qtSpectrumDisplay.cpp
4.95 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#include <QtGui>
#include <QtOpenGL/QtOpenGL>
#include <GL/glu.h>
#include <math.h>
#include "qtSpectrumDisplay.h"
qtSpectrumDisplay::qtSpectrumDisplay(QWidget *parent)
: QGLWidget(parent)
{
object = 0;
xRot = 0;
yRot = 0;
zRot = 0;
qtGreen = QColor::fromCmykF(0.40, 0.0, 1.0, 0.0);
qtPurple = QColor::fromCmykF(0.39, 0.39, 0.0, 0.0);
}
qtSpectrumDisplay::~qtSpectrumDisplay()
{
makeCurrent();
glDeleteLists(object, 1);
}
QSize qtSpectrumDisplay::minimumSizeHint() const
{
return QSize(50, 50);
}
QSize qtSpectrumDisplay::sizeHint() const
{
return QSize(400, 400);
}
void qtSpectrumDisplay::initializeGL()
{
qglClearColor(qtPurple.dark());
//object = makeObject();
glShadeModel(GL_FLAT);
glEnable(GL_DEPTH_TEST);
glEnable(GL_CULL_FACE);
}
void qtSpectrumDisplay::printWavenumber(int xPos)
{
int viewParams[4];
glGetIntegerv(GL_VIEWPORT, viewParams);
float a = (float)xPos/(float)viewParams[2];
int wn = a * (nuMax - nuMin) + nuMin;
cout<<wn<<endl;
}
void qtSpectrumDisplay::paintGL()
{
//prepare the projection (orthographic, bounded by spectral values)
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(nuMin, nuMax, aMin, aMax);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
//clear the screen
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
//set the line width
glLineWidth(2);
//draw the simulated spectrum (in white)
if(dispSimSpec)
{
glColor3f(1.0, 1.0, 1.0);
glBegin(GL_LINE_STRIP);
for(unsigned int i=0; i<SimSpectrum.size(); i++)
glVertex2f(SimSpectrum[i].nu, SimSpectrum[i].A);
glEnd();
}
//draw the reference spectrum in gray
if(dispRefSpec && RefSpectrum.size() > 0)
{
glColor3f(0.5, 0.5, 0.5);
glBegin(GL_LINE_STRIP);
float nu;
for(unsigned int i=0; i<RefSpectrum[currentSpec].size(); i++)
{
nu = RefSpectrum[currentSpec][i].nu;
glVertex2f(nu, RefSpectrum[currentSpec][i].A + nu * refSlope);
}
glEnd();
}
//draw the material properties
//change the viewport properties (materials are plotted on a different scale)
//compute the maximum k and n
int nSamples = MaterialList[currentMaterial].eta.size();
float maxK = 0.0;
float maxN = 0.0;
float thisN, thisK;
for(int i=0; i<nSamples; i++)
{
thisN = fabs(MaterialList[currentMaterial].eta[i].real() - 1.49);
if(thisN > maxN)
maxN = thisN;
thisK = fabs(MaterialList[currentMaterial].eta[i].imag());
if(thisK > maxK)
thisK = maxK;
}
cout<<maxN<<"---------"<<maxK<<endl;
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(nuMin, nuMax, aMin, aMax);
float nu;
//display absorbance
if(dispMatK)
{
glColor3f(1.0, 0.0, 0.0);
glBegin(GL_LINE_STRIP);
for(int i=0; i<nSamples; i++){
nu = MaterialList[currentMaterial].nu[i];
glVertex2f(nu, MaterialList[currentMaterial].eta[i].imag() * dispScaleK);
}
glEnd();
}
if(dispSimK)
{
glColor3f(1.0, 1.0, 0.0);
glBegin(GL_LINE_STRIP);
for(unsigned int i=0; i<EtaK.size(); i++){
glVertex2f(EtaK[i].nu, EtaK[i].A * dispScaleK);
}
glEnd();
}
//display refractive index (real)
if(dispMatN)
{
glColor3f(0.0, 1.0, 0.0);
glBegin(GL_LINE_STRIP);
for(int i=0; i<nSamples; i++){
nu = MaterialList[currentMaterial].nu[i];
glVertex2f(nu, (MaterialList[currentMaterial].eta[i].real() - baseIR) * dispScaleN);
}
glEnd();
}
if(dispSimN)
{
glColor3f(0.0, 1.0, 1.0);
glBegin(GL_LINE_STRIP);
for(unsigned int i=0; i<EtaN.size(); i++)
glVertex2f(EtaN[i].nu, (EtaN[i].A - baseIR) * dispScaleN);
glEnd();
}
glCallList(object);
glFlush();
//display the values at the mouse location
renderText(50, 50, "test");
}
void qtSpectrumDisplay::resizeGL(int width, int height)
{
int side = qMin(width, height);
glViewport(0, 0, width, height);
}
void qtSpectrumDisplay::mousePressEvent(QMouseEvent *event)
{
lastPos = event->pos();
if(event->buttons() & Qt::LeftButton)
{
int wn = 0;
printWavenumber(event->x());
}
}
void qtSpectrumDisplay::mouseMoveEvent(QMouseEvent *event)
{
int dx = event->x() - lastPos.x();
int dy = event->y() - lastPos.y();
lastPos = event->pos();
}
void qtSpectrumDisplay::quad(GLdouble x1, GLdouble y1, GLdouble x2, GLdouble y2,
GLdouble x3, GLdouble y3, GLdouble x4, GLdouble y4)
{
qglColor(qtGreen);
glVertex3d(x1, y1, -0.05);
glVertex3d(x2, y2, -0.05);
glVertex3d(x3, y3, -0.05);
glVertex3d(x4, y4, -0.05);
glVertex3d(x4, y4, +0.05);
glVertex3d(x3, y3, +0.05);
glVertex3d(x2, y2, +0.05);
glVertex3d(x1, y1, +0.05);
}
void qtSpectrumDisplay::normalizeAngle(int *angle)
{
while (*angle < 0)
*angle += 360 * 16;
while (*angle > 360 * 16)
*angle -= 360 * 16;
}