Commit 0288346a9b7c9790d2df719321a38eee3274ca31
1 parent
361c02a1
added support for computing scalar beams analytically
Showing
3 changed files
with
151 additions
and
63 deletions
Show diff stats
stim/math/bessel.h
... | ... | @@ -778,17 +778,23 @@ int bessjyv(P v,P x,P &vm,P *jv,P *yv, |
778 | 778 | |
779 | 779 | template<typename P> |
780 | 780 | int bessjyv_sph(int v, P z, P &vm, P* cjv, |
781 | - P* cyv, P* cjvp, P* cyvp) | |
782 | -{ | |
781 | + P* cyv, P* cjvp, P* cyvp){ | |
782 | + | |
783 | 783 | //first, compute the bessel functions of fractional order |
784 | 784 | bessjyv<P>(v + (P)0.5, z, vm, cjv, cyv, cjvp, cyvp); |
785 | 785 | |
786 | + if(z == 0){ //handle degenerate case of z = 0 | |
787 | + memset(cjv, 0, sizeof(P) * (v+1)); | |
788 | + cjv[0] = 1; | |
789 | + } | |
790 | + | |
786 | 791 | //iterate through each and scale |
787 | - for(int n = 0; n<=v; n++) | |
788 | - { | |
792 | + for(int n = 0; n<=v; n++){ | |
789 | 793 | |
790 | - cjv[n] = cjv[n] * sqrt(stim::PI/(z * 2.0)); | |
791 | - cyv[n] = cyv[n] * sqrt(stim::PI/(z * 2.0)); | |
794 | + if(z != 0){ //handle degenerate case of z = 0 | |
795 | + cjv[n] = cjv[n] * sqrt(stim::PI/(z * 2.0)); | |
796 | + cyv[n] = cyv[n] * sqrt(stim::PI/(z * 2.0)); | |
797 | + } | |
792 | 798 | |
793 | 799 | cjvp[n] = -1.0 / (z * 2.0) * cjv[n] + cjvp[n] * sqrt(stim::PI / (z * 2.0)); |
794 | 800 | cyvp[n] = -1.0 / (z * 2.0) * cyv[n] + cyvp[n] * sqrt(stim::PI / (z * 2.0)); | ... | ... |
stim/math/legendre.h
1 | 1 | #ifndef RTS_LEGENDRE_H |
2 | 2 | #define RTS_LEGENDRE_H |
3 | 3 | |
4 | -#include "rts/cuda/callable.h" | |
4 | +#include "../cuda/cudatools/callable.h" | |
5 | 5 | |
6 | 6 | namespace stim{ |
7 | 7 | |
... | ... | @@ -24,9 +24,11 @@ CUDA_CALLABLE void shift_legendre(int n, T x, T& P0, T& P1) |
24 | 24 | P1 = Pnew; |
25 | 25 | } |
26 | 26 | |
27 | +/// Iteratively evaluates the Legendre polynomials for orders l = [0 n] | |
27 | 28 | template <typename T> |
28 | 29 | CUDA_CALLABLE void legendre(int n, T x, T* P) |
29 | 30 | { |
31 | + if(n < 0) return; | |
30 | 32 | P[0] = 1; |
31 | 33 | |
32 | 34 | if(n >= 1) | ... | ... |
stim/optics/scalarbeam.h
... | ... | @@ -4,12 +4,9 @@ |
4 | 4 | #include "../math/vec3.h" |
5 | 5 | #include "../optics/scalarwave.h" |
6 | 6 | #include "../math/bessel.h" |
7 | +#include "../math/legendre.h" | |
7 | 8 | #include <vector> |
8 | 9 | |
9 | -//Boost | |
10 | -//#include <boost/math/special_functions/bessel.hpp> | |
11 | -//#include <boost/math/special_functions/legendre.hpp> | |
12 | - | |
13 | 10 | namespace stim{ |
14 | 11 | |
15 | 12 | /// Function returns the value of the scalar field produced by a beam with the specified parameters |
... | ... | @@ -130,23 +127,6 @@ public: |
130 | 127 | return result; |
131 | 128 | } |
132 | 129 | |
133 | - /// Calculate the field at a set of positions | |
134 | - /*void field(stim::complex<T>* F, T* x, T* y, T* z, size_t N, size_t O){ | |
135 | - | |
136 | - memset(F, 0, N * sizeof(stim::complex<T>)); | |
137 | - std::vector< scalarwave<T> > W = mc(O); //get a random set of plane waves representing the beam | |
138 | - size_t o, n; | |
139 | - T px, py, pz; | |
140 | - for(n = 0; n < N; n++){ //for each point in the field | |
