Commit eaf2cb076d7dfca096a820c1530dbad59872366b
1 parent
ba72c5b0
renamed spherical harmonics header
Showing
1 changed file
with
236 additions
and
236 deletions
Show diff stats
stim/visualization/sph_harmonics.h renamed to stim/visualization/spharmonics.h
1 | -#ifndef STIM_SPH_HARMONICS | |
2 | -#define STIM_SPH_HARMONICS | |
3 | - | |
4 | -#include <GL/gl.h> | |
5 | - | |
6 | -#include <stim/gl/error.h> | |
7 | -#include <stim/visualization/colormap.h> | |
8 | -#include <vector> | |
9 | - | |
10 | -#define PI 3.14159 | |
11 | -#define WIRE_SCALE 1.001 | |
12 | -namespace stim{ | |
13 | - | |
14 | - class sph_harmonics{ | |
15 | - | |
16 | - private: | |
17 | - | |
18 | - double* func; //stores the raw function data (samples at each point) | |
19 | - | |
1 | +#ifndef STIM_SPH_HARMONICS | |
2 | +#define STIM_SPH_HARMONICS | |
3 | + | |
4 | +#include <GL/gl.h> | |
5 | + | |
6 | +#include <stim/gl/error.h> | |
7 | +#include <stim/visualization/colormap.h> | |
8 | +#include <vector> | |
9 | + | |
10 | +#define PI 3.14159 | |
11 | +#define WIRE_SCALE 1.001 | |
12 | +namespace stim{ | |
13 | + | |
14 | + class sph_harmonics{ | |
15 | + | |
16 | + private: | |
17 | + | |
18 | + double* func; //stores the raw function data (samples at each point) | |
19 | + | |
20 | 20 | GLuint color_tex; //texture map that acts as a colormap for the spherical function |
21 | 21 | |
22 | - unsigned int N; //resolution of the spherical grid | |
23 | - | |
24 | - std::vector<double> C; //list of SH coefficients | |
25 | - | |
26 | - | |
27 | - //evaluates an associated Legendre polynomial (-l <= m <= l) | |
28 | - double P(int l,int m,double x) | |
29 | - { | |
30 | - // evaluate an Associated Legendre Polynomial P(l,m,x) at x | |
31 | - double pmm = 1.0; | |
32 | - if(m>0) { | |
33 | - double somx2 = sqrt((1.0-x)*(1.0+x)); | |
34 | - double fact = 1.0; | |
35 | - for(int i=1; i<=m; i++) { | |
36 | - pmm *= (-fact) * somx2; | |
37 | - fact += 2.0; | |
38 | - } | |
39 | - } | |
40 | - if(l==m) return pmm; | |
41 | - double pmmp1 = x * (2.0*m+1.0) * pmm; | |
42 | - if(l==m+1) return pmmp1; | |
43 | - double pll = 0.0; | |
44 | - for(int ll=m+2; ll<=l; ++ll) { | |
45 | - pll = ( (2.0*ll-1.0)*x*pmmp1-(ll+m-1.0)*pmm ) / (ll-m); | |
46 | - pmm = pmmp1; | |
47 | - pmmp1 = pll; | |
48 | - } | |
49 | - return pll; | |
50 | - } | |
51 | - | |
52 | - //recursively calculate a factorial given a positive integer n | |
53 | - unsigned int factorial(unsigned int n) { | |
54 | - if (n == 0) | |
55 | - return 1; | |
56 | - return n * factorial(n - 1); | |
57 | - } | |
58 | - | |
59 | - //calculate the SH scaling constant | |
60 | - double K(int l, int m){ | |
61 | - | |
62 | - // renormalisation constant for SH function | |
63 | - double temp = ((2.0*l+1.0)*factorial(l-m)) / (4.0*PI*factorial(l+m)); | |
64 | - return sqrt(temp); | |
65 | - } | |
66 | - | |
67 | - //calculate the value of the SH basis function (l, m) at (theta, phi) | |
68 | - //here, theta = [0, PI], phi = [0, 2*PI] | |
69 | - double SH(int l, int m, double theta, double phi){ | |
70 | - // return a point sample of a Spherical Harmonic basis function | |
71 | - // l is the band, range [0..N] | |
72 | - // m in the range [-l..l] | |
73 | - // theta in the range [0..Pi] | |
74 | - // phi in the range [0..2*Pi] | |
