image.h
3.27 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#ifndef STIM_IMAGE_H
#define STIM_IMAGE_H
#ifdef JPEG_FOUND
#define cimg_use_jpeg //necessary for JPG files
#endif
#include "CImg.h"
#include <iostream>
namespace stim{
//This static class provides the STIM interface for loading images
// Use this interface for all image management - that way the actual library can be changed without problems
//currently this interface uses CImg
// T = data type (usually unsigned char)
template <class T>
class image{
cimg_library::CImg<T> img;
public:
//default constructor
image(){
}
//constructor (load an image file)
image(std::string filename){
img.load(filename.c_str());
}
/// Constructor initializes an image to a given size
image(unsigned int x, unsigned int y = 1, unsigned int z = 1){
img = cimg_library::CImg<T>(x, y, z);
}
//Load an image from a file
void load(std::string filename){
img.load(filename.c_str());
}
//save a file
void save(std::string filename){
img.save(filename.c_str());
}
//create an image from an interleaved buffer
void set_interleaved(T* buffer, unsigned int width, unsigned int height, unsigned int channels = 1){
unsigned char* non_interleaved = (unsigned char*)malloc(width * height * 3);
unsigned int S = width * height;
for(unsigned int i = 0; i < S; i++){
for(unsigned int c = 0; c < channels; c++){
non_interleaved[i + c * S] = buffer[i * channels + c];
}
}
img = cimg_library::CImg<unsigned char>(non_interleaved, width, height, 1, channels);
}
//fills an allocated region of memory with non-interleaved data
void data_noninterleaved(T* data){
memcpy(data, img.data(), sizeof(T) * size());
}
void data_interleaved(T* data){
unsigned int C = channels();
unsigned int X = width() * height();
T* ptr = img.data();
//for each channel
for(unsigned int c = 0; c < C; c++)
//convert each pixel
for(unsigned int x = 0; x < X; x++)
data[x * C + c] = ptr[c * X + x];
}
image<T> channel(unsigned int c){
//create a new image
image<T> single;
single.img = img.channel(c);
return single;
}
unsigned int channels(){
return (unsigned int)img.spectrum();
}
unsigned int width(){
return img.width();
}
unsigned int height(){
return img.height();
}
//returns the size (number of values) of the image
unsigned long size(){
return img.size();
}
/// Returns the number of nonzero values
unsigned int nnz(){
unsigned long P = width() * height();
unsigned long C = channels();
T* ptr = img.data();
unsigned long n = 0;
for(unsigned long p = 0; p < P; p++){
for(unsigned long c = 0; c < C; c++){
if(ptr[c * P + p] > 0){
n++;
break;
}
}
}
return n; //return the number of nonzero pixels
}
//this function returns indices of pixels that have nonzero values
std::vector<unsigned long> sparse_idx(){
std::vector<unsigned long> s; //allocate an array
s.resize(nnz()); //allocate space in the array
unsigned long P = width() * height();
unsigned long C = channels();
T* ptr = img.data(); //get a pointer to the image data
unsigned long i = 0;
for(unsigned long p = 0; p < P; p++){
for(unsigned long c = 0; c < C; c++){
if(ptr[c * P + p] > 0){
s[i] = p;
i++;
break;
}
}
}
return s; //return the index list
}
};
}; //end namespace stim
#endif