spharmonics.h 15.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
#ifndef STIM_SPH_HARMONICS
#define STIM_SPH_HARMONICS

#include <complex>
#include <boost/math/special_functions/spherical_harmonic.hpp>
#include <stim/math/constants.h>
#include <stim/math/random.h>
#include <vector>

#define WIRE_SCALE 1.001
namespace stim {

	template<class T>
	class spharmonics {

	public:
		std::vector<T> C;										//list of SH coefficients

	protected:
		unsigned int mcN;										//number of Monte-Carlo samples
		unsigned int coeff_1d(unsigned int l, int m) {			//convert (l,m) to i (1D coefficient index)
			return pow(l + 1, 2) - (l - m) - 1;
		}
		void coeff_2d(size_t c, unsigned int& l, int& m) {		//convert a 1D coefficient index into (l, m)
			l = (unsigned int)ceil(sqrt((double)c + 1)) - 1;		//the major index is equal to sqrt(c) - 1
			m = (int)(c - (size_t)(l * l)) - (int)l;			//the minor index is calculated by finding the difference
		}

	public:
		spharmonics() {
			mcN = 0;
		}
		spharmonics(size_t c) : spharmonics() {
			resize(c);
		}

		void push(T c) {
			C.push_back(c);
		}

		void resize(unsigned int n) {
			C.resize(n);
		}

		void setc(unsigned int l, int m, T value) {
			u44nsigned int c = coeff_1d(l, m);
			C[c] = value;
		}

		T getc(unsigned int l, int m) {
			unsigned int c = coeff_1d(l, m);
			return C[c];
		}

		void setc(unsigned int c, T value) {
			C[c] = value;
		}

		unsigned int getSize() const {
			return C.size();
		}

		std::vector<T> getC() const {
			return C;
		}
		//calculate the value of the SH basis function (l, m) at (theta, phi)
		//here, theta = [0, PI], phi = [0, 2*PI]
		T SH(unsigned int l, int m, T theta, T phi) {
			//std::complex<T> result = boost::math::spherical_harmonic(l, m, phi, theta);
			//return result.imag() + result.real();

			//this calculation is based on calculating the real spherical harmonics:
			//		https://en.wikipedia.org/wiki/Spherical_harmonics#Addition_theorem
			if (m < 0) {
				return sqrt(2.0) * pow(-1, m) * boost::math::spherical_harmonic(l, abs(m), phi, theta).imag();
			}
			else if (m == 0) {
				return boost::math::spherical_harmonic(l, m, phi, theta).real();
			}
			else {
				return sqrt(2.0) * pow(-1, m) * boost::math::spherical_harmonic(l, m, phi, theta).real();
			}
		}

		/// Calculate the spherical harmonic result given a 1D coefficient index
		T SH(size_t c, T theta, T phi) {
			unsigned int l;
			int m;
			coeff_2d(c, l, m);
			return SH(l, m, theta, phi);
		}



		/// Initialize Monte-Carlo sampling of a function using N spherical harmonics coefficients

		/// @param N is the number of spherical harmonics coefficients used to represent the user function
		void mcBegin(unsigned int coefficients) {
			C.resize(coefficients, 0);
			mcN = 0;
		}

		void mcBegin(unsigned int l, int m) {
			unsigned int c = pow(l + 1, 2) - (l - m);
			mcBegin(c);
		}

		void mcSample(T theta, T phi, T val) {

			int l, m;
			T sh;

			l = m = 0;
			for (unsigned int i = 0; i < C.size(); i++) {

				sh = SH(l, m, theta, phi);
				C[i] += sh * val;

				m++;			//increment m

								//if we're in a new tier, increment l and set m = -l
				if (m > l) {
					l++;
					m = -l;
				}
			}	//end for all coefficients

				//increment the number of samples
			mcN++;

		}	//end mcSample()

		void mcEnd() {

			//divide all coefficients by the number of samples
			for (unsigned int i = 0; i < C.size(); i++)
				C[i] /= mcN;
		}

