mstm-gui.py
10.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
#!/usr/bin/python
from mstm_materials import *
from mstm_parameters import *
from mstm_simparser import *
import time
import sys
#PyQt4 libraries
from PyQt4 import QtGui
from PyQt4 import QtCore
from PyQt4 import uic
#Matplotlib libraries
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
from pylab import *
class GuiWindow(QtGui.QMainWindow):
params = ParameterClass('msinput.inp')
def setParams(self):
#update the Gui based on values in the parameters structure
self.ui.spinStartLambda.setValue(self.params.minLambda)
self.ui.spinEndLambda.setValue(self.params.maxLambda)
self.ui.spinNearFieldLambda.setValue(self.params.snapshotLambda)
self.ui.spinNumSamples.setValue(self.params.nSamples)
self.ui.spinNumSpheres.setValue(int(self.params['number_spheres']))
#near field stuff
self.ui.cmbPlaneSlice.setCurrentIndex(int(self.params['near_field_plane_coord']) - 1)
verts = self.params['near_field_plane_vertices']
self.ui.spinNearFieldWidth.setValue(verts[2] - verts[0])
self.ui.spinNearFieldHeight.setValue(verts[3] - verts[1])
self.ui.spinNearFieldSteps.setValue(self.params.nSteps)
fi = QtCore.QFileInfo(self.params.matFilename)
self.ui.txtMaterial.setText(fi.baseName())
#update global parameters for the dimer simulation
self.ui.spinSpacing.setValue(self.params.d)
self.ui.spinRadius.setValue(self.params.a)
def getParams(self):
self.params.minLambda = self.ui.spinStartLambda.value()
self.params.maxLambda = self.ui.spinEndLambda.value()
self.params.snapshotLambda = self.ui.spinNearFieldLambda.value()
self.params.nSamples = self.ui.spinNumSamples.value()
self.params['number_spheres'] = self.ui.spinNumSpheres.value()
#incident light properties
if self.ui.chkRandomOrientation.isChecked():
self.params['fixed_or_random_orientation'] = 1
else:
self.params['fixed_or_random_orientation'] = 0
self.params['incident_azimuth_angle_deg'] = self.ui.spinAlpha.value()
self.params['incident_polar_angle_deg'] = self.ui.spinBeta.value()
self.params['polarization_angle_deg'] = self.ui.spinGamma.value()
self.params.showOutput = self.ui.chkShowOutput.isChecked()
self.params.inWater = self.ui.chkInWater.isChecked()
#near field
if self.ui.chkNearField.isChecked():
self.params['calculate_near_field'] = 1
else:
self.params['calculate_near_field'] = 0
self.params['near_field_plane_coord'] = self.ui.cmbPlaneSlice.currentIndex() + 1
width = (self.ui.spinNearFieldWidth.value()/2)
height = (self.ui.spinNearFieldHeight.value()/2)
self.params['near_field_plane_vertices'] = [-width, -height, width, height]
dx = self.ui.spinNearFieldWidth.value() / (self.ui.spinNearFieldSteps.value() - 1)
self.params['spacial_step_size'] = dx
#global parameters for dimers
self.params.d = self.ui.spinSpacing.value()
self.params.a = self.ui.spinRadius.value()
#get the spheres from the table
nSpheres = self.ui.tblSpheres.rowCount()
print("Row count: " + str(nSpheres))
print("Orientatino: " + str(self.params['fixed_or_random_orientation']))
self.params.sphereList = []
for s in range(nSpheres):
a = float(self.ui.tblSpheres.item(s, 0).text())
x = float(self.ui.tblSpheres.item(s, 1).text())
y = float(self.ui.tblSpheres.item(s, 2).text())
z = float(self.ui.tblSpheres.item(s, 3).text())
