Commit a9ed210f0018dafe10c4bfe1e07d62535b92a489
1 parent
0311ab81
added centerline
Showing
1 changed file
with
346 additions
and
0 deletions
Show diff stats
1 | +#ifndef STIM_CENTERLINE_H | |
2 | +#define STIM_CENTERLINE_H | |
3 | + | |
4 | +#include <vector> | |
5 | +#include <stim/math/vec3.h> | |
6 | +#include <ANN/ANN.h> | |
7 | + | |
8 | +namespace stim{ | |
9 | + | |
10 | +/** This class stores information about a single fiber represented as a set of geometric points | |
11 | + * between two branch or end points. This class is used as a fundamental component of the stim::network | |
12 | + * class to describe an interconnected (often biological) network. | |
13 | + */ | |
14 | +template<typename T> | |
15 | +class centerline{ | |
16 | + | |
17 | +protected: | |
18 | + unsigned int N; //number of points in the fiber | |
19 | + double **c; //centerline (array of double pointers) | |
20 | + ANNkd_tree* kdt; //kd-tree stores all points in the fiber for fast searching | |
21 | + | |
22 | + /// Initialize an empty fiber | |
23 | + void init() | |
24 | + { | |
25 | + N=0; | |
26 | + c=NULL; | |
27 | + kdt = NULL; | |
28 | + } | |
29 | + | |
30 | + /// Initialize a fiber with N centerline points (all located at [0, 0, 0] with radius 0) | |
31 | + void init(unsigned int n) | |
32 | + { | |
33 | + | |
34 | + N = n; //set the number of points | |
35 | + kdt = NULL; | |
36 | + c = (double**) malloc(sizeof(double*) * N); //allocate the array pointer | |
37 | + | |
38 | + for(unsigned int i = 0; i < N; i++) //allocate space for each point | |
39 | + c[i] = (double*) malloc(sizeof(double) * 3); | |
40 | + } | |
41 | + | |
42 | + /// Copies an existing fiber to the current fiber | |
43 | + | |
44 | + /// @param cpy stores the new copy of the fiber | |
45 | + void copy( const stim::centerline<T>& cpy, bool kd = 0){ | |
46 | + | |
47 | + ///allocate space for the new fiber | |
48 | + init(cpy.N); | |
49 | + | |
50 | + ///copy the points | |
51 | + for(unsigned int i = 0; i < N; i++){ | |
52 | + for(unsigned int d = 0; d < 3; d++) //for each dimension | |
53 | + c[i][d] = cpy.c[i][d]; //copy the coordinate | |
54 | + } | |
55 | + if(kd) | |
56 | + gen_kdtree(); //generate the kd tree for the new fiber | |
57 | + } | |
58 | + | |
59 | + /// generate a KD tree for points on fiber | |
60 | + void gen_kdtree() | |
61 | + { | |
62 | + int n_data = N; //create an array of data points | |
63 | + ANNpointArray pts = (ANNpointArray)c; //cast the centerline list to an ANNpointArray | |
64 | + kdt = new ANNkd_tree(pts, n_data, 3); //build a KD tree | |
65 | + } | |
66 | + | |
67 | + /// find distance between two points | |
68 | + double dist(double* p0, double* p1){ | |
69 | + | |
70 | + double sum = 0; // initialize variables | |
71 | + float v; | |
72 | + for(unsigned int d = 0; d < 3; d++) | |
73 | + { | |
74 | + v = p1[d] - p0[d]; | |
75 | + sum +=v * v; | |
76 | + } | |
77 | + return sqrt(sum); | |
78 | + } | |
79 | + | |
80 | + /// This function retreives the index for the fiber point closest to q | |
81 | + | |
82 | + /// @param q is a reference point used to find the closest point on the fiber center line | |
83 | + unsigned int ann( stim::vec<double> q ){ | |
84 | + ANNidxArray idx = new ANNidx[1]; //variable used to hold the nearest point | |
85 | + ANNdistArray sq_dist = new ANNdist[1]; //variable used to hold the squared distance to the nearest point | |
