main.cpp 10.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
#include <fstream>
#include <iostream>
using namespace std;
#include "interactivemie.h"
#include <QtGui/QApplication>
#include <QGraphicsScene>
#include <QGraphicsView>
#include <QGraphicsPixmapItem>
#include <QLayout>
#include "qtSpectrumDisplay.h"
//#include "qwtSpectrumDisplay.h"
#include "globals.h"
#include "rtsGUIConsole.h"
#include "PerformanceData.h"
#include <complex>
#include <sstream>
//#include <direct.h>


PerformanceData PD;

qtSpectrumDisplay* gpSpectrumDisplay;
//qwtSpectrumDisplay* SpectrumDisplay;

QGraphicsScene* distortionScene = NULL;
QGraphicsView* distortionWindow = NULL;
QGraphicsPixmapItem* pixmapItem = NULL;

vector<vector<SpecPair> > RefSpectrum;
vector<SpecPair> SimSpectrum;
vector<SpecPair> EtaK;
vector<SpecPair> EtaN;

//source spectrum
bool useSourceSpectrum = false;
vector<SpecPair> SourceSpectrum;

//resample the source based on the material samples (EtaK and EtaN)
vector<SpecPair> SourceResampled;

int currentSpec = 0;

double nuMin = 800;
double nuMax = 4000;
double dNu = 2;

double aMin = 0;
double aMax = 1;

double nMag = 1.0;
double kMax = 1.0;

double scaleI0 = 1.0;
double refSlope = 0.0;

bool dispRefSpec = true;
bool dispSimSpec = true;
bool dispSimK = true;
bool dispMatK = true;
bool dispSimN = true;
bool dispMatN = true;
double dispScaleK = 1.0;
double dispScaleN = 1.0;
SpecType dispSimType = AbsorbanceSpecType;
bool dispNormalize = false;
double dispNormFactor = 1.0;


//material parameters
double radius = 4.0f;
double baseIR = 1.49f;
double cA = 1.0;
//vector<SpecPair> KMaterial;
//vector<SpecPair> NMaterial;
bool applyMaterial = true;
vector<Material> MaterialList;
int currentMaterial = -1;

//optical parameters
double cNAi = 0.0;
double cNAo = 0.6;
double oNAi = 0.0;
double oNAo = 0.6;
OpticsType opticsMode = TransmissionOpticsType;
bool pointDetector = false;
int objectiveSamples = 200;

//fitting parameters
double minMSE = 0.00001;
int maxFitIter = 20;

void TempSimSpectrum()
{
	SpecPair temp;
	for(int i=800; i<4000; i++)
	{
		temp.nu = i;
		temp.A = sin((double)i/200);
		SimSpectrum.push_back(temp);
	}
	}

	void UpdateDisplay() {
	gpSpectrumDisplay->updateGL();
	//SpectrumDisplay->replot();
}

void LoadMaterial(string fileName, string materialName)
{
	//open the file
	ifstream inFile(fileName.c_str());
	if(!inFile)
	{
		cout<<"Error loading material: "<<fileName<<endl;
		return;
	}

	Material newMaterial;
	newMaterial.validN = false;
	newMaterial.validK = false;
	//read the header
	string units;
	getline(inFile, units, '\t');
	char c = 0;
	while(c != '\n')
	{
		inFile.get(c);
		if(c == 'n') newMaterial.validN = true;
		if(c == 'k') newMaterial.validK = true;
	}

	//read the entire refractive index (both real and imaginary)
	float nu;
	float n;
	float k;

	while(inFile>>nu)
	{
		n = 1.0;
		k = 0.0;
		if(newMaterial.validN)
			inFile>>n;
		if(newMaterial.validK)
			inFile>>k;
		//ignore the rest of the line
		inFile.ignore();

		newMaterial.nu.push_back(nu);
		newMaterial.eta.push_back(complex<double>(n, k));
	}

	//iterate through the material to compute the necessary bounds for display
	float minN = 9999;
	float maxN = -9999;
	float sumN = 0;
	float maxK = 0;
	for(int i = 0; i<newMaterial.nu.size(); i++)
	{
		n = newMaterial.eta[i].real();
		k = newMaterial.eta[i].imag();

		if(n < minN) minN = n;
		if(n > maxN) maxN = n;
		if(k > maxK) maxK = k;
		sumN += n;
	}
	float meanN = sumN / newMaterial.nu.size();

	nMag = max(maxN - meanN, meanN - minN);
	kMax = maxK;
	baseIR = meanN;

