Commit 54d21d09ab5ad045c331fc17f33c61d6764c3652
1 parent
87d0a1d2
implementing finding eigenvalue and eigenvector for 3x3 matrix.
Showing
3 changed files
with
366 additions
and
0 deletions
Show diff stats
1 | +#ifndef STIM_MATRIX_SYM_H | |
2 | +#define STIM_MATRIX_SYM_H | |
3 | + | |
4 | +#include <stim/cuda/cudatools/callable.h> | |
5 | +#include <stim/math/matrix.h> | |
6 | + | |
7 | +/* This class represents a rank 2, 3-dimensional tensor viable | |
8 | +for representing tensor fields such as structure and diffusion tensors | |
9 | +*/ | |
10 | +namespace stim{ | |
11 | + | |
12 | +template <typename T, int D> | |
13 | +class matrix_sym{ | |
14 | + | |
15 | +protected: | |
16 | + //values are stored in column-major order as a lower-triangular matrix | |
17 | + T M[D*(D + 1)/2]; | |
18 | + | |
19 | + static size_t idx(size_t r, size_t c) { | |
20 | + //if the index is in the upper-triangular portion, swap the indices | |
21 | + if(r < c){ | |
22 | + size_t t = r; | |
23 | + r = c; | |
24 | + c = t; | |
25 | + } | |
26 | + | |
27 | + size_t ci = (c + 1) * (D + (D - c))/2 - 1; //index to the end of column c | |
28 | + size_t i = ci - (D - r - 1); | |
29 | + return i; | |
30 | + } | |
31 | + | |
32 | + //calculate the row and column given an index | |
33 | + //static void indices(size_t& r, size_t& c, size_t idx) { | |
34 | + // size_t col = 0; | |
35 | + // for ( ; col < D; col++) | |
36 | + // if(idx <= ((D - col + D) * (col + 1)/2 - 1)) | |
37 | + // break; | |
38 | + | |
39 | + // c = col; | |
40 | + // size_t ci = (D - (col - 1) + D) * col / 2 - 1; //index to the end of last column col -1 | |
41 | + // r = idx - ci + c - 1; | |
42 | + //} | |
43 | + static void indices(size_t& r, size_t& c, size_t idx) { | |
44 | + size_t cf = -1/2 * sqrt(4 * D * D + 4 * D - (7 + 8 * idx)) + D - 1/2; | |
45 | + c = ceil(cf); | |
46 | + r = idx - D * c + c * (c + 1) / 2; | |
47 | + } | |
48 | + | |
49 | +public: | |
50 | + //return the symmetric matrix associated with this tensor | |
51 | + stim::matrix<T, D> mat() { | |
52 | + stim::matrix<T, D> r; | |
53 | + r.setsym(M); | |
54 | + return r; | |
55 | + } | |
56 | + | |
57 | + CUDA_CALLABLE T& operator()(int r, int c) { | |
58 | + return M[idx(r, c)]; | |
59 | + } | |
60 | + | |
61 | + CUDA_CALLABLE matrix_sym<T, D> operator=(T rhs) { | |
62 | + int Nsq = D*(D+1)/2; | |
63 | + for(int i=0; i<Nsq; i++) | |
64 | + M[i] = rhs; | |
65 | + | |
66 | + return *this; | |
67 | + } | |
68 | + | |
69 | + CUDA_CALLABLE matrix_sym<T, D> operator=(matrix_sym<T, D> rhs) { | |
70 | + size_t N = D * (D + 1) / 2; | |
71 | + for (size_t i = 0; i < N; i++) M[i] = rhs.M[i]; | |
