circle.h 3.85 KB
``````#ifndef STIM_CIRCLE_H
#define STIM_CIRCLE_H

#include <stim/cuda/cudatools/callable.h>
#include <stim/math/plane.h>
#include <stim/math/vector.h>
#include <stim/math/triangle.h>
#include <assert.h>
#include <algorithm>
#include <iostream>

namespace stim{

template <typename T>
class circle : plane<T>
{

private:

stim::vec3<T> Y;

CUDA_CALLABLE void
init()
{
Y = U.cross(N).norm();
}

public:
using stim::plane<T>::n;
using stim::plane<T>::P;
using stim::plane<T>::N;
using stim::plane<T>::U;
using stim::plane<T>::rotate;
using stim::plane<T>::setU;

///base constructor
///@param th value of the angle of the starting point from 0 to 360.
CUDA_CALLABLE
circle() : plane<T>()
{
init();
}

///create a rectangle given a size and position in Z space.
///@param size: size of the rectangle in ND space.
///@param z_pos z coordinate of the rectangle.
CUDA_CALLABLE
circle(T size, T z_pos = (T)0) : plane<T>()
{
init();
center(stim::vec3<T>(0,0,z_pos));
scale(size);
}

///create a rectangle from a center point, normal
///@param c: x,y,z location of the center.
///@param n: x,y,z direction of the normal.
CUDA_CALLABLE
circle(vec3<T> c, vec3<T> n = vec3<T>(0,0,1)) : plane<T>()
{
center(c);
normal(n);
init();
}

///create a rectangle from a center point, normal, and size
///@param c: x,y,z location of the center.
///@param s: size of the rectangle.
///@param n: x,y,z direction of the normal.
CUDA_CALLABLE
circle(vec3<T> c, T s, vec3<T> n = vec3<T>(0,0,1)) : plane<T>()
{
init();
center(c);
rotate(n, U, Y);
scale(s);
}

///create a rectangle from a center point, normal, and size
///@param c: x,y,z location of the center.
///@param s: size of the rectangle.
///@param n: x,y,z direction of the normal.
///@param u: x,y,z direction for the zero vector (from where the rotation starts)
CUDA_CALLABLE
circle(vec3<T> c, T s, vec3<T> n = vec3<T>(0,0,1), vec3<T> u = vec3<T>(1, 0, 0)) : plane<T>()
{
init();
setU(u);
center(c);
normal(n);
scale(s);
}

///scales the circle by a certain factor
///@param factor: the factor by which the dimensions of the shape are scaled.
CUDA_CALLABLE
void scale(T factor)
{
U *= factor;
Y *= factor;
}

///sets the normal for the cirlce
///@param n: x,y,z direction of the normal.
CUDA_CALLABLE void
normal(vec3<T> n)
{
rotate(n, Y);
}

///sets the center of the circle.
///@param n: x,y,z location of the center.
CUDA_CALLABLE void
center(vec3<T> p){
this->P = p;
}

///boolean comparison
bool
operator==(const circle<T> & rhs)
{
if(P == rhs.P && U == rhs.U && Y == rhs.Y)
return true;
else
return false;
}

///get the world space value given the planar coordinates a, b in [0, 1]
CUDA_CALLABLE stim::vec3<T> p(T a, T b)
{
stim::vec3<T> result;

vec3<T> A = this->P - this->U * (T)0.5 - Y * (T)0.5;
result = A + this->U * a + Y * b;
return result;
}

///parenthesis operator returns the world space given rectangular coordinates a and b in [0 1]
CUDA_CALLABLE stim::vec3<T> operator()(T a, T b)
{
return p(a,b);
}

///returns a vector with the points on the initialized circle.
///connecting the points results in a circle.
///@param n: integer for the number of points representing the circle.
std::vector<stim::vec3<T> >
getPoints(int n)
{
std::vector<stim::vec3<T> > result;
stim::vec3<T> point;
T x,y;
float step = 360.0/(float) n;
for(float j = 0; j <= 360.0; j += step)
{
y = 0.5*cos(j*2.0*M_PI/360.0)+0.5;
x = 0.5*sin(j*2.0*M_PI/360.0)+0.5;
result.push_back(p(x,y));
}
return result;
}

///returns a vector with the points on the initialized circle.
///connecting the points results in a circle.
///@param n: integer for the number of points representing the circle.
stim::vec3<T>
p(T theta)
{
T x,y;
y = 0.5*cos(theta*2.0*M_PI/360.0)+0.5;
x = 0.5*sin(theta*2.0*M_PI/360.0)+0.5;
return p(x,y);
}

};
}
#endif
``````