Commit fad1a72c9bb82576dcd0ff7eaa661d1c3f586662

Authored by David Mayerich
2 parents 6b2be991 90c935e3

merged sebastian and my work

Showing 2 changed files with 46 additions and 5 deletions   Show diff stats
python/classify.py
... ... @@ -7,6 +7,8 @@ Created on Sun Jul 23 16:04:33 2017
7 7  
8 8 import numpy
9 9 import colorsys
  10 +import sklearn
  11 +import sklearn.metrics
10 12 from scipy import misc
11 13 from envi import envi
12 14  
... ... @@ -89,15 +91,39 @@ def prob2class(prob_image):
89 91 class_image = numpy.zeros_like(prob_image)
90 92 #get nonzero indices
91 93 nnz_idx = numpy.transpose(numpy.nonzero(numpy.sum(prob_image, axis=0)))
92   -
  94 +
93 95 #set pixel corresponding to max probability to 1
94 96 for idx in nnz_idx:
95 97 idx_max_prob = numpy.argmax(prob_image[:, idx[0], idx[1]])
96 98 class_image[idx_max_prob, idx[0], idx[1]] = 1
97 99  
98 100 return class_image
  101 +#calculate an ROC curve given a probability image and mask of "True" values
  102 +def image2roc(P, t_vals, mask=[]):
  103 +
  104 + if not P.shape == t_vals.shape:
  105 + print("ERROR: the probability and mask images must be the same shape")
  106 + return
  107 +
  108 + #if a mask image isn't provided, create one for the entire image
  109 + if mask == []:
  110 + mask = numpy.ones(t_vals.shape, dtype=numpy.bool)
  111 +
  112 + #create masks for the positive and negative probability scores
  113 + mask_p = t_vals
  114 + mask_n = mask - mask * t_vals
  115 +
  116 + #calculate the indices for the positive and negative scores
  117 + idx_p = numpy.nonzero(mask_p)
  118 + idx_n = numpy.nonzero(mask_n)
  119 +
  120 + Pp = P[idx_p]
  121 + Pn = P[idx_n]
99 122  
100   -
101   -#create an ROC curve calculator
102   -#input: X x Y x C image giving the probability P(c | x,y)
103   -#output: ROC curve
104 123 \ No newline at end of file
  124 + Lp = numpy.ones((Pp.shape), dtype=numpy.bool)
  125 + Ln = numpy.zeros((Pn.shape), dtype=numpy.bool)
  126 +
  127 + scores = numpy.concatenate((Pp, Pn))
  128 + labels = numpy.concatenate((Lp, Ln))
  129 +
  130 + return sklearn.metrics.roc_curve(labels, scores)
... ...
python/envi.py
... ... @@ -263,6 +263,21 @@ class envi:
263 263 p = p + i.shape[0]
264 264 bar.update(l+1)
265 265 return M
  266 +
  267 + def loadband(self, n):
  268 + X = self.header.samples
  269 + Y = self.header.lines
  270 + B = self.header.bands
  271 +
  272 + band = numpy.zeros((Y, X), dtype=self.header.data_type)
  273 + type_bytes = numpy.dtype(self.header.data_type).itemsize
  274 +
  275 + if self.header.interleave == "bsq":
  276 + self.file.seek(n * X * Y * type_bytes)
  277 + self.file.readinto(band)
  278 +
  279 + return band
  280 +
266 281  
267 282 def __del__(self):
268 283 self.file.close()
269 284 \ No newline at end of file
... ...