75 | - const double sqrt2 = sqrt(2.0); | |
76 | - if(m==0) return K(l,0)*P(l,m,cos(theta)); | |
77 | - else if(m>0) return sqrt2*K(l,m)*cos(m*phi)*P(l,m,cos(theta)); | |
78 | - else return sqrt2*K(l,-m)*sin(-m*phi)*P(l,-m,cos(theta)); | |
79 | - } | |
80 | - | |
81 | - void gen_function(){ | |
82 | - | |
83 | - //initialize the function to zero | |
84 | - memset(func, 0, sizeof(double) * N * N); | |
85 | - | |
86 | - double theta, phi; | |
87 | - double result; | |
88 | - int l, m; | |
89 | - | |
90 | - l = m = 0; | |
91 | - for(unsigned int c = 0; c < C.size(); c++){ | |
92 | - | |
93 | - | |
22 | + unsigned int N; //resolution of the spherical grid | |
23 | + | |
24 | + std::vector<double> C; //list of SH coefficients | |
25 | + | |
26 | + | |
27 | + //evaluates an associated Legendre polynomial (-l <= m <= l) | |
28 | + double P(int l,int m,double x) | |
29 | + { | |
30 | + // evaluate an Associated Legendre Polynomial P(l,m,x) at x | |
31 | + double pmm = 1.0; | |
32 | + if(m>0) { | |
33 | + double somx2 = sqrt((1.0-x)*(1.0+x)); | |
34 | + double fact = 1.0; | |
35 | + for(int i=1; i<=m; i++) { | |
36 | + pmm *= (-fact) * somx2; | |
37 | + fact += 2.0; | |
38 | + } | |
39 | + } | |
40 | + if(l==m) return pmm; | |
41 | + double pmmp1 = x * (2.0*m+1.0) * pmm; | |
42 | + if(l==m+1) return pmmp1; | |
43 | + double pll = 0.0; | |
44 | + for(int ll=m+2; ll<=l; ++ll) { | |
45 | + pll = ( (2.0*ll-1.0)*x*pmmp1-(ll+m-1.0)*pmm ) / (ll-m); | |
46 | + pmm = pmmp1; | |
47 | + pmmp1 = pll; | |
48 | + } | |
49 | + return pll; | |
50 | + } | |
51 | + | |
52 | + //recursively calculate a factorial given a positive integer n | |
53 | + unsigned int factorial(unsigned int n) { | |
54 | + if (n == 0) | |
55 | + return 1; | |
56 | + return n * factorial(n - 1); | |
57 | + } | |
58 | + | |
59 | + //calculate the SH scaling constant | |
60 | + double K(int l, int m){ | |
61 | + | |
62 | + // renormalisation constant for SH function | |
63 | + double temp = ((2.0*l+1.0)*factorial(l-m)) / (4.0*PI*factorial(l+m)); | |
64 | + return sqrt(temp); | |
65 | + } | |
66 | + | |
67 | + //calculate the value of the SH basis function (l, m) at (theta, phi) | |
68 | + //here, theta = [0, PI], phi = [0, 2*PI] | |
69 | + double SH(int l, int m, double theta, double phi){ | |
70 | + // return a point sample of a Spherical Harmonic basis function | |
71 | + // l is the band, range [0..N] | |
72 | + // m in the range [-l..l] | |
73 | + // theta in the range [0..Pi] | |
74 | + // phi in the range [0..2*Pi] | |
75 | + const double sqrt2 = sqrt(2.0); | |
76 | + if(m==0) return K(l,0)*P(l,m,cos(theta)); | |
77 | + else if(m>0) return sqrt2*K(l,m)*cos(m*phi)*P(l,m,cos(theta)); | |
78 | + else return sqrt2*K(l,-m)*sin(-m*phi)*P(l,-m,cos(theta)); | |
79 | + } | |
80 | + | |
81 | + void gen_function(){ | |
82 | + | |
83 | + //initialize the function to zero | |
84 | + memset(func, 0, sizeof(double) * N * N); | |
85 | + | |
86 | + double theta, phi; | |
87 | + double result; | |
88 | + int l, m; | |
89 | + | |
90 | + l = m = 0; | |
91 | + for(unsigned int c = 0; c < C.size(); c++){ | |
92 | + | |
93 | + | |
94 | 94 | for(unsigned int xi = 0; xi < N; xi++) |
95 | 95 | for(unsigned int yi = 0; yi < N; yi++){ |
96 | 96 | |
... | ... | @@ -98,28 +98,28 @@ namespace stim{ |