141 | - (x == NULL) ? px = 0 : px = x[n]; // test for NULL values | |
142 | - (y == NULL) ? py = 0 : py = y[n]; | |
143 | - (z == NULL) ? pz = 0 : pz = z[n]; | |
144 | - for(o = 0; o < O; o++){ //for each plane wave | |
145 | - F[n] += W[o].pos(px, py, pz); | |
146 | - } | |
147 | - } | |
148 | - }*/ | |
149 | - | |
150 | 130 | std::string str() |
151 | 131 | { |
152 | 132 | std::stringstream ss; |
... | ... | @@ -165,51 +145,151 @@ public: |
165 | 145 | |
166 | 146 | }; //end beam |
167 | 147 | |
148 | +/// Calculate the [0 Nl] terms for the aperture integral based on the give numerical aperture and center obscuration (optional) | |
149 | +/// @param C is a pointer to Nl + 1 values where the terms will be stored | |
168 | 150 | template<typename T> |
169 | -void cpu_scalar_psf(stim::complex<T>* F, size_t N, T* x, T* y, T* z, T lambda, T A, stim::vec3<T> f, T NA, T NA_in, int Nl){ | |
151 | +CUDA_CALLABLE void cpu_aperture_integral(T* C, size_t Nl, T NA, T NA_in = 0){ | |
170 | 152 | |
171 | - memset(F, 0, N * sizeof(stim::complex<T>)); | |
153 | + size_t table_bytes = (Nl + 1) * sizeof(T); //calculate the number of bytes required to store the terms | |
154 | + T cos_alpha_1 = cos(asin(NA_in)); //calculate the cosine of the angle subtended by the central obscuration | |
155 | + T cos_alpha_2 = cos(asin(NA)); //calculate the cosine of the angle subtended by the aperture | |
156 | + | |
157 | + // the aperture integral is computed using four individual Legendre polynomials, each a function of the angles subtended | |
158 | + // by the objective and central obscuration | |
159 | + T* Pln_a1 = (T*) malloc(table_bytes); | |
160 | + stim::legendre<T>(Nl-1, cos_alpha_1, &Pln_a1[1]); | |
161 | + Pln_a1[0] = 1; | |
162 | + | |
163 | + T* Pln_a2 = (T*) malloc(table_bytes); | |
164 | + stim::legendre<T>(Nl-1, cos_alpha_2, &Pln_a2[1]); | |
165 | + Pln_a2[0] = 1; | |
166 | + | |
167 | + T* Plp_a1 = (T*) malloc(table_bytes+sizeof(T)); | |
168 | + stim::legendre<T>(Nl+1, cos_alpha_1, Plp_a1); | |
169 | + | |
170 | + T* Plp_a2 = (T*) malloc(table_bytes+sizeof(T)); | |
171 | + stim::legendre<T>(Nl+1, cos_alpha_2, Plp_a2); | |
172 | + | |
173 | + for(size_t l = 0; l <= Nl; l++){ | |
174 | + C[l] = Plp_a1[l+1] - Plp_a2[l+1] - Pln_a1[l] + Pln_a2[l]; | |
175 | + } | |
176 | + | |
177 | + free(Pln_a1); | |
178 | + free(Pln_a2); | |
179 | + free(Plp_a1); | |
180 | + free(Plp_a2); | |
181 | +} | |
182 | + | |
183 | +/// performs linear interpolation into a look-up table | |
184 | +template<typename T> | |
185 | +T lut_lookup(T* lut, T val, size_t N, T min_val, T delta, size_t stride = 0){ | |
186 | + size_t idx = (size_t)((val - min_val) / delta); | |
187 | + T alpha = val - idx * delta + min_val; | |
188 | + | |
189 | + if(alpha == 0) return lut[idx]; | |
190 | + else return lut[idx * stride] * (1 - alpha) + lut[ (idx+1) * stride] * alpha; | |
191 | +} | |
192 | + | |
193 | +template<typename T> | |
194 | +void cpu_scalar_psf(stim::complex<T>* F, size_t N, T* r, T* phi, T lambda, T A, stim::vec3<T> f, T NA, T NA_in, int Nl){ | |
172 | 195 | T k = stim::TAU / lambda; |
173 | - T jl, Pl, C, kr, cos_phi; | |