	//set the name of the material object
	newMaterial.name = materialName;

	//add it to the material list
	MaterialList.push_back(newMaterial);
	currentMaterial = MaterialList.size() - 1;
}

void LoadSource(string fileNameSource)
{
	SourceSpectrum = LoadSpectrum(fileNameSource);
}

void ResampleSource()
{
	//clear the current resampled spectrum
	SourceResampled.clear();

	//get the number of source and material samples
	int nMatSamples = EtaK.size();
	int nSourceSamples = SourceSpectrum.size();

	float nu, I;
	for(int i=0; i<nMatSamples; i++)
	{
		SpecPair newSample;
		newSample.nu = EtaK[i].nu;

		//iterate through the SourceSpectrum to find the bounding wavelengths
		if(newSample.nu < SourceSpectrum[0].nu)
			newSample.A = 0.0;
		else if(newSample.nu > SourceSpectrum[nSourceSamples-1].nu)
			newSample.A = 0.0;
		else
		{
			int k=1;
			while(SourceSpectrum[k].nu < newSample.nu)
				k++;

			//interpolate
			float a = (newSample.nu - SourceSpectrum[k-1].nu)/(SourceSpectrum[k].nu - SourceSpectrum[k-1].nu);
			newSample.A = a * SourceSpectrum[k].A + (1.0 - a) * SourceSpectrum[k-1].A;
		}

		//insert the new spectral point into the resampled spectrum
		SourceResampled.push_back(newSample);
		//cout<<newSample.nu<<"   "<<newSample.A<<endl;
	}

}

void FitDisplay() {
	double minA = 99999.0;
	double maxA = -99999.0;
	double k, n;

	if(dispSimSpec)
		for(unsigned int i=0; i<SimSpectrum.size(); i++)
		{
			if(SimSpectrum[i].A < minA)
				minA = SimSpectrum[i].A;
			if(SimSpectrum[i].A > maxA)
				maxA = SimSpectrum[i].A;
		}

	if(dispRefSpec && RefSpectrum.size() > 0)
		for(unsigned int i=0; i<RefSpectrum[currentSpec].size(); i++)
		{
			if(RefSpectrum[currentSpec][i].A < minA)
				minA = RefSpectrum[currentSpec][i].A;
			if(RefSpectrum[currentSpec][i].A > maxA)
				maxA = RefSpectrum[currentSpec][i].A;
		}
	if(dispMatK)
		for(unsigned int i=0; i<EtaK.size(); i++)
		{
			k = MaterialList[currentMaterial].eta[i].imag() * dispScaleK;
			if(k < minA)
				minA = k;
			if(k > maxA)
				maxA = k;
		}
	if(dispSimK)
		for(unsigned int i=0; i<EtaK.size(); i++)
		{
			k = EtaK[i].A * dispScaleK;
			if(k < minA)
				minA = k;
			if(EtaK[i].A > maxA)
				maxA = k;
		}
	if(dispMatN)
		for(unsigned int i=0; i<EtaN.size(); i++)
		{
			n = (MaterialList[currentMaterial].eta[i].real() - baseIR) * dispScaleN;
			if(n < minA)
				minA = n;
			if(n > maxA)
				maxA = n;
		}
	if(dispSimN)
		for(unsigned int i=0; i<EtaN.size(); i++)
		{
			n = (EtaN[i].A - baseIR) * dispScaleN;
			if(n < minA)
				minA = n;
			if(n > maxA)
				maxA = n;
		}

	aMin = minA;
	aMax = maxA;
	UpdateDisplay();
}

void ChangeAbsorbance() {

	//compute the real part of the index of refraction

	//copy the absorbance values into a linear array
	int nSamples = MaterialList[currentMaterial].eta.size();
	double startNu = MaterialList[currentMaterial].nu.front();
	double endNu = MaterialList[currentMaterial].nu.back();
	double* k = (double*)malloc(sizeof(double) * nSamples);
	double* n = (double*)malloc(sizeof(double) * nSamples);
	for(int i=0; i<nSamples; i++)
		k[i] = MaterialList[currentMaterial].eta[i].imag() * cA;