self.params.addSphere(a, x, y, z)
return self.params
def simulate(self):
self.results = RunSimulation(True)
#plot results of interest
wl = self.results['lambda']
if int(self.params['fixed_or_random_orientation']) == 0:
unpol = self.results['extinction_unpolarized']
para = self.results['extinction_parallel']
perp = self.results['extinction_perpendicular']
plt.plot(wl, unpol, 'r-', label='unpolarized')
plt.plot(wl, para, 'g-', label='parallel')
plt.plot(wl, perp, 'b-', label='perpendicular')
else:
total = self.results['extinction_total']
plt.plot(wl, total, 'r-', label='extinction')
#plot the near field maximum values if available
if self.params['calculate_near_field']:
maxima = self.results.maxNearField
print(len(wl))
print(len(maxima))
plt.plot(wl, maxima)
plt.legend(loc = 'upper left')
plt.ylabel('Extinction')
plt.xlabel('Wavelength (um)')
plt.show()
def func3(self, x,y):
return (1- x/2 + x**5 + y**3)*exp(-x**2-y**2)
def snapshot(self):
self.results = RunSimulation(False)
if self.params['calculate_near_field']:
#verts = self.params['near_field_plane_vertices']
#dx = (verts[2] - verts[0])/(self.params.nSteps)
#x = arange(verts[0], verts[2], dx)
#print(len(x))
#y = arange(verts[1], verts[3], dx)
#X, Y = meshgrid(x, y)
E = array(self.results.gridNearField)
#pcolor(X, Y, E, cmap=cm.RdBu)
#colorbar()
#axis([verts[0], verts[2], verts[1], verts[3]])
pcolor(E, cmap=cm.RdBu)
colorbar()
print("Maximum enhancement: " + str(abs(E).max()))
# make these smaller to increase the resolution
#dx, dy = 0.05, 0.05
#x = arange(-3.0, 3.0001, dx)
#y = arange(-3.0, 3.0001, dy)
#X,Y = meshgrid(x, y)
#Z = self.func3(X, Y)
#pcolor(X, Y, Z, cmap=cm.RdBu, vmax=abs(Z).max(), vmin=-abs(Z).max())
#colorbar()
#axis([-3,3,-3,3])
show()
def saveresults(self):
fileName = QtGui.QFileDialog.getSaveFileName(w, 'Save Spectral Results', '', 'DAT data files (*.dat)')
if fileName:
self.results.saveFile(fileName)
def loadmaterial(self):
fileName = QtGui.QFileDialog.getOpenFileName(w, 'Load Material Refractive Index', '', 'TXT data files (*.txt)')
if fileName:
self.params.matFilename = fileName
fi = QtCore.QFileInfo(fileName)
self.ui.txtMaterial.setText(fi.baseName())
def spherenum(self, i):
self.ui.tblSpheres.setRowCount(i)
print(i)
def updatedimers(self):
d = self.ui.spinSpacing.value()
a = self.ui.spinRadius.value()
self.ui.tblSpheres.setItem(0, 0, QtGui.QTableWidgetItem(str(a)))
self.ui.tblSpheres.setItem(0, 1, QtGui.QTableWidgetItem(str(-(d + 2*a)/2)))
self.ui.tblSpheres.setItem(0, 2, QtGui.QTableWidgetItem(str(0.0)))
self.ui.tblSpheres.setItem(0, 3, QtGui.QTableWidgetItem(str(0.0)))
self.ui.tblSpheres.setItem(1, 0, QtGui.QTableWidgetItem(str(a)))
self.ui.tblSpheres.setItem(1, 1, QtGui.QTableWidgetItem(str((d + 2*a)/2)))
self.ui.tblSpheres.setItem(1, 2, QtGui.QTableWidgetItem(str(0.0)))
self.ui.tblSpheres.setItem(1, 3, QtGui.QTableWidgetItem(str(0.0)))
def __init__(self):
QtGui.QWidget.__init__(self)
#dimer-specific settings
self.params['number_spheres'] = 2
self.params['sphere_position_file'] = ''
#load the UI window
self.ui = uic.loadUi('mstm_guiwindow.ui')
#controls
self.connect(self.ui.btnSimulate, QtCore.SIGNAL("clicked()"), self.simulate)