174 | - T cos_alpha_1 = cos(asin(NA_in)); | |
175 | - T cos_alpha_2 = cos(asin(NA)); | |
176 | - stim::vec3<T> p, ps; | |
177 | 196 | |
178 | - /*double vm; | |
179 | - size_t table_bytes = (Nl + 1) * sizeof(double); | |
180 | - double* jv = (double*) malloc( table_bytes ); | |
181 | - double* yv = (double*) malloc( table_bytes ); | |
182 | - double* djv= (double*) malloc( table_bytes ); | |
183 | - double* dyv= (double*) malloc( table_bytes ); | |
184 | - */ | |
185 | - | |
186 | - T vm; | |
187 | - size_t table_bytes = (Nl + 1) * sizeof(T); | |
188 | - T* jv = (T*) malloc( table_bytes ); | |
189 | - T* yv = (T*) malloc( table_bytes ); | |
190 | - T* djv= (T*) malloc( table_bytes ); | |
191 | - T* dyv= (T*) malloc( table_bytes ); | |
192 | - | |
193 | - for(size_t n = 0; n < N; n++){ | |
194 | - (x == NULL) ? p[0] = 0 : p[0] = x[n]; // test for NULL values and set positions | |
195 | - (y == NULL) ? p[1] = 0 : p[1] = y[n]; | |
196 | - (z == NULL) ? p[2] = 0 : p[2] = z[n]; | |
197 | - | |
198 | - ps = p.cart2sph(); //convert this point to spherical coordinates | |
199 | - kr = k * ps[0]; | |
200 | - cos_phi = std::cos(ps[2]); | |
201 | - stim::bessjyv_sph<T>(Nl, kr, vm, jv, yv, djv, dyv); | |
197 | + T* C = (T*) malloc( (Nl + 1) * sizeof(T) ); //allocate space for the aperture integral terms | |
198 | + cpu_aperture_integral(C, Nl, NA, NA_in); //calculate the aperture integral terms | |
199 | + memset(F, 0, N * sizeof(stim::complex<T>)); | |
200 | +#ifdef NO_CUDA | |
201 | + memset(F, 0, N * sizeof(stim::complex<T>)); | |
202 | + T jl, Pl, kr, cos_phi; | |
203 | + | |
204 | + double vm; | |
205 | + double* jv = (double*) malloc( (Nl + 1) * sizeof(double) ); | |
206 | + double* yv = (double*) malloc( (Nl + 1) * sizeof(double) ); | |
207 | + double* djv= (double*) malloc( (Nl + 1) * sizeof(double) ); | |
208 | + double* dyv= (double*) malloc( (Nl + 1) * sizeof(double) ); | |
209 | + | |
210 | + T* Pl_cos_phi = (T*) malloc((Nl + 1) * sizeof(T)); | |
211 | + | |
212 | + for(size_t n = 0; n < N; n++){ //for each point in the field | |
213 | + kr = k * r[n]; //calculate kr (the optical distance between the focal point and p) | |
214 | + cos_phi = std::cos(phi[n]); //calculate the cosine of phi | |
215 | + stim::bessjyv_sph<double>(Nl, kr, vm, jv, yv, djv, dyv); //compute the list of spherical bessel functions from [0 Nl] | |
216 | + stim::legendre<T>(Nl, cos_phi, Pl_cos_phi); //calculate the [0 Nl] legendre polynomials for this point | |
202 | 217 | |
203 | 218 | for(int l = 0; l <= Nl; l++){ |
204 | - //jl = boost::math::sph_bessel<T>(l, kr); | |
205 | - //jl = stim::bessjyv(l, kr | |
206 | 219 | jl = (T)jv[l]; |
207 | - Pl = 1;//boost::math::legendre_p<T>(l, cos_phi); | |
208 | - C = 1;//boost::math::legendre_p<T>(l+1, cos_alpha_1) - boost::math::legendre_p<T>(l + 1, cos_alpha_2) - boost::math::legendre_p<T>(l - 1, cos_alpha_1) + boost::math::legendre_p<T>(l - 1, cos_alpha_2); | |
209 | - F[n] += pow(complex<T>(0, 1), l) * jl * Pl * C; | |
220 | + Pl = Pl_cos_phi[l]; | |
221 | + F[n] += pow(complex<T>(0, 1), l) * jl * Pl * C[l]; | |
222 | + } | |
223 | + F[n] *= A * stim::TAU; | |
224 | + } | |
225 | + | |
226 | + free(C); | |
227 | + free(Pl_cos_phi); | |