72 | + return *this; | |
73 | + } | |
74 | + | |
75 | + CUDA_CALLABLE T trace() { | |
76 | + T tr = 0; | |
77 | + for (size_t i = 0; i < D; i++) //for each diagonal value | |
78 | + tr += M[idx(i, i)]; //add the value on the diagonal | |
79 | + return tr; | |
80 | + } | |
81 | + // overload matrix multiply scalar | |
82 | + CUDA_CALLABLE void operator_product(matrix_sym<T, D> &B, T rhs) { | |
83 | + int Nsq = D*(D+1)/2; | |
84 | + for(int i=0; i<Nsq; i++) | |
85 | + B.M[i] *= rhs; | |
86 | + } | |
87 | + | |
88 | + //return the tensor as a string | |
89 | + std::string str() { | |
90 | + std::stringstream ss; | |
91 | + for(int r = 0; r < D; r++){ | |
92 | + ss << "| "; | |
93 | + for(int c=0; c<D; c++) | |
94 | + { | |
95 | + ss << (*this)(r, c) << " "; | |
96 | + } | |
97 | + ss << "|" << std::endl; | |
98 | + } | |
99 | + | |
100 | + return ss.str(); | |
101 | + } | |
102 | + | |
103 | + //returns an identity matrix | |
104 | + static matrix_sym<T, D> identity() { | |
105 | + matrix_sym<T, D> I; | |
106 | + I = 0; | |
107 | + for (size_t i = 0; i < D; i++) | |
108 | + I.M[matrix_sym<T, D>::idx(i, i)] = 1; | |
109 | + return I; | |
110 | + } | |
111 | +}; | |
112 | + | |
113 | + | |
114 | + | |
115 | +} //end namespace stim | |
116 | + | |
117 | + | |
118 | +#endif | ... | ... |
1 | +#ifndef STIM_TENSOR2_H | |
2 | +#define STIM_TENSOR2_H | |
3 | + | |
4 | +#include "matrix_sym.h" | |
5 | + | |
6 | +namespace stim { | |
7 | + | |
8 | +/*This class represents a symmetric rank-2 2D tensor, useful for structure tensors | |
9 | +*/ | |
10 | +template<typename T> | |
11 | +class tensor2 : public matrix_sym<T, 2> { | |
12 | + | |
13 | +protected: | |
14 | + | |
15 | +public: | |
16 | + | |
17 | + //calculate the eigenvectors and eigenvalues of the tensor | |
18 | + CUDA_CALLABLE void eig(stim::matrix<T, 2>& v, stim::matrix<T, 2>& lambda) { | |
19 | + | |
20 | + lambda = 0; //initialize the eigenvalue matrix to zero | |
21 | + | |
22 | + T t = M[0] + M[2]; //calculate the trace of the tensor | |
23 | + T d = M[0] * M[2] - M[1] * M[1]; //calculate the determinant of the tensor | |
24 | + | |
25 | + lambda(0, 0) = t / 2 + sqrt(t*t / 4 - d); | |
26 | + lambda(1, 1) = t / 2 - sqrt(t*t / 4 - d); | |
27 | + | |
28 | + if (M[1] == 0) { | |
29 | + v = stim::matrix<T, 2>::identity(); | |
30 | + } | |
31 | + else { | |
32 | + v(0, 0) = lambda(0, 0) - d; | |
33 | + v(0, 1) = lambda(1, 1) - d; | |
34 | + v(1, 0) = v(1, 1) = M[1]; | |
35 | + } | |
36 | + } | |
37 | + | |
38 | + CUDA_CALLABLE tensor2<T> operator=(stim::matrix_sym<T, 2> rhs){ | |
39 | + stim::matrix_sym<T, 2>::operator=(rhs); | |