		/// Generates a PDF describing the probability distribution of points on a spherical surface
		/// @param sph_pts is a list of points in spherical coordinates (theta, phi) where theta = [0, 2pi] and phi = [0, pi]
		/// @param l is the maximum degree of the spherical harmonic function
		/// @param m is the maximum order
		void pdf(std::vector<stim::vec3<T> > sph_pts, unsigned int l, int m) {
			mcBegin(l, m);		//begin spherical harmonic sampling
			unsigned int nP = sph_pts.size();
			for (unsigned int p = 0; p < nP; p++) {
				mcSample(sph_pts[p][1], sph_pts[p][2], 1.0);
			}
			mcEnd();
		}

		void pdf(std::vector<stim::vec3<T> > sph_pts, size_t c) {
			unsigned int l;
			int m;
			coeff_2d(c, l, m);
			pdf(sph_pts, l, m);
		}

		/// Project a set of samples onto a spherical harmonic basis
		void project(std::vector<stim::vec3<T> > sph_pts, unsigned int l, int m) {
			mcBegin(l, m);		//begin spherical harmonic sampling
			unsigned int nP = sph_pts.size();
			for (unsigned int p = 0; p < nP; p++) {
				mcSample(sph_pts[p][1], sph_pts[p][2], sph_pts[p][0]);
			}
			mcEnd();
		}
		void project(std::vector<stim::vec3<T> > sph_pts, size_t c) {
			unsigned int l;
			int m;
			coeff_2d(c, l, m);
			project(sph_pts, l, m);
		}

                /// Generates a PDF describing the density distribution of points on a sphere
                /// @param sph_pts is a list of points in cartesian coordinates 
                /// @param l is the maximum degree of the spherical harmonic function
                /// @param m is the maximum order
                /// @param c is the centroid of the points in sph_pts. DEFAULT 0,0,0
                /// @param n is the number of points of the surface of the sphere used to create the PDF. DEFAULT 1000
                /// @param norm, a boolean that sets where the output vectors will be normalized between 0 and 1.
                /// @param 
                void pdf(std::vector<stim::vec3<T> > sph_pts, unsigned int l, int m, stim::vec3<T> c = stim::vec3<T>(0, 0, 0),  unsigned int n = 1000, bool norm = true, std::vector<T> w = std::vector<T>(), int normfactor = 1)
                {
                        std::vector<double> weights;            ///the weight at each point on the surface of the sphere.
                                                                                                //              weights.resize(n);
                        unsigned int nP = sph_pts.size();       ///sph_pts is the vectors we want to fit a spehrical harmonic to.
                        std::vector<stim::vec3<T> > sphere = stim::Random<T>::sample_sphere(n, 1.0, stim::TAU);         ///randomsample a sphere of radius 1 and return the sampled vectors.
                        if (w.size() < nP)
                                w = std::vector<T>(nP, 1.0);    //1 weight per each m.

                        for (int i = 0; i < n; i++)             //for each weight
                        {
                                T val = 0;
                                for (int j = 0; j < nP; j++)    //for each vector
                                {
                                        stim::vec3<T> temp = sph_pts[j] - c;
                                        if (temp.dot(sphere[i]) > 0)
                                                val += pow(temp.dot(sphere[i]), normfactor)*w[j];
                                }
                                weights.push_back(val);
                        }

                        mcBegin(l, m);          //begin spherical harmonic sampling

                        if (norm)
                        {
                                T min = *std::min_element(weights.begin(), weights.end());
                                T max = *std::max_element(weights.begin(), weights.end());
                                for (unsigned int i = 0; i < n; i++)
                                {
                                        stim::vec3<T> sph = sphere[i].cart2sph();
                                        mcSample(sph[1], sph[2], (weights[i] - min) / (max - min));
                                }

