|
1
|
+# -*- coding: utf-8 -*- |
|
2
|
+""" |
|
3
|
+Created on Fri Jul 21 20:18:01 2017 |
|
4
|
+ |
|
5
|
+@author: david |
|
6
|
+""" |
|
7
|
+ |
|
8
|
+import os |
|
9
|
+import numpy |
|
10
|
+import scipy |
|
11
|
+import matplotlib.pyplot as plt |
|
12
|
+import progressbar |
|
13
|
+ |
|
14
|
+class envi_header: |
|
15
|
+ def __init__(self, filename = ""): |
|
16
|
+ if filename != "": |
|
17
|
+ self.load(filename) |
|
18
|
+ else: |
|
19
|
+ self.initialize() |
|
20
|
+ |
|
21
|
+ #initialization function |
|
22
|
+ def initialize(self): |
|
23
|
+ self.samples = int(0) |
|
24
|
+ self.lines = int(0) |
|
25
|
+ self.bands = int(0) |
|
26
|
+ self.header_offset = int(0) |
|
27
|
+ self.data_type = int(4) |
|
28
|
+ self.interleave = "bsq" |
|
29
|
+ self.sensor_type = "" |
|
30
|
+ self.byte_order = int(0) |
|
31
|
+ self.x_start = int(0) |
|
32
|
+ self.y_start = int(0) |
|
33
|
+ self.z_plot_titles = "" |
|
34
|
+ self.pixel_size = [float(0), float(0)] |
|
35
|
+ self.pixel_size_units = "Meters" |
|
36
|
+ self.wavelength_units = "Wavenumber" |
|
37
|
+ self.description = "" |
|
38
|
+ self.band_names = [] |
|
39
|
+ self.wavelength = [] |
|
40
|
+ |
|
41
|
+ #convert an ENVI data_type value to a numpy data type |
|
42
|
+ def get_numpy_type(self, val): |
|
43
|
+ if val == 1: |
|
44
|
+ return numpy.byte |
|
45
|
+ elif val == 2: |
|
46
|
+ return numpy.int16 |
|
47
|
+ elif val == 3: |
|
48
|
+ return numpy.int32 |
|
49
|
+ elif val == 4: |
|
50
|
+ return numpy.float32 |
|
51
|
+ elif val == 5: |
|
52
|
+ return numpy.float64 |
|
53
|
+ elif val == 6: |
|
54
|
+ return numpy.complex64 |
|
55
|
+ elif val == 9: |
|
56
|
+ return numpy.complex128 |
|
57
|
+ elif val == 12: |
|
58
|
+ return numpy.uint16 |
|
59
|
+ elif val == 13: |
|
60
|
+ return numpy.uint32 |
|
61
|
+ elif val == 14: |
|
62
|
+ return numpy.int64 |
|
63
|
+ elif val == 15: |
|
64
|
+ return numpy.uint64 |
|
65
|
+ |
|
66
|
+ def get_envi_type(self, val): |
|
67
|
+ if val == numpy.byte: |
|
68
|
+ return 1 |
|
69
|
+ elif val == numpy.int16: |
|
70
|
+ return 2 |
|
71
|
+ elif val == numpy.int32: |
|
72
|
+ return 3 |
|
73
|
+ elif val == numpy.float32: |
|
74
|
+ return 4 |
|
75
|
+ elif val == numpy.float64: |
|
76
|
+ return 5 |
|
77
|
+ elif val == numpy.complex64: |
|
78
|
+ return 6 |
|
79
|
+ elif val == numpy.complex128: |
|
80
|
+ return 9 |
|
81
|
+ elif val == numpy.uint16: |
|
82
|
+ return 12 |
|
83
|
+ elif val == numpy.uint32: |
|
84
|
+ return 13 |
|
85
|
+ elif val == numpy.int64: |
|
86
|
+ return 14 |
|
87
|
+ elif val == numpy.uint64: |
|
88
|
+ return 15 |
|
89
|
+ |
|
90
|
+ def load(self, fname): |
|
91
|
+ f = open(fname) |
|
92
|
+ l = f.readlines() |
|
93
|
+ if l[0].strip() != "ENVI": |
|
94
|
+ print("ERROR: not an ENVI file") |
|
95
|
+ return |
|
96
|
+ li = 1 |
|
97
|
+ while li < len(l): |
|
98
|
+ #t = l[li].split() #split the line into tokens |
|
99
|
+ #t = map(str.strip, t) #strip all of the tokens in the token list |
|
100
|
+ |
|
101
|
+ #handle the simple conditions |
|
102
|
+ if l[li].startswith("file type"): |
|
103
|
+ if not l[li].strip().endswith("ENVI Standard"): |
|
104
|
+ print("ERROR: unsupported ENVI file format: " + l[li].strip()) |
|
105
|
+ return |
|
106
|
+ elif l[li].startswith("samples"): |
|
107
|
+ self.samples = int(l[li].split()[-1]) |
|
108
|
+ elif l[li].startswith("lines"): |
