SimulateSpectrum.cpp 15 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
#include <math.h>
#include <complex>
#include <iostream>
#include <fstream>
#include "globals.h"
#include <stdlib.h>
//#include "cufft.h"
using namespace std;

#define pi 3.14159

typedef complex<double> scComplex;

extern int cbessjyva(double v,complex<double> z,double &vm,complex<double>*cjv,
    complex<double>*cyv,complex<double>*cjvp,complex<double>*cyvp);
extern int bessjyv(double v,double x,double &vm,double *jv,double *yv,
    double *djv,double *dyv);

complex<double> Jl_neg(complex<double> x)
{
	//this function computes the bessel function of the first kind Jl(x) for l = -0.5
	return ( sqrt(2.0/pi) * cos(x) )/sqrt(x);
}

double Jl_neg(double x)
{
	//this function computes the bessel function of the first kind Jl(x) for l = -0.5
	return ( sqrt(2.0/pi) * cos(x) )/sqrt(x);
}

double Yl_neg(double x)
{
	//this function computes the bessel function of the second kind Yl(x) for l = -0.5;
	return ( sqrt(2.0/pi) * sin(x) )/sqrt(x);
}

void computeB(complex<double>* B, double radius, complex<double> refIndex, double lambda, int Nl)
{
	double k = (2*pi)/lambda;
	int b = 2;

	//allocate space for the real bessel functions
	double* jv = (double*)malloc(sizeof(double)*(Nl+b));
	double* yv = (double*)malloc(sizeof(double)*(Nl+b));
	double* jvp = (double*)malloc(sizeof(double)*(Nl+b));
	double* yvp = (double*)malloc(sizeof(double)*(Nl+b));

	//allocate space for the complex bessel functions
	complex<double>* cjv = (complex<double>*)malloc(sizeof(complex<double>)*(Nl+b));
	complex<double>* cyv = (complex<double>*)malloc(sizeof(complex<double>)*(Nl+b));
	complex<double>* cjvp = (complex<double>*)malloc(sizeof(complex<double>)*(Nl+b));
	complex<double>* cyvp = (complex<double>*)malloc(sizeof(complex<double>)*(Nl+b));

	double kr = k*radius;
	complex<double> knr = k*refIndex*(double)radius;
	complex<double> n = refIndex;

	//compute the bessel functions for k*r
	double vm;// = Nl - 1;
	bessjyv((Nl)+0.5, kr, vm, jv, yv, jvp, yvp);
	//cout<<"Nl: "<<Nl<<"  vm: "<<vm<<endl;
	//printf("Nl: %f, vm: %f\n", (float)Nl, (float)vm);

	//compute the bessel functions for k*n*r
	cbessjyva((Nl)+0.5, knr, vm, cjv, cyv, cjvp, cyvp);

	//scale factor for spherical bessel functions
	double scale_kr = sqrt(pi/(2.0*kr));
	complex<double> scale_knr = sqrt(pi/(2.0*knr));

	complex<double> numer, denom;
	double j_kr;
	double y_kr;
	complex<double> j_knr;
	complex<double> j_d_knr;
	double j_d_kr;
	complex<double> h_kr;
	complex<double> h_d_kr;
	complex<double> h_neg;
	complex<double> h_pos;

	//cout<<"B coefficients:"<<endl;
	for(int l=0; l<Nl; l++)
	{
		//compute the spherical bessel functions
		j_kr = jv[l] * scale_kr;
		y_kr = yv[l] * scale_kr;
		j_knr = cjv[l] * scale_knr;

		//compute the Hankel function
		h_kr = complex<double>(j_kr, y_kr);