                        }
                        else {
                                for (unsigned int i = 0; i < n; i++)
                                {
                                        stim::vec3<T> sph = sphere[i].cart2sph();
                                        mcSample(sph[1], sph[2], weights[i]);
                                }
                        }
                        mcEnd();
                }

		std::string str() {

			std::stringstream ss;

			int l, m;
			l = m = 0;
			for (unsigned int i = 0; i < C.size(); i++) {

				ss << C[i] << '\t';

				m++;			//increment m

								//if we're in a new tier, increment l and set m = -l
				if (m > l) {
					l++;
					m = -l;

					ss << std::endl;

				}
			}

			return ss.str();


		}

		/// Returns the value of the function at coordinate (theta, phi)
		T p(T theta, T phi) {
			T fx = 0;

			int l = 0;
			int m = 0;
			for (unsigned int i = 0; i < C.size(); i++) {
				fx += C[i] * SH(l, m, theta, phi);
				m++;
				if (m > l) {
					l++;
					m = -l;
				}
			}
			return fx;
		}

		/// Returns the derivative of the spherical function with respect to theta
		///		return value is in cartesian coordinates
		vec3<T> dtheta(T theta, T phi, T d = 0.01) {
			T r = p(theta, phi);											//calculate the value of the spherical function at three points
			T rt = p(theta + d, phi);
			//double rp = p(theta, phi + d);

			vec3<T> s(r, theta, phi);										//get the spherical coordinate position for all three points
			vec3<T> st(rt, theta + d, phi);
			//vec3<double> sp(rp, theta, phi + d);

			vec3<T> c = s.sph2cart();
			vec3<T> ct = st.sph2cart();
			//vec3<double> cp = sp.sph2cart();

			vec3<T> dt = (ct - c)/d;									//calculate the derivative
			return dt;
		}

		/// Returns the derivative of the spherical function with respect to phi
		///		return value is in cartesian coordinates
		vec3<T> dphi(T theta, T phi, T d = 0.01) {
			T r = p(theta, phi);											//calculate the value of the spherical function at three points
			//double rt = p(theta + d, phi);
			T rp = p(theta, phi + d);

			vec3<T> s(r, theta, phi);										//get the spherical coordinate position for all three points
			//vec3<double> st(rt, theta + d, phi);
			vec3<T> sp(rp, theta, phi + d);

			vec3<T> c = s.sph2cart();
			//vec3<double> ct = st.sph2cart();
			vec3<T> cp = sp.sph2cart();

			vec3<T> dp = (cp - c) / d;									//calculate the derivative
			return dp;
		}
		
		/// Returns the value of the function at the coordinate (theta, phi)
		/// @param theta = [0, 2pi]
		/// @param phi = [0, pi]
		T operator()(T theta, T phi) {
			return p(theta, phi);			
		}

		//overload arithmetic operations

		spharmonics<T> operator*(T rhs) const {

			spharmonics<T> result(C.size());	//create a new spherical harmonics object

			for (size_t c = 0; c < C.size(); c++)	//for each coefficient

				result.C[c] = C[c] * rhs;	//calculate the factor and store the result in the new spharmonics object

			return result;

		}



		spharmonics<T> operator+(spharmonics<T> rhs) {

			size_t low = std::min(C.size(), rhs.C.size());		//store the number of coefficients in the lowest object
			size_t high = std::max(C.size(), rhs.C.size());		//store the number of coefficients in the result
			bool rhs_lowest = false;				//true if rhs has the lowest number of coefficients
			if (rhs.C.size() < C.size()) rhs_lowest = true;		//if rhs has a lower number of coefficients, set the flag



			spharmonics<T> result(high);								//create a new object

			size_t c;
			for (c = 0; c < low; c++)		//perform the first batch of additions
				result.C[c] = C[c] + rhs.C[c];	//perform the addition

			for (c = low; c < high; c++) {
				if (rhs_lowest)
					result.C[c] = C[c];
				else
					result.C[c] = rhs.C[c];
			}
			return result;
		}