|
109
|
+ self.lines = int(l[li].split()[-1]) |
|
110
|
+ elif l[li].startswith("bands"): |
|
111
|
+ self.bands = int(l[li].split()[-1]) |
|
112
|
+ elif l[li].startswith("header offset"): |
|
113
|
+ self.header_offset = int(l[li].split()[-1]) |
|
114
|
+ elif l[li].startswith("data type"): |
|
115
|
+ self.data_type = self.get_numpy_type(int(l[li].split()[-1])) |
|
116
|
+ elif l[li].startswith("interleave"): |
|
117
|
+ self.interleave = l[li].split()[-1].strip() |
|
118
|
+ elif l[li].startswith("sensor type"): |
|
119
|
+ self.sensor_type = l[li].split()[-1].strip() |
|
120
|
+ elif l[li].startswith("byte order"): |
|
121
|
+ self.byte_order = int(l[li].split()[-1]) |
|
122
|
+ elif l[li].startswith("x start"): |
|
123
|
+ self.x_start = int(l[li].split()[-1]) |
|
124
|
+ elif l[li].startswith("y start"): |
|
125
|
+ self.y_start = int(l[li].split()[-1]) |
|
126
|
+ elif l[li].startswith("z plot titles"): |
|
127
|
+ i0 = l[li].rindex('{') |
|
128
|
+ i1 = l[li].rindex('}') |
|
129
|
+ self.z_plot_titles = l[li][i0 + 1 : i1] |
|
130
|
+ elif l[li].startswith("pixel size"): |
|
131
|
+ i0 = l[li].rindex('{') |
|
132
|
+ i1 = l[li].rindex('}') |
|
133
|
+ s = l[li][i0 + 1 : i1].split(',') |
|
134
|
+ self.pixel_size = [float(s[0]), float(s[1])] |
|
135
|
+ self.pixel_size_units = s[2][s[2].rindex('=') + 1:].strip() |
|
136
|
+ elif l[li].startswith("wavelength units"): |
|
137
|
+ self.wavelength_units = l[li].split()[-1].strip() |
|
138
|
+ |
|
139
|
+ #handle the complicated conditions |
|
140
|
+ elif l[li].startswith("description"): |
|
141
|
+ desc = [l[li]] |
|
142
|
+ ''' |
|
143
|
+ while l[li].strip()[-1] != '}': #will fail if l[li].strip() is empty |
|
144
|
+ li += 1 |
|
145
|
+ desc.append(l[li]) |
|
146
|
+ ''' |
|
147
|
+ while True: |
|
148
|
+ if l[li].strip(): |
|
149
|
+ if l[li].strip()[-1] == '}': |
|
150
|
+ break |
|
151
|
+ li += 1 |
|
152
|
+ desc.append(l[li]) |
|
153
|
+ |
|
154
|
+ desc = ''.join(list(map(str.strip, desc))) #strip all white space from the string list |
|
155
|
+ i0 = desc.rindex('{') |
|
156
|
+ i1 = desc.rindex('}') |
|
157
|
+ self.description = desc[i0 + 1 : i1] |
|
158
|
+ |
|
159
|
+ elif l[li].startswith("band names"): |
|
160
|
+ names = [l[li]] |
|
161
|
+ while l[li].strip()[-1] != '}': |
|
162
|
+ li += 1 |
|
163
|
+ names.append(l[li]) |
|
164
|
+ names = ''.join(list(map(str.strip, names))) #strip all white space from the string list |
|
165
|
+ i0 = names.rindex('{') |
|
166
|
+ i1 = names.rindex('}') |
|
167
|
+ names = names[i0 + 1 : i1] |
|
168
|
+ self.band_names = list(map(str.strip, names.split(','))) |
|
169
|
+ elif l[li].startswith("wavelength"): |
|
170
|
+ waves = [l[li]] |
|
171
|
+ while l[li].strip()[-1] != '}': |
|
172
|
+ li += 1 |
|
173
|
+ waves.append(l[li]) |
|
174
|
+ waves = ''.join(list(map(str.strip, waves))) #strip all white space from the string list |
|
175
|
+ i0 = waves.rindex('{') |
|
176
|
+ i1 = waves.rindex('}') |
|
177
|
+ waves = waves[i0 + 1 : i1] |
|
178
|
+ self.wavelength = list(map(float, waves.split(','))) |
|
179
|
+ |
|
180
|
+ li += 1 |
|
181
|
+ |
|
182
|
+ f.close() |
|
183
|
+ |
|
184
|
+class envi: |
|
185
|
+ def __init__(self, filename, headername = "", mask = []): |
|
186
|
+ self.open(filename, headername) |
|
187
|
+ if mask == []: |
|
188
|
+ self.mask = numpy.ones((self.header.lines, self.header.samples), dtype=numpy.bool) |