98 | 98 | phi = PI * ((double)yi / (N-1)); |
99 | 99 | result = C[c] * SH(l, m, phi, theta); //phi and theta are reversed here (damn physicists) |
100 | 100 | func[yi * N + xi] += result; |
101 | - } | |
102 | - | |
103 | - m++; //increment m | |
104 | - | |
105 | - //if we're in a new tier, increment l and set m = -l | |
106 | - if(m > l){ | |
107 | - l++; | |
108 | - m = -l; | |
109 | - } | |
110 | - } | |
111 | - } | |
112 | - | |
113 | - void gl_prep_draw(){ | |
114 | - | |
115 | - //enable depth testing | |
116 | - //this has to be used instead of culling because the sphere can have negative values | |
117 | - glEnable(GL_DEPTH_TEST); | |
118 | - glDepthMask(GL_TRUE); | |
119 | - glEnable(GL_TEXTURE_2D); //enable 2D texture mapping | |
120 | - } | |
121 | - | |
122 | - //draw a texture mapped sphere representing the function surface | |
101 | + } | |
102 | + | |
103 | + m++; //increment m | |
104 | + | |
105 | + //if we're in a new tier, increment l and set m = -l | |
106 | + if(m > l){ | |
107 | + l++; | |
108 | + m = -l; | |
109 | + } | |
110 | + } | |
111 | + } | |
112 | + | |
113 | + void gl_prep_draw(){ | |
114 | + | |
115 | + //enable depth testing | |
116 | + //this has to be used instead of culling because the sphere can have negative values | |
117 | + glEnable(GL_DEPTH_TEST); | |
118 | + glDepthMask(GL_TRUE); | |
119 | + glEnable(GL_TEXTURE_2D); //enable 2D texture mapping | |
120 | + } | |
121 | + | |
122 | + //draw a texture mapped sphere representing the function surface | |
123 | 123 | void gl_draw_sphere() { |
124 | 124 | |
125 | 125 | //PI is used to convert from spherical to cartesian coordinates |
... | ... | @@ -169,133 +169,133 @@ namespace stim{ |
169 | 169 | } |
170 | 170 | glEnd(); |
171 | 171 | } |
172 | - } | |
173 | - | |
174 | - //draw a wire frame sphere representing the function surface | |
175 | - void gl_draw_wireframe() { | |
176 | - | |
177 | - //PI is used to convert from spherical to cartesian coordinates | |
178 | - //const double PI = 3.14159; | |
179 | - | |
180 | - //bind the 2D texture representing the color map | |
181 | - glDisable(GL_TEXTURE_2D); | |
182 | - glColor3f(0.0f, 0.0f, 0.0f); | |
183 | - | |
184 | - //Draw the Sphere | |
185 | - int i, j; | |
186 | - | |
187 | - for(i = 1; i <= N-1; i++) { | |
188 | - double phi0 = PI * ((double) (i - 1) / (N-1)); | |
189 | - double phi1 = PI * ((double) i / (N-1)); | |
190 | - | |
191 | - glBegin(GL_LINE_STRIP); | |
192 | - for(j = 0; j <= N; j++) { | |
193 | - | |
194 | - //calculate the indices into the function array | |
195 | - int phi0_i = i-1; | |
196 | - int phi1_i = i; | |
197 | - int theta_i = j; | |
198 | - if(theta_i == N) | |
199 | - theta_i = 0; | |
200 | - | |
201 | - double v0 = func[phi0_i * N + theta_i]; | |
202 | - double v1 = func[phi1_i * N + theta_i]; | |
203 | - | |
204 | - v0 = fabs(v0); | |
205 | - v1 = fabs(v1); | |
206 | - | |
207 | - | |
208 | - double theta = 2 * PI * (double) (j - 1) / N; | |
209 | - double x0 = WIRE_SCALE * v0 * cos(theta) * sin(phi0); | |
210 | - double y0 = WIRE_SCALE * v0 * sin(theta) * sin(phi0); | |
211 | - double z0 = WIRE_SCALE * v0 * cos(phi0); | |
212 | - | |
213 | - double x1 = WIRE_SCALE * v1 * cos(theta) * sin(phi1); | |