40 | + return *this; | |
41 | + } | |
42 | +}; | |
43 | + | |
44 | + | |
45 | +} //end namespace stim | |
46 | + | |
47 | + | |
48 | +#endif | |
0 | 49 | \ No newline at end of file | ... | ... |
1 | +#ifndef STIM_TENSOR3_H | |
2 | +#define STIM_TENSOR3_H | |
3 | + | |
4 | +#include "matrix_sym.h" | |
5 | +#include <stim/math/constants.h> | |
6 | + | |
7 | +namespace stim { | |
8 | + | |
9 | + /*This class represents a symmetric rank-2 2D tensor, useful for structure tensors | |
10 | + */ | |
11 | + | |
12 | + //Matrix ID cheat sheet | |
13 | + // | 0 1 2 | | |
14 | + // | 1 3 4 | | |
15 | + // | 2 4 5 | | |
16 | + template<typename T> | |
17 | + class tensor3 : public matrix_sym<T, 3> { | |
18 | + | |
19 | + protected: | |
20 | + | |
21 | + public: | |
22 | + | |
23 | + //calculates the determinant of the tensor | |
24 | + CUDA_CALLABLE T det() { | |
25 | + return M[0] * M[3] * M[5] + 2 * (M[1] * M[4] * M[2]) - M[2] * M[3] * M[2] - M[1] * M[1] * M[5] - M[0] * M[4] * M[4]; | |
26 | + } | |
27 | + | |
28 | + //calculate the eigenvalues for the tensor | |
29 | + //adapted from https://en.wikipedia.org/wiki/Eigenvalue_algorithm | |
30 | + | |
31 | + CUDA_CALLABLE stim::vec3<T> lambda() { | |
32 | + stim::vec3<T> lam; | |
33 | + T p1 = M[1] * M[1] + M[2] * M[2] + M[4] * M[4]; //calculate the sum of the squared off-diagonal values | |
34 | + if (p1 == 0) { //if this value is zero, the matrix is diagonal | |
35 | + lam[0] = M[0]; //the eigenvalues are the diagonal values | |
36 | + lam[1] = M[3]; | |
37 | + lam[2] = M[5]; | |
38 | + return lam; //return the eigenvalue vector | |
39 | + } | |
40 | + | |
41 | + T tr = matrix_sym<T, 3>::trace(); //calculate the trace of the matrix | |
42 | + T q = tr / 3; | |
43 | + T p2 = (M[0] - q) * (M[0] - q) + (M[3] - q) * (M[3] - q) + (M[5] - q) * (M[5] - q) + 2 * p1; | |
44 | + T p = sqrt(p2 / 6); | |
45 | + tensor3<T> Q; //allocate space for Q (q along the diagonals) | |
46 | + Q = (T)0; //initialize Q to zeros | |
47 | + Q(0, 0) = Q(1, 1) = Q(2, 2) = q; //set the diagonal values to q | |
48 | + tensor3<T> B = *this; // B1 = A | |
49 | + B.M[0] = (B.M[0] - q); | |
50 | + B.M[3] = (B.M[3] - q); | |
51 | + B.M[5] = (B.M[5] - q); | |
52 | + matrix_sym<T, 3>::operator_product(B, 1/p); // B = (1/p) * (A - q*I) | |
53 | + //B.M[0] = B.M[0] * 1/p; | |
54 | + //B.M[1] = B.M[1] * 1/p; | |
55 | + //B.M[2] = B.M[2] * 1/p; | |
56 | + //B.M[3] = B.M[3] * 1/p; | |
57 | + //B.M[4] = B.M[4] * 1/p; | |
58 | + //B.M[5] = B.M[5] * 1/p; | |
59 | + T r = B.det() / 2; //calculate det(B) / 2 | |
60 | + | |
61 | + // In exact arithmetic for a symmetric matrix - 1 <= r <= 1 | |
