mstm-modules-v2.2.f90 237 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
!
!  numerical constants
!
!
!  last revised: 15 January 2011
!
      module numconstants
      implicit none
      integer :: print_intermediate_results
      integer, allocatable :: monen(:)
      integer, private :: nmax=0
      real(8) :: pi
      real(8), allocatable :: bcof(:,:),fnr(:),vwh_coef(:,:,:,:)
      real(8), allocatable :: vcc_const(:,:,:),fnm1_const(:,:),fn_const(:,:),fnp1_const(:,:)
      data pi/3.141592653589793/

      contains

         subroutine init(notd)
         implicit none
         integer :: notd,l,n,ierr,nbc,m,mm1,mp1,np1,nm1,nn1,mn
         real(8) :: fnorm1,fnorm2
!
!  bcof(n,l)=((n+l)!/(n!l!))^(1/2)
!
         if(notd.le.nmax) return
         nmax=max(nmax,notd)
         nbc=6*notd+6
         if(allocated(fnr)) deallocate(monen,fnr,bcof)
         allocate (monen(0:2*notd),bcof(0:nbc,0:nbc),fnr(0:2*nbc),stat=ierr)
!         write(*,'('' nmax, bcof status:'',2i5)') nmax,ierr
         do n=0,2*notd
            monen(n)=(-1)**n
         enddo
         fnr(0)=0.d0
         do n=1,2*nbc
            fnr(n)=dsqrt(dble(n))
         enddo
         bcof(0,0)=1.d0
         do n=0,nbc-1
            do l=n+1,nbc
               bcof(n,l)=fnr(n+l)*bcof(n,l-1)/fnr(l)
               bcof(l,n)=bcof(n,l)
            enddo
            bcof(n+1,n+1)=fnr(n+n+2)*fnr(n+n+1)*bcof(n,n)/fnr(n+1)/fnr(n+1)
         enddo
         if(allocated(vwh_coef)) deallocate(vwh_coef)
         allocate(vwh_coef(-notd:notd,1:notd,-1:1,-1:1))
!
!  constants used for calculation of svwf functions.
!
         do n=1,notd
            nn1=n*(n+1)
            np1=n+1
            nm1=n-1
            fnorm1=-.5d0/fnr(n+n+1)/fnr(n)/fnr(n+1)
            fnorm2=-.5d0*fnr(n+n+1)/fnr(n)/fnr(n+1)
            m=-n
            mp1=m+1
            mm1=m-1
            vwh_coef(m,n, 1, 1)=-fnorm1*n*fnr(np1+m)*fnr(np1+mp1)
            vwh_coef(m,n, 1,-1)=fnorm1*np1*fnr(n-m)*fnr(nm1-m)
            vwh_coef(m,n,-1, 1)=fnorm1*n*fnr(np1-m)*fnr(np1-mm1)
            vwh_coef(m,n,-1,-1)=0.d0
            vwh_coef(m,n, 0, 1)=fnorm1*n*fnr(np1+m)*fnr(np1-m)
            vwh_coef(m,n, 0,-1)=0.d0
            vwh_coef(m,n, 1, 0)=-fnorm2*fnr(n-m)*fnr(np1+m)
            vwh_coef(m,n,-1, 0)=-0.d0
            vwh_coef(m,n, 0, 0)=-fnorm2*m
            do m=-n+1,-1
               mp1=m+1
               mm1=m-1
               vwh_coef(m,n, 1, 1)=-fnorm1*n*fnr(np1+m)*fnr(np1+mp1)
               vwh_coef(m,n, 1,-1)=fnorm1*np1*fnr(n-m)*fnr(nm1-m)
               vwh_coef(m,n,-1, 1)=fnorm1*n*fnr(np1-m)*fnr(np1-mm1)
               vwh_coef(m,n,-1,-1)=-fnorm1*np1*fnr(n+m)*fnr(nm1+m)
               vwh_coef(m,n, 0, 1)=fnorm1*n*fnr(np1+m)*fnr(np1-m)
               vwh_coef(m,n, 0,-1)=fnorm1*np1*fnr(n+m)*fnr(n-m)
               vwh_coef(m,n, 1, 0)=-fnorm2*fnr(n-m)*fnr(np1+m)
               vwh_coef(m,n,-1, 0)=-fnorm2*fnr(n+m)*fnr(np1-m)
               vwh_coef(m,n, 0, 0)=-fnorm2*m
            enddo
            do m=0,n-1
               mp1=m+1
               mm1=m-1
               vwh_coef(m,n, 1, 1)=-fnorm1*n*fnr(np1+m)*fnr(np1+mp1)
               vwh_coef(m,n, 1,-1)=fnorm1*np1*fnr(n-m)*fnr(nm1-m)