86 | + kdt->annkSearch(q.data(), 1, idx, sq_dist); //search the KD tree for the nearest neighbor | |
87 | + return *idx; | |
88 | + } | |
89 | + | |
90 | + /// Returns a stim::vec representing the point at index i | |
91 | + | |
92 | + /// @param i is an index of the desired centerline point | |
93 | + stim::vec<T> get_vec(unsigned i){ | |
94 | + stim::vec3<T> r; | |
95 | + r.resize(3); | |
96 | + r[0] = c[i][0]; | |
97 | + r[1] = c[i][1]; | |
98 | + r[2] = c[i][2]; | |
99 | + | |
100 | + return r; | |
101 | + } | |
102 | + | |
103 | + | |
104 | +public: | |
105 | + | |
106 | + centerline(){ | |
107 | + init(); | |
108 | + } | |
109 | + | |
110 | + /// Copy constructor | |
111 | + centerline(const stim::centerline<T> &obj){ | |
112 | + copy(obj); | |
113 | + } | |
114 | + | |
115 | + //temp constructor for graph visualization | |
116 | + centerline(int n) | |
117 | + { | |
118 | + init(n); | |
119 | + } | |
120 | + | |
121 | + /// Constructor takes a list of stim::vec points, the radius at each point is set to zero | |
122 | + centerline(std::vector< stim::vec<T> > p, bool kd = 0){ | |
123 | + init(p.size()); //initialize the fiber | |
124 | + | |
125 | + //for each point, set the centerline position and radius | |
126 | + for(unsigned int i = 0; i < N; i++){ | |
127 | + | |
128 | + //set the centerline position | |
129 | + for(unsigned int d = 0; d < 3; d++) | |
130 | + c[i][d] = (double) p[i][d]; | |
131 | + | |
132 | + //set the radius | |
133 | + } | |
134 | + //generate a kd tree | |
135 | + if(kd) | |
136 | + gen_kdtree(); | |
137 | + } | |
138 | + | |
139 | + /// constructor takes a list of points | |
140 | + centerline(std::vector< stim::vec3< T > > pos, bool kd = 0){ | |
141 | + init(pos.size()); //initialize the fiber | |
142 | + | |
143 | + //for each point, set the centerline position and radius | |
144 | + for(unsigned int i = 0; i < N; i++){ | |
145 | + //set the centerline position | |
146 | + for(unsigned int d = 0; d < 3; d++) | |
147 | + c[i][d] = (double) pos[i][d]; | |
148 | + //set the radius | |
149 | + } | |
150 | + | |
151 | + //generate a kd tree | |
152 | + if(kd) | |
153 | + gen_kdtree(); | |
154 | + } | |
155 | + | |
156 | + /// Assignment operation | |
157 | + centerline& operator=(const centerline &rhs){ | |
158 | + if(this == &rhs) return *this; //test for and handle self-assignment | |
159 | + copy(rhs); | |
160 | + return *this; | |
161 | + } | |
162 | + | |
163 | + | |
164 | + /// Return the point on the fiber closest to q | |
165 | + /// @param q is the query point used to locate the nearest point on the fiber centerline | |
166 | + stim::vec<T> nearest(stim::vec<T> q){ | |
167 | + | |
168 | + stim::vec<double> temp( (double) q[0], (double) q[1], (double) q[2]); | |
169 | + | |
170 | + unsigned int idx = ann(temp); //determine the index of the nearest neighbor | |
171 | + | |
172 | + return stim::vec<T>((T) c[idx][0], (T) c[idx][1], (T) c[idx][2]); //return the nearest centerline point | |
173 | + } | |
174 | + | |
175 | + /// Return the point index on the fiber closest to q | |
176 | + /// @param q is the query point used to locate the nearest point on the fiber centerline | |
177 | + unsigned int nearest_idx(stim::vec<T> q){ | |
178 | + | |
179 | + stim::vec<double> temp((double) q[0], (double) q[1], (double) q[2]); | |