		//compute the derivatives
		if(l == 0)
		{
			//spherical bessel functions for l=0
			j_d_kr = scale_kr * (Jl_neg(kr) - (jv[l] + kr*jv[l+1])/kr )/2.0;
			j_d_knr = scale_knr * ( Jl_neg(knr) - (cjv[l] + knr*cjv[l+1])/knr )/2.0;
			h_neg = complex<double>(scale_kr*Jl_neg(kr), scale_kr*Yl_neg(kr));
			h_pos = complex<double>(scale_kr*jv[l+1], scale_kr*yv[l+1]);
			h_d_kr = (h_neg - (h_kr + kr*h_pos)/kr)/2.0;
		}
		else
		{
			//spherical bessel functions
			j_d_kr = scale_kr * (jv[l-1] - (jv[l] + kr*jv[l+1])/kr )/2.0;
			j_d_knr = scale_knr * ( cjv[l-1] - (cjv[l] + knr*cjv[l+1])/knr )/2.0;
			h_neg = complex<double>(scale_kr*jv[l-1], scale_kr*yv[l-1]);
			h_pos = complex<double>(scale_kr*jv[l+1], scale_kr*yv[l+1]);
			h_d_kr = (h_neg - (h_kr + kr*h_pos)/kr)/2.0;
		}

		numer = j_kr*j_d_knr*n - j_knr*j_d_kr;
		denom = j_knr*h_d_kr - h_kr*j_d_knr*n;
		B[l] =  numer/denom;

		//B[l] = scComplex(temp.real(), temp.imag());
		//cout<<B[l]<<endl;
	}

	free(jv);
	free(yv);
	free(jvp);
	free(yvp);
	free(cjv);
	free(cyv);
	free(cjvp);
	free(cyvp);
}

void Legendre(double* P, double x, int Nl)
{
	//computes the legendre polynomials from orders 0 to Nl-1
	P[0] = 1;
	if(Nl == 1) return;
	P[1] = x;
	for(int l = 2; l < Nl; l++)
	{
		P[l] = ((2*l - 1)*x*P[l-1] - (l - 1)*P[l-2])/l;
	}	

}

complex<double> integrateUi(double cAngleI, double cAngleO, double oAngleI, double oAngleO, double M = 2*pi)
{
	/*This function integrates the incident field of magnitude M in the far zone
	in order to evaluate the field at the central pixel of a detector.
	cNAi = condenser inner angle
	cNAo = condenser outer angle
	oNAi = objective inner angle
	oNAo = objective outer angle
	M = field magnitude*/

	double alphaIn = max(cAngleI, oAngleI);
	double alphaOut = min(cAngleO,oAngleO);

	complex<double> Ui;
	if(alphaIn > alphaOut)
		Ui = complex<double>(0.0, 0.0);
	else
		Ui = complex<double>(M * 2 * pi * (cos(alphaIn) - cos(alphaOut)), 0.0f);

	return Ui;

}

void computeCondenserAlpha(double* alpha, int Nl, double cAngleI, double cAngleO)
{
	/*This function computes the condenser integral in order to build the field of incident light
	alpha = list of Nl floating point values representing the condenser alpha as a function of l
	Nl = number of orders in the incident field
	cAngleI, cAngleO = inner and outer condenser angles (inner and outer NA)*/

	//compute the Legendre polynomials for the condenser aperature
	double* PcNAo = (double*)malloc(sizeof(double)*(Nl+1));
	Legendre(PcNAo, cos(cAngleO), Nl+1);
	double* PcNAi = (double*)malloc(sizeof(double)*(Nl+1));
	Legendre(PcNAi, cos(cAngleI), Nl+1);

	for(int l=0; l<Nl; l++)
	{
		//integration term
		if(l == 0)
			alpha[l] = -PcNAo[l+1] + PcNAo[0] + PcNAi[l+1] - PcNAi[0];
		else
			alpha[l] = -PcNAo[l+1] + PcNAo[l-1] + PcNAi[l+1] - PcNAi[l-1];

		alpha[l] *= 2 * pi;
	}

}

complex<double> integrateUs(double r, double lambda, complex<double> eta, 
						   double cAngleI, double cAngleO, double oAngleI, double oAngleO, double M = 2*pi)
{
	/*This function integrates the incident field of magnitude M in the far zone
	in order to evaluate the field at the central pixel of a detector.
	r = sphere radius
	lambda = wavelength
	eta = index of refraction
	cNAi = condenser inner NA
	cNAo = condenser outer NA
	oNAi = objective inner NA
	oNAo = objective outer NA
	M = field magnitude*/