62 | + // but computation error can leave it slightly outside this range. | |
63 | + T phi; | |
64 | + if (r <= -1) phi = stim::PI / 3; | |
65 | + else if (r >= 1) phi = 0; | |
66 | + else phi = acos(r) / 3; | |
67 | + | |
68 | + // the eigenvalues satisfy eig3 >= eig2 >= eig1 | |
69 | + lam[2] = q + 2 * p * cos(phi); | |
70 | + lam[0] = q + 2 * p * cos(phi + (2 * stim::PI / 3)); | |
71 | + lam[1] = 3 * q - (lam[2] + lam[0]); | |
72 | + | |
73 | + return lam; | |
74 | + } | |
75 | + | |
76 | + CUDA_CALLABLE stim::matrix<T, 3> eig(stim::vec3<T>& lambda = stim::vec3<T>()) { | |
77 | + stim::matrix<T, 3> V; | |
78 | + | |
79 | + stim::matrix<T, 3> M1 = matrix_sym<T, 3>::mat(); | |
80 | + stim::matrix<T, 3> M2 = matrix_sym<T, 3>::mat(); | |
81 | + stim::matrix<T, 3> M3 = matrix_sym<T, 3>::mat(); // fill a tensor with symmetric values | |
82 | + | |
83 | + M1.operator_minus(M1, lambda[0]); // M1 = A - lambda[0] * I | |
84 | + | |
85 | + M2.operator_minus(M2, lambda[1]); // M2 = A - lambda[1] * I | |
86 | + | |
87 | + M3.operator_minus(M3, lambda[2]); // M3 = A - lambda[2] * I | |
88 | + | |
89 | + T Mod = 0; // module of one column | |
90 | + | |
91 | + T tmp1[9] = {0}; | |
92 | + for(int i = 0; i < 9; i++) { | |
93 | + for(int j = 0; j < 3; j++){ | |
94 | + tmp1[i] += M2(i%3, j) * M3(j, i/3); | |
95 | + } | |
96 | + } | |
97 | + if(tmp1[0] * tmp1[1] * tmp1[2] != 0) { // test whether it is zero column | |
98 | + Mod = sqrt(pow(tmp1[0],2) + pow(tmp1[1],2) + pow(tmp1[2],2)); | |
99 | + V(0, 0) = tmp1[0]/Mod; | |
100 | + V(1, 0) = tmp1[1]/Mod; | |
101 | + V(2, 0) = tmp1[2]/Mod; | |
102 | + } | |
103 | + else { | |
104 | + Mod = sqrt(pow(tmp1[3],2) + pow(tmp1[4],2) + pow(tmp1[5],2)); | |
105 | + V(0, 0) = tmp1[3]/Mod; | |
106 | + V(1, 0) = tmp1[4]/Mod; | |
107 | + V(2, 0) = tmp1[5]/Mod; | |
108 | + } | |
109 | + | |
110 | + T tmp2[9] = {0}; | |
111 | + for(int i = 0; i < 9; i++) { | |
112 | + for(int j = 0; j < 3; j++){ | |
113 | + tmp2[i] += M1(i%3, j) * M3(j, i/3); | |
114 | + } | |
115 | + } | |
116 | + if(tmp2[0] * tmp2[1] * tmp2[2] != 0) { | |
117 | + Mod = sqrt(pow(tmp2[0],2) + pow(tmp2[1],2) + pow(tmp2[2],2)); | |
118 | + V(0, 1) = tmp2[0]/Mod; | |
119 | + V(1, 1) = tmp2[1]/Mod; | |
120 | + V(2, 1) = tmp2[2]/Mod; | |
121 | + } | |
122 | + else { | |
123 | + Mod = sqrt(pow(tmp2[3],2) + pow(tmp2[4],2) + pow(tmp2[5],2)); | |
124 | + V(0, 1) = tmp2[3]/Mod; | |
125 | + V(1, 1) = tmp2[4]/Mod; | |
126 | + V(2, 1) = tmp2[5]/Mod; | |
127 | + } | |
128 | + | |
129 | + T tmp3[9] = {0}; | |
130 | + for(int i = 0; i < 9; i++) { | |
131 | + for(int j = 0; j < 3; j++){ | |
132 | + tmp3[i] += M1(i%3, j) * M2(j, i/3); | |
