matrix.h
13.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
#ifndef STIM_MATRIX_H
#define STIM_MATRIX_H
//#include "rts/vector.h"
#include <string.h>
#include <iostream>
#include <fstream>
#include <stim/math/vector.h>
#include <stim/math/vec3.h>
//#include <stim/cuda/cudatools/callable.h>
namespace stim{
enum mat4Format {
mat4_float64,
mat4_float32,
mat4_int32,
mat4_int16,
mat4_uint16,
mat4_uint8,
mat4_float //floating point type, determined automatically
};
static size_t mat4Format_size(mat4Format f){
switch(f){
case mat4_float64: return 8;
case mat4_float32:
case mat4_int32: return 4;
case mat4_int16:
case mat4_uint16: return 2;
case mat4_uint8: return 1;
default: return 0;
}
}
//class encapsulates a mat4 file, and can be used to write multiple matrices to a single mat4 file
class mat4file {
std::ofstream matfile;
public:
/// Constructor opens a mat4 file for writing
mat4file(std::string filename) {
matfile.open(filename, std::ios::binary);
}
bool is_open() {
return matfile.is_open();
}
void close() {
matfile.close();
}
bool writemat(char* data, std::string varname, size_t sx, size_t sy, mat4Format format) {
//save the matrix file here (use the mat4 function above)
//data format: https://maxwell.ict.griffith.edu.au/spl/matlab-page/matfile_format.pdf (page 32)
int MOPT = 0; //initialize the MOPT type value to zero
int m = 0; //little endian
int o = 0; //reserved, always 0
int p = format;
int t = 0;
MOPT = m * 1000 + o * 100 + p * 10 + t; //calculate the type value
int mrows = (int)sx;
int ncols = (int)sy;
int imagf = 0; //assume real (for now)
varname.push_back('\0'); //add a null to the string
int namlen = (int)varname.size(); //calculate the name size
size_t bytes = sx * sy * mat4Format_size(format);
matfile.write((char*)&MOPT, 4);
matfile.write((char*)&mrows, 4);
matfile.write((char*)&ncols, 4);
matfile.write((char*)&imagf, 4);
matfile.write((char*)&namlen, 4);
matfile.write((char*)&varname[0], namlen);
matfile.write((char*)data, bytes); //write the matrix data
return is_open();
}
};
static void save_mat4(char* data, std::string filename, std::string varname, size_t sx, size_t sy, mat4Format format){
mat4file outfile(filename); //create a mat4 file object
if (outfile.is_open()) { //if the file is open
outfile.writemat(data, varname, sx, sy, format); //write the matrix
outfile.close(); //close the file
}
}
template <class T>
class matrix {
//the matrix will be stored in column-major order (compatible with OpenGL)
T* M; //pointer to the matrix data
size_t R; //number of rows
size_t C; //number of colums
size_t bytes() {
return R * C * sizeof(T); //return the number of bytes of matrix data
}
/*void init(size_t rows, size_t cols){
R = rows;
C = cols;
if (R == 0 || C == 0) M = NULL;
else
M = (T*)malloc(R * C * sizeof(T)); //allocate space for the matrix
}*/
T get(const size_t row, const size_t col) const {
if (row >= R || col >= C) {
std::cout << "ERROR: row or column out of range." << std::endl;
exit(1);
}
return M[col * R + row];
}
T& at(size_t row, size_t col){
if (row >= R || col >= C) {
std::cout << "ERROR: row or column out of range." << std::endl;
exit(1);
}
return M[col * R + row];
}
public:
matrix() {
R = 0;
C = 0;
M = NULL;
}
matrix(size_t rows, size_t cols) {
R = rows;
C = cols;
M = NULL;
if (R * C > 0)
M = (T*) malloc(R * C * sizeof(T));
}
matrix(size_t rows, size_t cols, const T* data) {
R = rows;
C = cols;
M = NULL;
if (R * C > 0)
M = (T*)malloc(R * C * sizeof(T));
memcpy(M, data, R * C * sizeof(T));
}
matrix(const matrix<T>& cpy){
M = NULL;
if (cpy.R * cpy.C > 0)
M = (T*)malloc(cpy.R * cpy.C * sizeof(T));
memcpy(M, cpy.M, cpy.R * cpy.C * sizeof(T));
R = cpy.R;
C = cpy.C;
}
~matrix() {
if(M) free(M);
M = NULL;
R = C = 0;
}
size_t rows() const {
return R;
}
size_t cols() const {
return C;
}
T& operator()(size_t row, size_t col) {
return at(row, col);
}
matrix<T>& operator=(const T rhs) {
//init(R, C);
size_t N = R * C;
for(size_t n=0; n<N; n++)
M[n] = rhs;
return *this;
}
matrix<T>& operator=(const matrix<T>& rhs){