	//compute the required number of orders
	double k = 2*pi/lambda;
	int Nl = (int)ceil( k + 4 * exp(log(k*r)/3) + 3 );

	//compute the material coefficients B
	complex<double>* B = (complex<double>*)malloc(sizeof(complex<double>)*Nl);
	//compute the Legendre polynomials for the condenser and objective aperatures
	double* PcNAo = (double*)malloc(sizeof(double)*(Nl+1));
	Legendre(PcNAo, cos(cAngleO), Nl+1);
	double* PcNAi = (double*)malloc(sizeof(double)*(Nl+1));
	Legendre(PcNAi, cos(cAngleI), Nl+1);

	double* PoNAo = (double*)malloc(sizeof(double)*(Nl+1));
	Legendre(PoNAo, cos(oAngleO), Nl+1);
	double* PoNAi = (double*)malloc(sizeof(double)*(Nl+1));
	Legendre(PoNAi, cos(oAngleI), Nl+1);

	//store the index of refraction;
	complex<double> IR(eta.real(), eta.imag());
	
	//compute the scattering coefficients
	computeB(B, r, IR, lambda, Nl);

	//aperature terms for the condenser (alpha) and objective (beta)
	double alpha;
	double beta;
	double c;
	complex<double> Us(0.0, 0.0);

	for(int l=0; l<Nl; l++)
	{
		//integration term
		if(l == 0)
		{
			alpha = -PcNAo[l+1] + PcNAo[0] + PcNAi[l+1] - PcNAi[0];
			beta = -PoNAo[l+1] + PoNAo[0] + PoNAi[l+1] - PoNAi[0];
		}
		else
		{
			alpha = -PcNAo[l+1] + PcNAo[l-1] + PcNAi[l+1] - PcNAi[l-1];
			beta = -PoNAo[l+1] + PoNAo[l-1] + PoNAi[l+1] - PoNAi[l-1];
		}
		c = (2*pi)/(2.0 * l + 1.0);
		Us += c * alpha * beta * B[l] * M;
		
			
	}
	free(PcNAo);
	free(PcNAi);
	free(PoNAo);
	free(PoNAi);
	free(B);

	return Us;

}

void pointSpectrum()
{
	PD.StartTimer(SIMULATE_SPECTRUM);
	//clear the previous spectrum
	SimSpectrum.clear();

	double dNu = 2.0f;
	double lambda;
	
	//compute the angles based on NA
	double cAngleI = asin(cNAi);
	double cAngleO = asin(cNAo);
	double oAngleI = asin(oNAi);
	double oAngleO = asin(oNAo);

	//implement a reflection-mode system if necessary
	if(opticsMode == ReflectionOpticsType){
		
		//set the condenser to match the objective
		cAngleI = oAngleI;
		cAngleO = oAngleO;

		//invert the objective
		oAngleO = pi - cAngleI;
		oAngleI = pi - cAngleO;
	}

	//integrate the incident field at the detector position
	complex<double> Ui = integrateUi(cAngleI, cAngleO, oAngleI, oAngleO, 2*pi);
	double I0 = Ui.real() * Ui.real() + Ui.imag() * Ui.imag();
	I0 *= scaleI0;

	

	//double I;
	SpecPair temp;
	double nu;
	complex<double> eta;
	complex<double> Us, U;

	double vecLen = 0.0;
	for(unsigned int i=0; i<EtaK.size(); i++)
	{
		nu = EtaK[i].nu;
		lambda = 10000.0f/nu;
		if(applyMaterial)
			eta = complex<double>(EtaN[i].A, EtaK[i].A);
		else
			eta = complex<double>(baseIR, 0.0);


		//integrate the scattered field at the detector position
		Us = integrateUs(radius, lambda, eta, cAngleI, cAngleO, oAngleI, oAngleO, 2*pi);
		U = Us + Ui;
		double I = U.real() * U.real() + U.imag() * U.imag();
		
		temp.nu = nu;

		//set the spectrum value based on the current display type
		if(dispSimType == AbsorbanceSpecType)
			temp.A = -log10(I/I0);
		else
			temp.A = I;

		if(dispNormalize)
			vecLen += temp.A * temp.A;
		