214 | - double y1 = WIRE_SCALE * v1 * sin(theta) * sin(phi1); | |
215 | - double z1 = WIRE_SCALE * v1 * cos(phi1); | |
216 | - | |
217 | - glTexCoord2f(theta / (2 * PI), phi0 / PI); | |
218 | - glVertex3f(x0, y0, z0); | |
219 | - | |
220 | - glTexCoord2f(theta / (2 * PI), phi1 / PI); | |
221 | - glVertex3f(x1, y1, z1); | |
222 | - } | |
223 | - glEnd(); | |
224 | - } | |
225 | - } | |
226 | - | |
227 | - void init(unsigned int n){ | |
228 | - | |
229 | - //set the sphere resolution | |
230 | - N = n; | |
231 | - | |
232 | - //allocate space for the color map | |
233 | - unsigned int bytes = N * N * sizeof(unsigned char) * 3; | |
172 | + } | |
173 | + | |
174 | + //draw a wire frame sphere representing the function surface | |
175 | + void gl_draw_wireframe() { | |
176 | + | |
177 | + //PI is used to convert from spherical to cartesian coordinates | |
178 | + //const double PI = 3.14159; | |
179 | + | |
180 | + //bind the 2D texture representing the color map | |
181 | + glDisable(GL_TEXTURE_2D); | |
182 | + glColor3f(0.0f, 0.0f, 0.0f); | |
183 | + | |
184 | + //Draw the Sphere | |
185 | + int i, j; | |
186 | + | |
187 | + for(i = 1; i <= N-1; i++) { | |
188 | + double phi0 = PI * ((double) (i - 1) / (N-1)); | |
189 | + double phi1 = PI * ((double) i / (N-1)); | |
190 | + | |
191 | + glBegin(GL_LINE_STRIP); | |
192 | + for(j = 0; j <= N; j++) { | |
193 | + | |
194 | + //calculate the indices into the function array | |
195 | + int phi0_i = i-1; | |
196 | + int phi1_i = i; | |
197 | + int theta_i = j; | |
198 | + if(theta_i == N) | |
199 | + theta_i = 0; | |
200 | + | |
201 | + double v0 = func[phi0_i * N + theta_i]; | |
202 | + double v1 = func[phi1_i * N + theta_i]; | |
203 | + | |
204 | + v0 = fabs(v0); | |
205 | + v1 = fabs(v1); | |
206 | + | |
207 | + | |
208 | + double theta = 2 * PI * (double) (j - 1) / N; | |
209 | + double x0 = WIRE_SCALE * v0 * cos(theta) * sin(phi0); | |
210 | + double y0 = WIRE_SCALE * v0 * sin(theta) * sin(phi0); | |
211 | + double z0 = WIRE_SCALE * v0 * cos(phi0); | |
212 | + | |
213 | + double x1 = WIRE_SCALE * v1 * cos(theta) * sin(phi1); | |
214 | + double y1 = WIRE_SCALE * v1 * sin(theta) * sin(phi1); | |
215 | + double z1 = WIRE_SCALE * v1 * cos(phi1); | |
216 | + | |
217 | + glTexCoord2f(theta / (2 * PI), phi0 / PI); | |
218 | + glVertex3f(x0, y0, z0); | |
219 | + | |
220 | + glTexCoord2f(theta / (2 * PI), phi1 / PI); | |
221 | + glVertex3f(x1, y1, z1); | |
222 | + } | |
223 | + glEnd(); | |
224 | + } | |
225 | + } | |
226 | + | |
227 | + void init(unsigned int n){ | |
228 | + | |
229 | + //set the sphere resolution | |
230 | + N = n; | |
231 | + | |
232 | + //allocate space for the color map | |
233 | + unsigned int bytes = N * N * sizeof(unsigned char) * 3; | |
234 | 234 | unsigned char* color_image; |
235 | - color_image = (unsigned char*) malloc(bytes); | |
236 | - | |
237 | - //allocate space for the function | |
238 | - func = (double*) malloc(N * N * sizeof(double)); | |
239 | - | |
240 | - //generate a function (temporary) | |
241 | - gen_function(); | |
242 | - | |
243 | - //generate a colormap from the function | |
244 | - stim::cpu2cpu<double>(func, color_image, N*N, stim::cmBrewer); | |
245 | - | |
246 | - //prep everything for drawing | |
247 | - gl_prep_draw(); | |
248 | - | |