if (this != &rhs) { //if the matrix isn't self-assigned
T* new_matrix = new T[rhs.R * rhs.C]; //allocate new resources
memcpy(new_matrix, rhs.M, rhs.R * rhs.C * sizeof(T)); //copy the matrix
delete[] M; //delete the previous array
M = new_matrix;
R = rhs.R;
C = rhs.C;
}
return *this;
}
//element-wise operations
matrix<T> operator+(const T rhs) const {
matrix<T> result(R, C); //create a result matrix
size_t N = R * C;
for(int i=0; i<N; i++)
result.M[i] = M[i] + rhs; //calculate the operation and assign to result
return result;
}
matrix<T> operator+(const matrix<T> rhs) const {
if (R != rhs.R || C != rhs.C) {
std::cout << "ERROR: addition is only defined for matrices that are the same size." << std::endl;
exit(1);
}
matrix<T> result(R, C); //create a result matrix
size_t N = R * C;
for (int i = 0; i < N; i++)
result.M[i] = M[i] + rhs.M[i]; //calculate the operation and assign to result
return result;
}
matrix<T> operator-(const T rhs) const {
return operator+(-rhs); //add the negative of rhs
}
matrix<T> operator-(const matrix<T> rhs) const {
return operator+(-rhs);
}
matrix<T> operator-() const {
matrix<T> result(R, C); //create a result matrix
size_t N = R * C;
for (int i = 0; i < N; i++)
result.M[i] = -M[i]; //calculate the operation and assign to result
return result;
}
matrix<T> operator*(const T rhs) const {
matrix<T> result(R, C); //create a result matrix
size_t N = R * C;
for(int i=0; i<N; i++)
result.M[i] = M[i] * rhs; //calculate the operation and assign to result
return result;
}
matrix<T> operator/(const T rhs) const {
matrix<T> result(R, C); //create a result matrix
size_t N = R * C;
for(int i=0; i<N; i++)
result.M[i] = M[i] / rhs; //calculate the operation and assign to result
return result;
}
//matrix multiplication
matrix<T> operator*(const matrix<T> rhs) const {
if(C != rhs.R){
std::cout<<"ERROR: matrix multiplication is undefined for matrices of size ";
std::cout<<"[ "<<R<<" x "<<C<<" ] and [ "<<rhs.R<<" x "<<rhs.C<<"]"<<std::endl;
exit(1);
}
matrix<T> result(R, rhs.C); //create the output matrix
T inner; //stores the running inner product
size_t c, r, i;
for(c = 0; c < rhs.C; c++){
for(r = 0; r < R; r++){
inner = (T)0;
for(i = 0; i < C; i++){
inner += get(r, i) * rhs.get(i, c);
}
result.M[c * R + r] = inner;
}
}
return result;
}
//returns a pointer to the raw matrix data (in column major format)
T* data(){
return M;
}
//return a transposed matrix
matrix<T> transpose() const {
matrix<T> result(C, R);
size_t c, r;
for(c = 0; c < C; c++){
for(r = 0; r < R; r++){
result.M[r * C + c] = M[c * R + r];
}
}
return result;
}
// Reshapes the matrix in place
void reshape(size_t rows, size_t cols) {
R = rows;
C = cols;
}
///Calculate and return the determinant of the matrix
T det() const {
if (R != C) {
std::cout << "ERROR: a determinant can only be calculated for a square matrix." << std::endl;
exit(1);
}
if (R == 1) return M[0]; //if the matrix only contains one value, return it
int r, c, ri, cia, cib;
T a = 0;
T b = 0;
for (c = 0; c < (int)C; c++) {
for (r = 0; r < R; r++) {
ri = r;
cia = (r + c) % (int)C;
cib = ((int)C - 1 - r) % (int)C;
a += get(ri, cia);
b += get(ri, cib);
}
}
return a - b;
}
/// Sum all elements in the matrix
T sum() const {
size_t N = R * C; //calculate the number of elements in the matrix
T s = (T)0; //allocate a register to store the sum
for (size_t n = 0; n < N; n++) s += M[n]; //perform the summation
return s;
}
/// Sort rows of the matrix by the specified indices
matrix<T> sort_rows(size_t* idx) const {
matrix<T> result(C, R); //create the output matrix
size_t r, c;
for (c = 0; c < C; c++) { //for each column
for (r = 0; r < R; r++) { //for each row element
result.M[c * R + r] = M[c * R + idx[r]]; //copy each element of the row into its new position
}
}
return result;
}
/// Sort columns of the matrix by the specified indices
matrix<T> sort_cols(size_t* idx, size_t data_type = mat4_float) const {
matrix<T> result(C, R);
size_t c;
for (c = 0; c < C; c++) { //for each column