		SimSpectrum.push_back(temp);		
	}
	vecLen = sqrt(vecLen);

	if(dispNormalize)
		for(unsigned int i=0; i<SimSpectrum.size(); i++)
			SimSpectrum[i].A = (SimSpectrum[i].A / vecLen) * dispNormFactor;

	PD.EndTimer(SIMULATE_SPECTRUM);
}

void updateSpectrum(double* I, double I0, int n)
{
	SimSpectrum.clear();
	SpecPair temp;

	//update the displayed spectrum based on the computed intensity I
	for(int i=0; i<n; i++)
	{
		temp.nu = EtaK[i].nu;

		//set the spectrum value based on the current display type
		if(dispSimType == AbsorbanceSpecType)
			temp.A = -log10(I[i]/I0);
		else
			temp.A = I[i];

		SimSpectrum.push_back(temp);
	}
}

void computeCassegrainAngles(double& cAngleI, double& cAngleO, double& oAngleI, double& oAngleO)
{
	//compute the angles based on NA
	cAngleI = asin(cNAi);
	cAngleO = asin(cNAo);
	oAngleI = asin(oNAi);
	oAngleO = asin(oNAo);

	//implement a reflection-mode system if necessary
	if(opticsMode == ReflectionOpticsType){
		
		//set the condenser to match the objective
		cAngleI = oAngleI;
		cAngleO = oAngleO;

		//invert the objective
		oAngleO = pi - cAngleI;
		oAngleI = pi - cAngleO;
	}


}

int computeNl()
{
	double maxNu = EtaK.back().nu;
	double maxLambda = 10000.0f/maxNu;
	double k = 2*pi/maxLambda;
	int Nl = (int)ceil( k + 4 * exp(log(k*radius)/3) + 3 );

	return Nl;
}

void computeBArray(complex<double>* B, int Nl, int nLambda)
{
	double nu;
	complex<double> eta;
	double* Lambda = (double*)malloc(sizeof(double) * nLambda);

	//for each wavenumber nu
	for(unsigned int i=0; i<EtaK.size(); i++)
	{
		//compute information based on wavelength and material
		nu = EtaK[i].nu;
		Lambda[i] = 10000.0f/nu;
		if(applyMaterial)
			eta = complex<double>(EtaN[i].A, EtaK[i].A);
		else
			eta = complex<double>(baseIR, 0.0);

		//allocate memory for the scattering coefficients
		//complex<float>* B = (complex<float>*)malloc(sizeof(complex<float>)*Nl);		

		complex<double> IR(eta.real(), eta.imag());
		computeB(&B[i * Nl], radius, IR, Lambda[i], Nl);
	}
}

void computeOpticalParameters(double& cAngleI, double& cAngleO, double& oAngleI, double& oAngleO, double& I0, double* alpha, int Nl)
{
	computeCassegrainAngles(cAngleI, cAngleO, oAngleI, oAngleO);	

	//evaluate the incident field intensity
	I0 = 0.0;
	complex<double> Ui;

	Ui = integrateUi(cAngleI, cAngleO, oAngleI, oAngleO, 2*pi);
	I0 = Ui.real()*2*pi;

	//compute alpha (condenser integral)
	computeCondenserAlpha(alpha, Nl, cAngleI, cAngleO);
}

void gpuDetectorSpectrum(int numSamples)
{
	//integrate across the objective aperature and calculate the resulting intensity on a detector
	PD.StartTimer(SIMULATE_SPECTRUM);
	//clear the previous spectrum
	SimSpectrum.clear();	

	//compute Nl (maximum order of the spectrum)
	int Nl = computeNl();

	double* alpha = (double*)malloc(sizeof(double)*(Nl + 1));
	double cAngleI, cAngleO, oAngleI, oAngleO, I0;
	computeOpticalParameters(cAngleI, cAngleO, oAngleI, oAngleO, I0, alpha, Nl);

	//allocate space for a list of wavelengths
	int nLambda = EtaK.size();
	
	//allocate space for the 2D array (Nl x nu) of scattering coefficients
	complex<double>* B = (complex<double>*)malloc(sizeof(complex<double>) * Nl * nLambda);
	computeBArray(B, Nl, nLambda);
	