               vwh_coef(m,n,-1, 1)=fnorm1*n*fnr(np1-m)*fnr(np1-mm1)
               vwh_coef(m,n,-1,-1)=-fnorm1*np1*fnr(n+m)*fnr(nm1+m)
               vwh_coef(m,n, 0, 1)=fnorm1*n*fnr(np1+m)*fnr(np1-m)
               vwh_coef(m,n, 0,-1)=fnorm1*np1*fnr(n+m)*fnr(n-m)
               vwh_coef(m,n, 1, 0)=-fnorm2*fnr(n-m)*fnr(np1+m)
               vwh_coef(m,n,-1, 0)=-fnorm2*fnr(n+m)*fnr(np1-m)
               vwh_coef(m,n, 0, 0)=-fnorm2*m
            enddo
            m=n
            mp1=m+1
            mm1=m-1
            vwh_coef(m,n, 1, 1)=-fnorm1*n*fnr(np1+m)*fnr(np1+mp1)
            vwh_coef(m,n, 1,-1)=0.d0
            vwh_coef(m,n,-1, 1)=fnorm1*n*fnr(np1-m)*fnr(np1-mm1)
            vwh_coef(m,n,-1,-1)=-fnorm1*np1*fnr(n+m)*fnr(nm1+m)
            vwh_coef(m,n, 0, 1)=fnorm1*n*fnr(np1+m)*fnr(np1-m)
            vwh_coef(m,n, 0,-1)=0.d0
            vwh_coef(m,n, 1, 0)=-0.d0
            vwh_coef(m,n,-1, 0)=-fnorm2*fnr(n+m)*fnr(np1-m)
            vwh_coef(m,n, 0, 0)=-fnorm2*m
         enddo
         end subroutine init

      end module numconstants
!
!  special function for the multiple sphere problem
!
      module specialfuncs
      implicit none
      contains

         subroutine timewrite(iunit,char1,time)
         use intrinsics
         implicit none
         integer :: iunit
         real(8) :: time,time2
         character(*) :: char1
         if(time.gt.3600.d0) then
            time2=time/3600.d0
            write(iunit,'(a,f9.3,'' hours'')') char1,time2
         elseif(time.gt.60.d0) then
            time2=time/60.d0
            write(iunit,'(a,f9.2,'' min'')') char1,time2
         else
            write(iunit,'(a,f9.2,'' sec'')') char1,time
         endif
         call flush(iunit)
         end subroutine timewrite
!
!  ricatti-bessel function psi(n), real argument
!
         subroutine ricbessel(n,ds,eps,nmax,psi)
         implicit none
         integer :: n,nmax,ns,i
         real(8) :: ds,dns,sn,psi(0:n),psit,ds2,sum,eps,err
         if(int(ds).lt.n) then
            ns=nint(ds+4.*(ds**.3333d0)+17)
            ns=max(n+10,ns)
            dns=0.d0
            do i=ns-1,n,-1
               sn=dble(i+1)/ds
               dns=sn-1.d0/(dns+sn)
            enddo
            psi(n)=dns
            psi(n-1)=dble(n)/ds-1.d0/(dns+dble(n)/ds)
            do i=n-2,1,-1
               sn=dble(i+1)/ds
               psi(i)=sn-1.d0/(psi(i+1)+sn)
            enddo
            psit=dsin(ds)
            psi(0)=psit
            ds2=ds*ds
            sum=psit*psit/ds2
            do i=1,n
               psit=psit/(dble(i)/ds+psi(i))
               sum=sum+dble(i+i+1)*psit*psit/ds2
               err=dabs(1.d0-sum)
               psi(i)=psit
               if(err.lt.eps) then
                  nmax=i
                  return
               endif
            enddo
            nmax=n
         else
            psi(0)=dsin(ds)
            psi(1)=psi(0)/ds-dcos(ds)
            do i=1,n-1
               sn=dble(i+i+1)/ds
               psi(i+1)=sn*psi(i)-psi(i-1)
            enddo
            nmax=n
         endif
         end subroutine ricbessel
!
!  ricatti-hankel function xi(n), real argument
!
!