self.connect(self.ui.btnEvaluateNearField, QtCore.SIGNAL("clicked()"), self.snapshot)
self.connect(self.ui.mnuSaveResults, QtCore.SIGNAL("triggered()"), self.saveresults)
self.connect(self.ui.mnuLoadMaterial, QtCore.SIGNAL("triggered()"), self.loadmaterial)
self.connect(self.ui.spinNumSpheres, QtCore.SIGNAL("valueChanged(int)"), self.spherenum)
self.connect(self.ui.spinRadius, QtCore.SIGNAL("valueChanged(double)"), self.updatedimers)
self.connect(self.ui.spinSpacing, QtCore.SIGNAL("valueChanged(double)"), self.updatedimers)
#update the displayed parameters
self.setParams()
#update the sphere table with the default dimer values
self.updatedimers()
#display the UI
self.ui.show()
class ProgressBar(QtGui.QWidget):
def __init__(self, parent=None, total=20):
super(ProgressBar, self).__init__(parent)
self.name_line = QtGui.QLineEdit()
self.progressbar = QtGui.QProgressBar()
self.progressbar.setMinimum(1)
self.progressbar.setMaximum(total)
main_layout = QtGui.QGridLayout()
main_layout.addWidget(self.progressbar, 0, 0)
self.setLayout(main_layout)
self.setWindowTitle("Progress")
def update_progressbar(self, val):
self.progressbar.setValue(val)
def RunSimulation(spectralSim = True):
#set the parameters based on the UI
parameters = w.getParams()
#load the material
material = MaterialClass(parameters.matFilename)
#add water if necessary
if parameters.inWater:
material.addSolution(1.33)
#for a spectral simulation, set the range and number of samples
if spectralSim:
minLambda = parameters.minLambda
maxLambda = parameters.maxLambda
nSamples = parameters.nSamples
else:
minLambda = parameters.snapshotLambda
maxLambda = parameters.snapshotLambda
nSamples = 1
#store the simulation results
results = SimParserClass(parameters)
#create a progress bar
pbar = ProgressBar(total=nSamples)
pbar.show()
#for each wavelength in the material
for i in range(nSamples):
if i == 0:
l = minLambda
else:
l = minLambda + i*(maxLambda - minLambda)/(nSamples - 1)
#set the computed parameters
m = material[l]
n = m.n
parameters['real_ref_index_scale_factor'] = n.real
parameters['imag_ref_index_scale_factor'] = n.imag
parameters['length_scale_factor'] = (2.0 * 3.14159)/l
parameters['scattering_plane_angle_deg'] = gamma;
parameters['near_field_output_data'] = 0
#parameters['number_spheres'] = 1
#a = parameters.a;
#d = parameters.d;
#parameters.clearSpheres()
#parameters.addSphere(a, -(d + 2*a)/2, 0, 0)
#parameters.addSphere(a, (d + 2*a)/2, 0, 0)
#save the scripted input file
parameters.saveFile(l, 'scriptParams.inp')
#run the binary
from subprocess import call
if parameters.showOutput:
call(["./ms-tmatrix", "scriptParams.inp"])
else:
devnull = open('/dev/null', 'w')
call(["./ms-tmatrix", "scriptParams.inp"], stdout=devnull)
#parse the simulation results
results.parseSimFile(l, 'test.dat')
if parameters['calculate_near_field']:
results.parseNearField('nf-temp.dat')
#update the progress bar
pbar.update_progressbar(i+1)
#return the results
return results;
#incident light directions
alpha = 0
beta = 0
gamma = 0
#results stored for each spectral sample
resultLabels = {'lambda', 'extinction_unpolarized', 'extinction_parallel', 'extinction_perpendicular'}
#create a Qt window
app = QtGui.QApplication(sys.argv)
w = GuiWindow()
sys.exit(app.exec_())