	//allocate temporary space for the spectrum
	double* I = (double*)malloc(sizeof(double) * EtaK.size());

	//compute the spectrum on the GPU
	PD.StartTimer(SIMULATE_GPU);
	cudaComputeSpectrum(I, (double*)B, alpha, Nl, nLambda, oAngleI, oAngleO, cAngleI, cAngleO, numSamples);
	PD.EndTimer(SIMULATE_GPU);

	updateSpectrum(I, I0, nLambda);

	PD.EndTimer(SIMULATE_SPECTRUM);

}

void SimulateSpectrum()
{
	if(pointDetector)
		pointSpectrum();
	else
		gpuDetectorSpectrum(objectiveSamples);
		//detectorSpectrum(objectiveSamples);
}

double absorbanceDistortion(){

	//compute the mean of the spectrum
	double sumSim = 0.0;
	for(unsigned int i=0; i<SimSpectrum.size(); i++)
	{
		sumSim += SimSpectrum[i].A;
	}
	double meanSim = sumSim/SimSpectrum.size();

	//compute the distortion (MSE from the mean)
	double sumSE = 0.0;
	for(unsigned int i=0; i<SimSpectrum.size(); i++)
	{
		sumSE += pow(SimSpectrum[i].A - meanSim, 2);
	}
	double MSE = sumSE / SimSpectrum.size();

	return MSE;
}

double intensityDistortion(){

	//compute the magnitude of the spectrum
	double sumSim = 0.0;
	for(unsigned int i=0; i<SimSpectrum.size(); i++)
	{
		sumSim += SimSpectrum[i].A * SimSpectrum[i].A;
	}
	double magSim = sqrt(sumSim);

	//compute the distortion (MSE from the mean)
	double sumSE = 0.0;
	for(unsigned int i=0; i<SimSpectrum.size(); i++)
	{
		sumSE += (SimSpectrum[i].A/magSim) * (1.0/SimSpectrum.size());
	}
	double MSE = sumSE;

	return MSE;
}

void MinimizeDistortion(){
	ofstream outFile("distortion.txt");

	//set the parameters for the distortion simulation
	double step = 0.001;

	oNAi = 0.2;
	oNAo = 0.5;

	//compute the optical parameters
	//compute Nl (maximum order of the spectrum)
	int Nl = computeNl();

	double* alpha = (double*)malloc(sizeof(double)*(Nl + 1));
	double cAngleI, cAngleO, oAngleI, oAngleO, I0;
	
	//allocate space for a list of wavelengths
	int nLambda = EtaK.size();

	//allocate temporary space for the spectrum
	double* I = (double*)malloc(sizeof(double) * EtaK.size());

	//calculate the material parameters
	//allocate space for the 2D array (Nl x nu) of scattering coefficients
	complex<double>* B = (complex<double>*)malloc(sizeof(complex<double>) * Nl * nLambda);
	computeBArray(B, Nl, nLambda);



	double D;
	double e = 0.001;
	for(double i=0.0; i<=oNAo-step; i+=step)
	{
		
		for(double o=oNAi+step; o<=1.0; o+=step)
		{
			
			
			//set the current optical parameters
			cNAi = i;
			cNAo = o;

			//compute the optical parameters
			computeOpticalParameters(cAngleI, cAngleO, oAngleI, oAngleO, I0, alpha, Nl);

			//simulate the spectrum
			cudaComputeSpectrum(I, (double*)B, alpha, Nl, nLambda, oAngleI, oAngleO, cAngleI, cAngleO, objectiveSamples);
			updateSpectrum(I, I0, nLambda);

			if(dispSimType == AbsorbanceSpecType)
			{
				if(i + e >= o || i + e >= oNAo || oNAi + e >= o || oNAi + e >= oNAo)
					D = 0.0;
				else
					D = absorbanceDistortion();
			}
			else
			{
				if(i >= o || oNAi >= oNAo)
					D=0;
				else
					D = intensityDistortion();
			}
			outFile<<D<<"       ";
		}
		outFile<<endl;
		cout<<i<<endl;
	}
	outFile.close();
}