!  last revised: 15 January 2011
!
         subroutine richankel(n,ds,xi)
         implicit none
         integer :: n,i,ns
         real(8) :: ds,dns,sn,chi0,chi1,chi2,psi,psi0,psi1
         complex(8) :: xi(0:n)
         if(int(ds).lt.n) then
            ns=nint(ds+4.*(ds**.3333)+17)
            ns=max(n+10,ns)
            dns=0.d0
            do i=ns-1,n,-1
               sn=dble(i+1)/ds
               dns=sn-1.d0/(dns+sn)
            enddo
            xi(n)=dns
            xi(n-1)=dble(n)/ds-1.d0/(dns+dble(n)/ds)
            do i=n-2,1,-1
               sn=dble(i+1)/ds
               xi(i)=sn-1.d0/(xi(i+1)+sn)
            enddo
            chi0=-dcos(ds)
            psi=dsin(ds)
            chi1=chi0/ds-psi
            xi(0)=dcmplx(psi,chi0)
            do i=1,n
               chi2=dble(i+i+1)/ds*chi1-chi0
               psi=psi/(dble(i)/ds+xi(i))
               xi(i)=dcmplx(psi,chi1)
               chi0=chi1
               chi1=chi2
            enddo
            return
         else
            chi0=-dcos(ds)
            psi0=dsin(ds)
            chi1=chi0/ds-psi0
            psi1=psi0/ds+chi0
            xi(0)=dcmplx(psi0,chi0)
            xi(1)=dcmplx(psi1,chi1)
            do i=1,n-1
               sn=dble(i+i+1)/ds
               xi(i+1)=sn*xi(i)-xi(i-1)
            enddo
            return
         endif
         end subroutine richankel
!
!  ricatti-bessel function psi(n), complex argument
!
!
!  last revised: 15 January 2011
!
         subroutine cricbessel(n,ds,psi)
         implicit none
         integer :: n,i
         complex(8) :: ds,psi(0:n),chi(0:n)
         call cspherebessel(n,ds,psi,chi)
         do i=0,n
            psi(i)=psi(i)*ds
         enddo
         return
         end subroutine cricbessel
!
!  ricatti-hankel function psi(n), complex argument
!
!
!  last revised: 15 January 2011
!  7 october 2011: forces upwards recurrence for real argument ds
!
         subroutine crichankel(n,ds,xi)
         implicit none
         integer :: n,i,i1
         complex(8) :: ds,psi(0:n),chi(0:n),xi(0:n),ci
         data ci/(0.d0,1.d0)/
         xi(0)=-ci*cdexp(ci*ds)
         xi(1)=-cdexp(ci*ds)*(ci+ds)/ds
         if(dimag(ds).eq.0.d0) then
            do i=1,n-1
               i1=i+1
               xi(i1)=dble(i+i1)/ds*xi(i)-xi(i-1)
            enddo
            return
         endif
         if(cdabs(xi(0)).lt.1.d-10) then
            do i=1,n-1
               i1=i+1
               xi(i1)=dble(i+i1)/ds*xi(i)-xi(i-1)
            enddo
            return
         else
            call cspherebessel(n,ds,psi,chi)
            do i=1,n-1
               i1=i+1
               xi(i1)=(psi(i1)+ci*chi(i1))*ds
            enddo
            return
         endif
         end subroutine crichankel
!
!     ==========================================================
!     Purpose: Compute spherical Bessel functions jn(z) & yn(z)
!              for a complex argument
!     Input :  z --- Complex argument
!              n --- Order of jn(z) & yn(z) ( n = 0,1,2,... )
!     Output:  CSJ(n) --- jn(z)
!              CSY(n) --- yn(z)
!              NM --- Highest order computed
!     Routines called:
!              MSTA1 and MSTA2 for computing the starting
!              point for backward recurrence
!     ==========================================================
!
!    obtained from, and copywrited by, Jian-Ming Jin
!    http://jin.ece.uiuc.edu/
!
!
!  last revised: 15 January 2011
!
