character sep
	stim::vec<T> split(std::string &text, char sep) 
	{
		stim::vec<T> tokens;
		std::size_t start = 0, end = 0;
		while ((end = text.find(sep, start)) != std::string::npos) {
		tokens.push_back(atof(text.substr(start, end - start).c_str()));
		start = end + 1;
		}
		tokens.push_back(atof(text.substr(start).c_str()));
		return tokens;
	}
	// load a network in text file to a network class
	void load_txt(std::string filename)
	{
		std::vector <std::string> file_contents;
		std::ifstream file(filename.c_str());
		std::string line;
		std::vector<unsigned> id2vert;	//this list stores the vertex ID associated with each network vertex
		//for each line in the text file, store them as strings in file_contents
		while (std::getline(file, line))
		{
			std::stringstream ss(line);
			file_contents.push_back(ss.str());
		}
		unsigned int numEdges = atoi(file_contents[0].c_str()); //number of edges in the network
		unsigned int I = atoi(file_contents[1].c_str()) ;		//calculate the number of points3d on the first edge
		unsigned int count = 1; unsigned int k = 2; // count is global counter through the file contents, k is for the vertices on the edges
		// for each edge in the network.
		for (unsigned int i = 0; i < numEdges; i ++ )
		{
			// pre allocate a position vector p with number of points3d on the edge p
			std::vector< stim::vec<T> > p(0, I);
			// for each point on the nth edge
		  for (unsigned int j = k; j < I + k; j++)
		  {
			 // split the points3d of floats with separator space and form a float3 position vector out of them
			  p.push_back(split(file_contents[j], ' '));
		  }
			count += p.size() + 1; // increment count to point at the next edge in the network
			I = atoi(file_contents[count].c_str()); // read in the points3d at the next edge and convert it to an integer
			k = count + 1;
			edge new_edge = p; // create an edge with a vector of points3d  on the edge
			E.push_back(new_edge); // push the edge into the network
		}
		unsigned int numVertices = atoi(file_contents[count].c_str()); // this line in the text file gives the number of distinct vertices
		count = count + 1; // this line of text file gives the first verrtex
		// push each vertex into V
		for (unsigned int i = 0; i < numVertices; i ++)
		{
			vertex new_vertex = split(file_contents[count], ' ');
			V.push_back(new_vertex);
			count += atoi(file_contents[count + 1].c_str()) + 2; // Skip number of edge ids + 2 to point to the next vertex
		}
	} // end load_txt function

	// strTxt returns a string of edges
	std::string
	strTxt(std::vector< stim::vec<T> > p)
	{
		std::stringstream ss;
		std::stringstream oss;
		for(unsigned int i = 0; i < p.size(); i++){
			ss.str(std::string());
			for(unsigned int d = 0; d < 3; d++){
				ss<<p[i][d];
			}
			ss << "\n";
		}
		return ss.str();
	}
	// removes specified character from string
	void removeCharsFromString(std::string &str, char* charsToRemove ) {
	   for ( unsigned int i = 0; i < strlen(charsToRemove); ++i ) {
		  str.erase( remove(str.begin(), str.end(), charsToRemove[i]), str.end() );
	   }
	}
	//exports network to txt file
	void
	to_txt(std::string filename)
	{
		std::ofstream ofs(filename.c_str(), std::ofstream::out | std::ofstream::app);
		//int num;
		ofs << (E.size()).str() << "\n";
		for(unsigned int i = 0; i < E.size(); i++)
		{
			 std::string str;
			 ofs << (E[i].size()).str() << "\n";
			 str = E[i].strTxt();
             ofs << str << "\n";
		} 
		for(int i = 0; i < V.size(); i++)
		{
			std::string str;
			str = V[i].str();
			char temp[4] = "[],";
			removeCharsFromString(str, temp);
			ofs << str << "\n";
		}
		ofs.close();
	}
};		//end stim::network class
};		//end stim namespace
#endif