memcpy(&result.M[c * R], &M[idx[c] * R], sizeof(T) * R); //copy the entire column from this matrix to the appropriate location
}
return result;
}
/// Return the column specified by index i
matrix<T> col(size_t i) {
matrix<T> c(R, 1); //create a single column matrix
memcpy(c.data(), &data()[R*i], C * sizeof(T)); //copy the column
return c;
}
/// Return the row specified by index i
matrix<T> row(size_t i) {
matrix<T> r(1, C); //create a single row matrix
for (size_t c = 0; c < C; c++)
r(0, c) = at(i, c);
return r;
}
std::string toStr() const {
std::stringstream ss;
for(int r = 0; r < R; r++) {
ss << "| ";
for(int c=0; c<C; c++) {
ss << M[c * R + r] << " ";
}
ss << "|" << std::endl;
}
return ss.str();
}
void csv(std::ostream& out) const {
//std::stringstream csvss;
for (size_t i = 0; i < R; i++) {
out << std::fixed << M[i];
for (size_t j = 1; j < C; j++)
out << ", " << std::fixed << M[j * R + i];
out << std::endl;
}
//return csvss.str();
}
std::string csv() const {
std::stringstream csvss;
int digits = std::numeric_limits<double>::max_digits10;
csvss.precision(digits);
csv(csvss);
return csvss.str();
}
//save the data as a CSV file
void csv(std::string filename) const {
std::ofstream basisfile(filename.c_str());
basisfile << csv();
basisfile.close();
}
static matrix<T> I(size_t N) {
matrix<T> result(N, N); //create the identity matrix
memset(result.M, 0, N * N * sizeof(T)); //set the entire matrix to zero
for (size_t n = 0; n < N; n++) {
result(n, n) = (T)1; //set the diagonal component to 1
}
return result;
}
//loads a matrix from a stream in CSV format
void csv(std::istream& in) {
size_t c, r;
T v;
for (r = 0; r < R; r++) {
for (c = 0; c < C; c++) {
in >> v;
if (in.peek() == ',') in.seekg(1, std::ios::cur);
at(r, c) = v;;
}
}
}
void raw(std::string filename) {
std::ofstream out(filename, std::ios::binary);
if (out) {
out.write((char*)data(), rows() * cols() * sizeof(T));
out.close();
}
}
void mat4(stim::mat4file& file, std::string name = std::string("unknown"), mat4Format format = mat4_float) {
//make sure the matrix name is valid (only numbers and letters, with a letter at the beginning
for (size_t c = 0; c < name.size(); c++) {
if (name[c] < 48 || //if the character isn't a number or letter, replace it with '_'
(name[c] > 57 && name[c] < 65) ||
(name[c] > 90 && name[c] < 97) ||
(name[c] > 122)) {
name[c] = '_';
}
}
if (name[0] < 65 ||
(name[0] > 91 && name[0] < 97) ||
name[0] > 122) {
name = std::string("m") + name;
}
if (format == mat4_float) {
if (sizeof(T) == 4) format = mat4_float32;
else if (sizeof(T) == 8) format = mat4_float64;
else {
std::cout << "stim::matrix ERROR - incorrect format specified" << std::endl;
exit(1);
}
}
//the name is now valid
//if the size of the array is more than 100,000,000 elements, the matrix isn't supported
if (rows() * cols() > 100000000) { //break the matrix up into multiple parts
//mat4file out(filename); //create a mat4 object to write the matrix
if (file.is_open()) {
if (rows() < 100000000) { //if the size of the row is less than 100,000,000, split the matrix up by columns
size_t ncols = 100000000 / rows(); //calculate the number of columns that can fit in one matrix
size_t nmat = (size_t)std::ceil((double)cols() / (double)ncols); //calculate the number of matrices required
for (size_t m = 0; m < nmat; m++) { //for each matrix
std::stringstream ss;
ss << name << "_part_" << m + 1;
if (m == nmat - 1)
file.writemat((char*)(data() + m * ncols * rows()), ss.str(), rows(), cols() - m * ncols, format);
else
file.writemat((char*)(data() + m * ncols * rows()), ss.str(), rows(), ncols, format);
}
}
}
}
//call the mat4 subroutine
else
//stim::save_mat4((char*)M, filename, name, rows(), cols(), format);
file.writemat((char*)data(), name, rows(), cols(), format);
}
// saves the matrix as a Level-4 MATLAB file
void mat4(std::string filename, std::string name = std::string("unknown"), mat4Format format = mat4_float) {
stim::mat4file matfile(filename);
if (matfile.is_open()) {
mat4(matfile, name, format);
matfile.close();
}
}
};
} //end namespace rts
#endif