|
189
|
+ else: |
|
190
|
+ self.mask = mask |
|
191
|
+ self.idx = 0 #initialize the batch IDX to 0 for batch reading |
|
192
|
+ |
|
193
|
+ def open(self, filename, headername = ""): |
|
194
|
+ if headername == "": |
|
195
|
+ headername = filename + ".hdr" |
|
196
|
+ |
|
197
|
+ if not os.path.isfile(filename): |
|
198
|
+ print("ERROR: " + filename + " not found") |
|
199
|
+ return |
|
200
|
+ if not os.path.isfile(headername): |
|
201
|
+ print("ERROR: " + headername + " not found") |
|
202
|
+ return |
|
203
|
+ |
|
204
|
+ #open the file |
|
205
|
+ self.header = envi_header(headername) |
|
206
|
+ self.file = open(filename, "rb") |
|
207
|
+ |
|
208
|
+ def loadall(self): |
|
209
|
+ X = self.header.samples |
|
210
|
+ Y = self.header.lines |
|
211
|
+ B = self.header.bands |
|
212
|
+ |
|
213
|
+ #load the data |
|
214
|
+ D = numpy.fromfile(self.file, dtype=self.header.data_type) |
|
215
|
+ |
|
216
|
+ if self.header.interleave == "bsq": |
|
217
|
+ return numpy.reshape(D, (B, Y, X)) |
|
218
|
+ #return numpy.swapaxes(D, 0, 2) |
|
219
|
+ elif self.header.interleave == "bip": |
|
220
|
+ D = numpy.reshape(D, (Y, X, B)) |
|
221
|
+ return numpy.rollaxis(D, 2) |
|
222
|
+ elif self.header.interleave == "bil": |
|
223
|
+ D = numpy.reshape(D, (Y, B, X)) |
|
224
|
+ return numpy.rollaxis(D, 1) |
|
225
|
+ |
|
226
|
+ #loads all of the pixels where mask != 0 and returns them as a matrix |
|
227
|
+ def loadmask(self, mask): |
|
228
|
+ X = self.header.samples |
|
229
|
+ Y = self.header.lines |
|
230
|
+ B = self.header.bands |
|
231
|
+ |
|
232
|
+ P = numpy.count_nonzero(mask) #count the number of zeros in the mask file |
|
233
|
+ M = numpy.zeros((B, P), dtype=self.header.data_type) |
|
234
|
+ type_bytes = numpy.dtype(self.header.data_type).itemsize |
|
235
|
+ |
|
236
|
+ prev_pos = self.file.tell() |
|
237
|
+ self.file.seek(0) |
|
238
|
+ if self.header.interleave == "bip": |
|
239
|
+ spectrum = numpy.zeros(B, dtype=self.header.data_type) |
|
240
|
+ flatmask = numpy.reshape(mask, (X * Y)) |
|
241
|
+ i = numpy.flatnonzero(flatmask) |
|
242
|
+ bar = progressbar.ProgressBar(max_value = P) |
|
243
|
+ for p in range(0, P): |
|
244
|
+ self.file.seek(i[p] * B * type_bytes) |
|
245
|
+ self.file.readinto(spectrum) |
|
246
|
+ M[:, p] = spectrum |
|
247
|
+ bar.update(p+1) |
|
248
|
+ if self.header.interleave == "bsq": |
|
249
|
+ band = numpy.zeros(mask.shape, dtype=self.header.data_type) |
|
250
|
+ i = numpy.nonzero(mask) |
|
251
|
+ bar = progressbar.ProgressBar(max_value=B) |
|
252
|
+ for b in range(0, B): |
|
253
|
+ self.file.seek(b * X * Y * type_bytes) |
|
254
|
+ self.file.readinto(band) |
|
255
|
+ M[b, :] = band[i] |
|
256
|
+ bar.update(b+1) |
|
257
|
+ if self.header.interleave == "bil": |
|
258
|
+ plane = numpy.zeros((B, X), dtype=self.header.data_type) |
|
259
|
+ p = 0 |
|
260
|
+ bar = progressbar.ProgressBar(max_value=Y) |
|
261
|
+ for l in range(0, Y): |
|
262
|
+ i = numpy.flatnonzero(mask[l, :]) |
|
263
|
+ self.file.readinto(plane) |
|
264
|
+ M[:, p:p+i.shape[0]] = plane[:, i] |
|
265
|
+ p = p + i.shape[0] |
|
266
|
+ bar.update(l+1) |
|
267
|
+ self.file.seek(prev_pos) |
|
268
|
+ return M |
|
269
|
+ |
|
270
|
+ def loadband(self, n): |
|
271
|
+ X = self.header.samples |
|
272
|
+ Y = self.header.lines |
|
273
|
+ B = self.header.bands |