133 | + } | |
134 | + } | |
135 | + if(tmp3[0] * tmp3[1] * tmp3[2] != 0) { | |
136 | + Mod = sqrt(pow(tmp3[0],2) + pow(tmp3[1],2) + pow(tmp3[2],2)); | |
137 | + V(0, 2) = tmp3[0]/Mod; | |
138 | + V(1, 2) = tmp3[1]/Mod; | |
139 | + V(2, 2) = tmp3[2]/Mod; | |
140 | + } | |
141 | + else { | |
142 | + Mod = sqrt(pow(tmp3[3],2) + pow(tmp3[4],2) + pow(tmp3[5],2)); | |
143 | + V(0, 2) = tmp3[3]/Mod; | |
144 | + V(1, 2) = tmp3[4]/Mod; | |
145 | + V(2, 2) = tmp3[5]/Mod; | |
146 | + } | |
147 | + return V; //return the eigenvector matrix | |
148 | + } | |
149 | + // return one specific eigenvector | |
150 | + CUDA_CALLABLE stim::vec3<T> eig(int n, stim::vec3<T>& lambda = stim::vec3<T>()) { | |
151 | + stim::matrix<T, 3> V = eig(lambda); | |
152 | + stim::vec3<T> v; | |
153 | + for(int i = 0; i < 3; i++) | |
154 | + v[i] = V(i, n); | |
155 | + return v; | |
156 | + } | |
157 | + | |
158 | + | |
159 | + CUDA_CALLABLE T linear(stim::vec3<T>& lambda = stim::vec3<T>()) { | |
160 | + T cl = (lambda[2] - lambda[1]) / (lambda[0] + lambda[1] + lambda[2]); | |
161 | + return cl; | |
162 | + } | |
163 | + | |
164 | + CUDA_CALLABLE T Planar(stim::vec3<T>& lambda = stim::vec3<T>()) { | |
165 | + T cp = 2 * (lambda[1] - lambda[0]) / (lambda[0] + lambda[1] + lambda[2]); | |
166 | + return cp; | |
167 | + } | |
168 | + | |
169 | + CUDA_CALLABLE T spherical(stim::vec3<T>& lambda = stim::vec3<T>()) { | |
170 | + T cs = 3 * lambda[0] / (lambda[0] + lambda[1] + lambda[2]); | |
171 | + return cs; | |
172 | + } | |
173 | + | |
174 | + CUDA_CALLABLE T fa(stim::vec3<T>& lambda = stim::vec3<T>()) { | |
175 | + T fa = sqrt(1/2) * sqrt(pow(lambda[2] - lambda[1], 2) + pow(lambda[1] - lambda[0], 2) + pow(lambda[0] - lambda[2], 2)) / sqrt(pow(lambda[2], 2) + pow(lambda[1], 2) + pow(lambda[0], 2)); | |
176 | + } | |
177 | + //JACK 2: write functions to calculate anisotropy | |
178 | + //ex: fa(), linear(), planar(), spherical() | |
179 | + | |
180 | + | |
181 | + //calculate the eigenvectors and eigenvalues of the tensor | |
182 | + //CUDA_CALLABLE void eig(stim::matrix<T, 3>& v, stim::matrix<T, 3>& lambda){ | |
183 | + | |
184 | + //} | |
185 | + CUDA_CALLABLE tensor3<T> operator=(T rhs) { | |
186 | + stim::matrix_sym<T, 3>::operator=(rhs); | |
187 | + return *this; | |
188 | + } | |
189 | + | |
190 | + CUDA_CALLABLE tensor3<T> operator=(stim::matrix_sym<T, 3> rhs) { | |
191 | + stim::matrix_sym<T, 3>::operator=(rhs); | |
192 | + return *this; | |
193 | + } | |
194 | + }; | |
195 | + | |
196 | + | |
197 | +} //end namespace stim | |
198 | + | |
199 | + | |
200 | +#endif | |
0 | 201 | \ No newline at end of file | ... | ... |