180 | + | |
181 | + unsigned int idx = ann(temp); //determine the index of the nearest neighbor | |
182 | + | |
183 | + return idx; //return the nearest centerline point index | |
184 | + } | |
185 | + | |
186 | + /// Returns the fiber centerline as an array of stim::vec points | |
187 | + std::vector< stim::vec<T> > get_centerline(){ | |
188 | + | |
189 | + //create an array of stim vectors | |
190 | + std::vector< stim::vec3<T> > pts(N); | |
191 | + | |
192 | + //cast each point to a stim::vec, keeping only the position information | |
193 | + for(unsigned int i = 0; i < N; i++) | |
194 | + pts[i] = stim::vec3<T>((T) c[i][0], (T) c[i][1], (T) c[i][2]); | |
195 | + | |
196 | + //return the centerline array | |
197 | + return pts; | |
198 | + } | |
199 | + | |
200 | + /// Split the fiber at the specified index. If the index is an end point, only one fiber is returned | |
201 | + std::vector< stim::centerline<T> > split(unsigned int idx){ | |
202 | + | |
203 | + std::vector< stim::centerline<T> > fl; //create an array to store up to two fibers | |
204 | + | |
205 | + //if the index is an end point, only the existing fiber is returned | |
206 | + if(idx == 0 || idx == N-1){ | |
207 | + fl.resize(1); //set the size of the fiber to 1 | |
208 | + fl[0] = *this; //copy the current fiber | |
209 | + } | |
210 | + | |
211 | + //if the index is not an end point | |
212 | + else{ | |
213 | + | |
214 | + unsigned int N1 = idx + 1; //calculate the size of both fibers | |
215 | + unsigned int N2 = N - idx; | |
216 | + | |
217 | + fl.resize(2); //set the array size to 2 | |
218 | + | |
219 | + fl[0].init(N1); //set the size of each fiber | |
220 | + fl[1].init(N2); | |
221 | + | |
222 | + //copy both halves of the fiber | |
223 | + unsigned int i, d; | |
224 | + | |
225 | + //first half | |
226 | + for(i = 0; i < N1; i++){ //for each centerline point | |
227 | + for(d = 0; d < 3; d++) | |
228 | + fl[0].c[i][d] = c[i][d]; //copy each coordinate | |
229 | + } | |
230 | + | |
231 | + //second half | |
232 | + for(i = 0; i < N2; i++){ | |
233 | + for(d = 0; d < 3; d++) | |
234 | + fl[1].c[i][d] = c[idx + i][d]; | |
235 | + | |
236 | + } | |
237 | + } | |
238 | + | |
239 | + return fl; //return the array | |
240 | + | |
241 | + } | |
242 | + | |
243 | + /// Calculates the set of fibers resulting from a connection between the current fiber and a fiber f | |
244 | + | |
245 | + /// @param f is the fiber that will be connected to the current fiber | |
246 | +/* std::vector< stim::centerline<T> > connect( stim::centerline<T> &f, double dist){ | |
247 | + | |
248 | + double min_dist; | |
249 | + unsigned int idx0, idx1; | |
250 | + | |
251 | + //go through each point in the query fiber, looking for the indices for the closest points | |
252 | + for(unsigned int i = 0; i < f.n_pts(); i++){ | |
253 | + //Run through all points and find the index with the closest point, then partition the fiber and return two fibers. | |
254 | + | |
255 | + } | |
256 | + | |
257 | + | |
258 | + | |
259 | + } | |
260 | +*/ | |
261 | + /// Outputs the fiber as a string | |
262 | + std::string str(){ | |
263 | + std::stringstream ss; | |
264 | + | |
265 | + //create an iterator for the point list | |
266 | + //typename std::list< point<T> >::iterator i; | |
267 | + for(unsigned int i = 0; i < N; i++){ | |