|
274
|
+ |
|
275
|
+ band = numpy.zeros((Y, X), dtype=self.header.data_type) |
|
276
|
+ type_bytes = numpy.dtype(self.header.data_type).itemsize |
|
277
|
+ |
|
278
|
+ prev_pos = self.file.tell() |
|
279
|
+ if self.header.interleave == "bsq": |
|
280
|
+ self.file.seek(n * X * Y * type_bytes) |
|
281
|
+ self.file.readinto(band) |
|
282
|
+ self.file.seek(prev_pos) |
|
283
|
+ return band |
|
284
|
+ |
|
285
|
+ #create a set of feature/target pairs for classification |
|
286
|
+ #input: envi file object, stack of class masks C x Y x X |
|
287
|
+ #output: feature matrix (features x pixels), target matrix (1 x pixels) |
|
288
|
+ #example: generate_training(("class_coll.bmp", "class_epith.bmp"), (1, 2)) |
|
289
|
+ def loadtrain(self, classimages): |
|
290
|
+ |
|
291
|
+ # get number of classes |
|
292
|
+ C = classimages.shape[0] |
|
293
|
+ |
|
294
|
+ F = [] |
|
295
|
+ T = [] |
|
296
|
+ for c in range(0, C): |
|
297
|
+ f = self.loadmask(classimages[c, :, :]) #load the feature matrix for class c |
|
298
|
+ t = numpy.ones((f.shape[1])) * (c+1) #generate a target array |
|
299
|
+ F.append(f) |
|
300
|
+ T.append(t) |
|
301
|
+ |
|
302
|
+ return numpy.concatenate(F, 1).transpose(), numpy.concatenate(T) |
|
303
|
+ |
|
304
|
+ #read a batch of data based on the mask |
|
305
|
+ def loadbatch(self, npixels): |
|
306
|
+ i = numpy.flatnonzero(self.mask) #get the indices of valid pixels |
|
307
|
+ if len(i) == self.idx: #if all of the pixels have been read, return an empyt array |
|
308
|
+ return [] |
|
309
|
+ npixels = min(npixels, len(i) - self.idx) #if there aren't enough pixels, change the batch size |
|
310
|
+ B = self.header.bands |
|
311
|
+ |
|
312
|
+ batch = numpy.zeros((B, npixels), dtype=self.header.data_type) #allocate space for the batch |
|
313
|
+ pixel = numpy.zeros((B), dtype=self.header.data_type) #allocate space for a single pixel |
|
314
|
+ type_bytes = numpy.dtype(self.header.data_type).itemsize #calculate the size of a single value |
|
315
|
+ if self.header.interleave == "bip": |
|
316
|
+ for n in range(0, npixels): #for each pixel in the batch |
|
317
|
+ self.file.seek(i[self.idx] * B * type_bytes) #seek to the current pixel in the file |
|
318
|
+ self.file.readinto(pixel) #read a single pixel |
|
319
|
+ batch[:, n] = pixel #save the pixel into the batch matrix |
|
320
|
+ self.idx = self.idx + 1 |
|
321
|
+ return batch |
|
322
|
+ elif self.header.interleave == "bsq": |
|
323
|
+ print("ERROR: BSQ batch loading isn't implemented yet!") |
|
324
|
+ elif self.header.interleave == "bil": |
|
325
|
+ print("ERROR: BIL batch loading isn't implemented yet!") |
|
326
|
+ |
|
327
|
+ #returns the current batch index |
|
328
|
+ def getidx(self): |
|
329
|
+ return self.idx |
|
330
|
+ |
|
331
|
+ #returns an image of the pixels that have been read using batch loading |
|
332
|
+ def batchmask(self): |
|
333
|
+ #allocate a new mask |
|
334
|
+ outmask = numpy.zeros(self.mask.shape, dtype=numpy.bool) |
|
335
|
+ |
|
336
|
+ #zero out any unclassified pixels |
|
337
|
+ idx = self.getidx() |
|
338
|
+ i = numpy.nonzero(self.mask) |
|
339
|
+ outmask[i[0][0:idx], i[1][0:idx]] = self.mask[i[0][0:idx], i[1][0:idx]] |
|
340
|
+ return outmask |
|
341
|
+ |
|
342
|
+ |
|
343
|
+ def __del__(self): |
|
344
|
+ self.file.close() |
0
|
345
|
\ No newline at end of file |
...
|
...
|
|