249 | - //generate an OpenGL texture map in the current context | |
235 | + color_image = (unsigned char*) malloc(bytes); | |
236 | + | |
237 | + //allocate space for the function | |
238 | + func = (double*) malloc(N * N * sizeof(double)); | |
239 | + | |
240 | + //generate a function (temporary) | |
241 | + gen_function(); | |
242 | + | |
243 | + //generate a colormap from the function | |
244 | + stim::cpu2cpu<double>(func, color_image, N*N, stim::cmBrewer); | |
245 | + | |
246 | + //prep everything for drawing | |
247 | + gl_prep_draw(); | |
248 | + | |
249 | + //generate an OpenGL texture map in the current context | |
250 | 250 | glGenTextures(1, &color_tex); |
251 | 251 | //bind the texture |
252 | - glBindTexture(GL_TEXTURE_2D, color_tex); | |
253 | - | |
254 | - //copy the color data from the buffer to the GPU | |
255 | - glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, N, N, 0, GL_RGB, GL_UNSIGNED_BYTE, color_image); | |
256 | - | |
257 | - //initialize all of the texture parameters | |
252 | + glBindTexture(GL_TEXTURE_2D, color_tex); | |
253 | + | |
254 | + //copy the color data from the buffer to the GPU | |
255 | + glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, N, N, 0, GL_RGB, GL_UNSIGNED_BYTE, color_image); | |
256 | + | |
257 | + //initialize all of the texture parameters | |
258 | 258 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); |
259 | 259 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); |
260 | 260 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); |
261 | 261 | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); |
262 | - glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); | |
263 | - | |
264 | - //free the buffer | |
265 | - free(color_image); | |
266 | - } | |
267 | - | |
268 | - | |
269 | - public: | |
270 | - | |
271 | - void glRender(){ | |
272 | - //set all OpenGL parameters required for drawing | |
273 | - gl_prep_draw(); | |
274 | - | |
275 | - //draw the sphere | |
276 | - gl_draw_sphere(); | |
277 | - //gl_draw_wireframe(); | |
278 | - | |
279 | - } | |
280 | - | |
281 | - void glInit(unsigned int n){ | |
282 | - init(n); | |
283 | - } | |
284 | - | |
285 | - void push(double c){ | |
286 | - C.push_back(c); | |
287 | - } | |
288 | - | |
289 | - | |
290 | - | |
291 | - | |
292 | - | |
293 | - }; //end class sph_harmonics | |
294 | - | |
295 | - | |
296 | - | |
297 | - | |
298 | -} | |
299 | - | |
300 | - | |
301 | -#endif | |
262 | + glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); | |
263 | + | |
264 | + //free the buffer | |
265 | + free(color_image); | |
266 | + } | |
267 | + | |
268 | + | |
269 | + public: | |
270 | + | |
271 | + void glRender(){ | |
272 | + //set all OpenGL parameters required for drawing | |
273 | + gl_prep_draw(); | |
274 | + | |
275 | + //draw the sphere | |
276 | + gl_draw_sphere(); | |
277 | + //gl_draw_wireframe(); | |
278 | + | |
279 | + } | |
280 | + | |
281 | + void glInit(unsigned int n){ | |
282 | + init(n); | |
283 | + } | |
284 | + | |
285 | + void push(double c){ | |
286 | + C.push_back(c); | |
287 | + } | |
288 | + | |
289 | + | |
290 | + | |
291 | + | |
292 | + | |
293 | + }; //end class sph_harmonics | |
294 | + | |
295 | + | |
296 | + | |
297 | + | |
298 | +} | |
299 | + | |
300 | + | |
301 | +#endif | ... | ... |