268 | + ss<<" [ "; | |
269 | + for(unsigned int d = 0; d < 3; d++){ | |
270 | + ss<<c[i][d]<<" "; | |
271 | + } | |
272 | + } | |
273 | + | |
274 | + return ss.str(); | |
275 | + } | |
276 | + /// Returns the number of centerline points in the fiber | |
277 | + unsigned int size(){ | |
278 | + return N; | |
279 | + } | |
280 | + | |
281 | + | |
282 | + /// Bracket operator returns the element at index i | |
283 | + | |
284 | + /// @param i is the index of the element to be returned as a stim::vec | |
285 | + stim::vec<T> operator[](unsigned i){ | |
286 | + return get_vec(i); | |
287 | + } | |
288 | + | |
289 | + /// Back method returns the last point in the fiber | |
290 | + stim::vec<T> back(){ | |
291 | + return get_vec(N-1); | |
292 | + } | |
293 | + ////resample a fiber in the network | |
294 | + stim::centerline<T> resample(T spacing) | |
295 | + { | |
296 | + std::cout<<"fiber::resample()"<<std::endl; | |
297 | + | |
298 | + std::vector<T> v(3); //v-direction vector of the segment | |
299 | + stim::vec<T> p(3); //- intermediate point to be added | |
300 | + stim::vec<T> p1(3); // p1 - starting point of an segment on the fiber, | |
301 | + stim::vec<T> p2(3); // p2 - ending point, | |
302 | + double sum=0; //distance summation | |
303 | + std::vector<stim::vec<T> > fiberPositions = centerline(); | |
304 | + std::vector<stim::vec<T> > newPointList; // initialize list of new resampled points on the fiber | |
305 | + // for each point on the centerline (skip if it is the last point on centerline) | |
306 | + //unsigned int N = fiberPositions.size(); // number of points on the fiber | |
307 | + for(unsigned int f=0; f< N-1; f++) | |
308 | + { | |
309 | + | |
310 | + p1 = fiberPositions[f]; p2 = fiberPositions[f + 1]; v = p2 - p1; | |
311 | + for(unsigned int d = 0; d < 3; d++){ | |
312 | + sum +=v[d] * v[d];} //length of segment-distance between starting and ending point | |
313 | + | |
314 | + T lengthSegment = sqrt(sum); //find Length of the segment as distance between the starting and ending points of the segment | |
315 | + | |
316 | + if(lengthSegment >= spacing) // if length of the segment is greater than standard deviation resample | |
317 | + { | |
318 | + // repeat resampling until accumulated stepsize is equsl to length of the segment | |
319 | + for(T step=0.0; step<lengthSegment; step+=spacing) | |
320 | + { | |
321 | + // calculate the resampled point by travelling step size in the direction of normalized gradient vector | |
322 | + for(unsigned int i=0; i<3;i++) | |
323 | + { | |
324 | + p[i] = p1[i] + v[i]*(step/lengthSegment); | |
325 | + } //for each dimension | |
326 | + // add this resampled points to the new fiber list | |
327 | + newPointList.push_back(p); | |
328 | + } | |
329 | + } | |
330 | + else // length of the segment is now less than standard deviation, push the ending point of the segment and proceed to the next point in the fiber | |
331 | + newPointList.push_back(fiberPositions[f+1]); | |
332 | + } | |
333 | + newPointList.push_back(fiberPositions[N-1]); //add the last point on the fiber to the new fiber list | |
334 | + centerline newFiber(newPointList); | |
335 | + return newFiber; | |
336 | + } | |
337 | + | |
338 | +}; | |
339 | + | |
340 | + | |
341 | + | |
342 | +} //end namespace stim | |
343 | + | |
344 | + | |
345 | + | |
346 | +#endif | ... | ... |