228 | +#else | |
229 | + T min_r = r[0]; | |
230 | + T max_r = r[0]; | |
231 | + for(size_t i = 0; i < N; i++){ //find the minimum and maximum values of r (min and max distance from the focal point) | |
232 | + if(r[i] < min_r) min_r = r[i]; | |
233 | + if(r[i] > max_r) max_r = r[i]; | |
234 | + } | |
235 | + T min_kr = k * min_r; | |
236 | + T max_kr = k * max_r; | |
237 | + | |
238 | + //temporary variables | |
239 | + double vm; | |
240 | + double* jv = (double*) malloc( (Nl + 1) * sizeof(double) ); | |
241 | + double* yv = (double*) malloc( (Nl + 1) * sizeof(double) ); | |
242 | + double* djv= (double*) malloc( (Nl + 1) * sizeof(double) ); | |
243 | + double* dyv= (double*) malloc( (Nl + 1) * sizeof(double) ); | |
244 | + | |
245 | + size_t Nlut = (size_t)sqrt(N) * 2; | |
246 | + T* bessel_lut = (T*) malloc(sizeof(T) * (Nl+1) * Nlut); | |
247 | + T delta_kr = (max_kr - min_kr) / (Nlut-1); | |
248 | + for(size_t kri = 0; kri < Nlut; kri++){ | |
249 | + stim::bessjyv_sph<double>(Nl, min_kr + kri * delta_kr, vm, jv, yv, djv, dyv); //compute the list of spherical bessel functions from [0 Nl] | |
250 | + for(size_t l = 0; l <= Nl; l++){ | |
251 | + bessel_lut[kri * (Nl + 1) + l] = (T)jv[l]; | |
252 | + } | |
253 | + } | |
254 | + | |
255 | + T* Pl_cos_phi = (T*) malloc((Nl + 1) * sizeof(T)); | |
256 | + T kr, cos_phi, jl, Pl; | |
257 | + for(size_t n = 0; n < N; n++){ //for each point in the field | |
258 | + kr = k * r[n]; //calculate kr (the optical distance between the focal point and p) | |
259 | + cos_phi = std::cos(phi[n]); //calculate the cosine of phi | |
260 | + stim::legendre<T>(Nl, cos_phi, Pl_cos_phi); //calculate the [0 Nl] legendre polynomials for this point | |
261 | + | |
262 | + for(int l = 0; l <= Nl; l++){ | |
263 | + jl = lut_lookup<T>(&bessel_lut[l], kr, Nlut, min_kr, delta_kr, Nl+1); | |
264 | + Pl = Pl_cos_phi[l]; | |
265 | + F[n] += pow(complex<T>(0, 1), l) * jl * Pl * C[l]; | |
210 | 266 | } |
211 | 267 | F[n] *= A * stim::TAU; |
212 | 268 | } |
269 | +#endif | |
270 | +} | |
271 | + | |
272 | + | |
273 | +template<typename T> | |
274 | +void cpu_scalar_psf(stim::complex<T>* F, size_t N, T* x, T* y, T* z, T lambda, T A, stim::vec3<T> f, T NA, T NA_in, int Nl){ | |
275 | + T* r = (T*) malloc(N * sizeof(T)); //allocate space for p in spherical coordinates | |
276 | + T* phi = (T*) malloc(N * sizeof(T)); // only r and phi are necessary (the scalar PSF is symmetric about theta) | |
277 | + | |
278 | + stim::vec3<T> p, ps; | |
279 | + for(size_t i = 0; i < N; i++){ | |
280 | + (x == NULL) ? p[0] = 0 : p[0] = x[i]; // test for NULL values and set positions | |
281 | + (y == NULL) ? p[1] = 0 : p[1] = y[i]; | |
282 | + (z == NULL) ? p[2] = 0 : p[2] = z[i]; | |
283 | + | |
284 | + ps = p.cart2sph(); //convert from cartesian to spherical coordinates | |
285 | + r[i] = ps[0]; //store r | |
286 | + phi[i] = ps[2]; //phi = [0 pi] | |
287 | + } | |
288 | + | |
289 | + cpu_scalar_psf(F, N, r, phi, lambda, A, f, NA, NA_in, Nl); //call the spherical coordinate CPU function | |
290 | + | |
291 | + free(r); | |
292 | + free(phi); | |
213 | 293 | } |
214 | 294 | |
215 | 295 | } //end namespace stim | ... | ... |