	//NMaterial.clear();
	EtaK.clear();
	EtaN.clear();
	//use Kramers Kronig to determine the real part of the index of refraction
	cudaKramersKronig(n, k, nSamples, startNu, endNu, baseIR);

	//copy the real part of the index of refraction into the vector
	SpecPair temp;

	//load the imaginary IR from the absorbance data
	double nu;
	for(int i=0; i<nSamples; i++) {
		nu = MaterialList[currentMaterial].nu[i];
		if(nu >= nuMin && nu <= nuMax) {
			temp.nu = nu;
			temp.A = k[i];
			EtaK.push_back(temp);
			//temp.A = NMaterial[i].A;
			temp.A = n[i];
			EtaN.push_back(temp);
		}
	}

	free(k);
	free(n);
}

void SetMaterial()
{
	EtaK.clear();
	EtaN.clear();
	if(currentMaterial == -1) return;

	int nSamples = MaterialList[currentMaterial].eta.size();
	double nu;
	SpecPair temp;

	//initialize the current nuMin and nuMax values
	nuMin = MaterialList[currentMaterial].nu[0];
	nuMax = nuMin;
	for(int i=0; i<nSamples; i++) {
		nu = MaterialList[currentMaterial].nu[i];
		//if(nu >= nuMin && nu <= nuMax){

		//update the min and max values for display
		if(nu < nuMin) nuMin = nu;
		if(nu > nuMax) nuMax = nu;

		temp.nu = nu;
		temp.A = MaterialList[currentMaterial].eta[i].imag();
		EtaK.push_back(temp);
		temp.A = MaterialList[currentMaterial].eta[i].real();
		EtaN.push_back(temp);
	}
	cA = 1.0;

	//resample the source spectrum
	if(SourceSpectrum.size() != 0)
		ResampleSource();

}



int main(int argc, char *argv[])
{


	//load the default project file (any previous optical settings)
	LoadState();


	//load the default materials
	LoadMaterial("etaToluene.txt", "Toluene");
	LoadMaterial("kPMMA.txt", "PMMA");
	LoadMaterial("kPolyethylene.txt", "Polyethylene");
	LoadMaterial("kPTFE.txt", "Teflon");


	//LoadMaterial("eta_TolueneK.txt", "eta_TolueneN.txt", "Toluene");
	//LoadMaterial("kPMMA.txt", "PMMA");
	//LoadMaterial("eta_polystyreneK.txt", "Polystyrene");
	//LoadMaterial("../../../../data/materials/rtsSU8_k.txt", "../../../../data/materials/rtsSU8_n.txt", "SU8");
	SetMaterial();


	//load a mid-infrared source
	LoadSource("source_midIR.txt");

	ResampleSource();

	//compute the analytical solution for the Mie scattered spectrum
	SimulateSpectrum();

	QApplication a(argc, argv);

	//SpectrumDisplay = new qwtSpectrumDisplay();

	InteractiveMie w;
	w.show() ;
	w.move(0, 0);
	QSize uiFrame = w.frameSize() + QSize(10, 10);
	cout<<"Frame: "<<uiFrame.width()<<endl;
	QSize uiNoFrame = w.size();
	cout<<"No Frame: "<<uiNoFrame.width()<<endl;
	int frameHeight = uiFrame.height() - uiNoFrame.height();

	//activate a console for output
	RedirectIOToConsole(0, uiFrame.height(), uiFrame.width(), 400);
	printf("Frame height: %d\n", frameHeight);

	//set the size and position of the spectrum window
	int visWinSize = uiFrame.height()/2 - frameHeight;
	//create the far field window
	gpSpectrumDisplay = new qtSpectrumDisplay();
	gpSpectrumDisplay->resize(visWinSize*2, visWinSize);
	gpSpectrumDisplay->move(uiFrame.width(), 0);
	gpSpectrumDisplay->show();



	//distortion dialog box
	distortionDialog = new qtDistortionDialog();
	distortionDialog->move(0, 0);

	//display the distortion map
	distortionScene = new QGraphicsScene();
	distortionWindow = new QGraphicsView(distortionScene);
	distortionWindow->move(uiFrame.width(), visWinSize);

	//refresh the UI
	w.refreshUI();

	return a.exec();
}