		spharmonics<T> operator-(spharmonics<T> rhs) {
			return (*this) + (rhs * (T)(-1));
		}
		/// Fill an NxN grid with the spherical function for theta = [0 2pi] and phi = [0 pi]
		void get_func(T* data, size_t X, size_t Y) {
			T dt = stim::TAU / (T)X;			//calculate the step size in each direction
			T dp = stim::PI / (T)(Y - 1);
			for (size_t ti = 0; ti < X; ti++) {
				for (size_t pi = 0; pi < Y; pi++) {
					data[pi * X + ti] = (*this)((T)ti * dt, (T)pi * dp);
				}
			}
		}

		/// Project a spherical function onto the basis using C coefficients
		/// @param data is a pointer to the function values in (theta, phi) coordinates
		/// @param N is the number of samples along each axis, where theta = [0 2pi), phi = [0 pi]
		void project(T* data, size_t x, size_t y, size_t nc) {
			stim::cpu2image(data, "test.ppm", x, y, stim::cmBrewer);
			C.resize(nc, 0);													//resize the coefficient array to store the necessary coefficients
			T dtheta = stim::TAU / (T)(x - 1);									//calculate the grid spacing along theta
			T dphi = stim::PI / (T)y;											//calculate the grid spacing along phi
			T theta, phi;
			for (size_t c = 0; c < nc; c++) {									//for each coefficient
				for (size_t theta_i = 0; theta_i < x; theta_i++) {				//for each coordinate in the provided array
					theta = theta_i * dtheta;									//calculate theta
					for (size_t phi_i = 0; phi_i < y; phi_i++) {
						phi = phi_i * dphi;										//calculate phi
						C[c] += data[phi_i * x + theta_i] * SH(c, theta, phi) * dtheta * dphi * sin(phi);
					}
				}
			}
		}

                ///imperpolates a spherical harmonic linearly from itself to the spherical harmonic passed as an input.
                ///@param target, spharmonic class to which we are interpolating.
                ///@param dist float value representing the distance we are interpolating [0,1]
                stim::spharmonics<T>
                interp(stim::spharmonics<T> target, float dist)
                {
                        stim::spharmonics<T> ret(std::max(target.C.size(), C.size()));
                        for(int i = 0; i < target.C.size(); i++)
                        {
                                if(i < C.size())
                                {
                                        T slope = target.C[i] - C[i];
                                        ret.C[i] = C[i] + dist * slope;
                                }
                                else
                                {
                                        T slope = target.C[i];
                                        ret.C[i] = dist * slope;
                                }
                        }
                        return ret;
                }

		/// Generate spherical harmonic coefficients based on a set of N samples
		/*void fit(std::vector<stim::vec3<T> > sph_pts, unsigned int L, bool norm = true)
		{
			//std::vector<T> coeffs;

			//generate a matrix for fitting
			int B = L*(L+2)+1;					//calculate the matrix size
			stim::matrix<T> mat(B, B);			//allocate space for the matrix



			std::vector<T> sums;
			//int B = l*(l+2)+1;
			coeffs.resize(B);
			sums.resize(B);
			//stim::matrix<T> mat(B, B);
			for(int i = 0; i < sph_pts.size(); i++)
			{
				mcBegin(l,m);
				mcSample(sph_pts[i][1], sph_pts[i][2], 1.0);
				for(int j = 0; j < B; j++)
				{
					sums[j] += C[j];
					//      sums[j] += C[j]*sums[j];
				}       
				mcEnd();
			}
			for(int i = 0; i < B; i++)
			{
				for(int j = 0; j < B; j++)
				{
					mat(i,j) = sums[i]*sums[j];
				}
			}

			if(mat.det() == 0)
			{
				std::cerr << " matrix not solvable " << std::endl;
			}
			else
			{
				//for(int i = 0; i <
			}
		}*/





	};		//end class sph_harmonics




}


#endif