         subroutine cspherebessel(n,z,csj,csy)
         implicit none
         integer :: n,nm,k,m
         real(8) :: a0
         complex(8) :: z,csj(0:n),csy(0:n),csa,csb,cs,cf0,cf1,cf
         a0=cdabs(z)
         nm=n
         if (a0.lt.1.0d-60) then
            csj=(0.d0,0.d0)
            csy=(-1.d300,0.d0)
            csy(0)=(1.d0,0.d0)
            return
         endif
         csj=(0.d0,0.d0)
         csj(0)=cdsin(z)/z
         csj(1)=(csj(0)-cdcos(z))/z
         if (n.ge.2) then
            csa=csj(0)
            csb=csj(1)
            m=msta1(a0,200)
            if (m.lt.n) then
               nm=m
            else
               m=msta2(a0,n,15)
            endif
            cf0=0.0d0
            cf1=1.0d0-100
            do k=m,0,-1
               cf=(2.0d0*k+3.0d0)*cf1/z-cf0
               if (k.le.nm) csj(k)=cf
               cf0=cf1
               cf1=cf
            enddo
            if (cdabs(csa).gt.cdabs(csb)) cs=csa/cf
            if (cdabs(csa).le.cdabs(csb)) cs=csb/cf0
            do k=0,min(nm,n)
               csj(k)=cs*csj(k)
            enddo
         endif
         csy=(1.d200,0.d0)
         csy(0)=-cdcos(z)/z
         csy(1)=(csy(0)-cdsin(z))/z
         do k=2,min(nm,n)
            if (cdabs(csj(k-1)).gt.cdabs(csj(k-2))) then
               csy(k)=(csj(k)*csy(k-1)-1.0d0/(z*z))/csj(k-1)
            else
               csy(k)=(csj(k)*csy(k-2)-(2.0d0*k-1.0d0)/z**3)/csj(k-2)
            endif
         enddo
         end subroutine cspherebessel
!
!     ===================================================
!     Purpose: Determine the starting point for backward
!              recurrence such that the magnitude of
!              Jn(x) at that point is about 10^(-MP)
!     Input :  x     --- Argument of Jn(x)
!              MP    --- Value of magnitude
!     Output:  MSTA1 --- Starting point
!     ===================================================
!
!
!  last revised: 15 January 2011
!
         integer function msta1(x,mp)
         implicit none
         integer :: mp,n0,n1,it,nn
         real(8) :: x, a0,f1,f,f0
         a0=dabs(x)
         n0=int(1.1*a0)+1
         f0=envj(n0,a0)-mp
         n1=n0+5
         f1=envj(n1,a0)-mp
         do it=1,20
            nn=n1-(n1-n0)/(1.0d0-f0/f1)
            f=envj(nn,a0)-mp
            if(abs(nn-n1).lt.1) exit
            n0=n1
            f0=f1
            n1=nn
            f1=f
         enddo
         msta1=nn
         end function msta1
!
!     ===================================================
!     Purpose: Determine the starting point for backward
!              recurrence such that all Jn(x) has MP
!              significant digits
!     Input :  x  --- Argument of Jn(x)
!              n  --- Order of Jn(x)
!              MP --- Significant digit
!     Output:  MSTA2 --- Starting point
!     ===================================================
!
!
!  last revised: 15 January 2011
!
         integer function msta2(x,n,mp)
         implicit none
         integer :: n,mp,n0,n1,it,nn
         real(8) :: x,a0,hmp,ejn,obj,f0,f1,f
         a0=dabs(x)
         hmp=0.5d0*dble(mp)
         ejn=envj(n,a0)
         if (ejn.le.hmp) then
            obj=mp
            n0=int(1.1*a0)
         else
            obj=hmp+ejn
            n0=n
         endif
         f0=envj(n0,a0)-obj
         n1=n0+5
         f1=envj(n1,a0)-obj
         do it=1,20
            nn=n1-(n1-n0)/(1.0d0-f0/f1)
            f=envj(nn,a0)-obj
            if (abs(nn-n1).lt.1) exit
            n0=n1
            f0=f1
            n1=nn
            f1=f
         enddo
         msta2=nn+10
         end function msta2

         real(8) function envj(n,x)
         implicit none
         integer :: n
         real(8) :: x
         n=max(1,abs(n))
         envj=0.5d0*dlog10(6.28d0*n)-n*dlog10(1.36d0*x/n)
         end function envj
!
!    vector coupling coefficients vc(w) = C(m,n|k,l|m+k,w), w = |n-l|,... n+l
!    uses downwards and upwards recurrence
!
!
!  last revised: 15 January 2011
!
         subroutine vcfunc(m,n,k,l,vcn)
         use numconstants
         implicit none
         integer :: m,n,k,l,wmax,wmin,w,mk
         real(8) :: vcn(0:n+l),t1,t2,t3,vcmax,vctest,rat
         vcn=0.d0
         wmax=n+l
         wmin=max(abs(n-l),abs(m+k))
         vcn(wmax)=bcof(n+m,l+k)*bcof(n-m,l-k)/bcof(n+n,l+l)
         if(wmin.eq.wmax) return
         vcn(wmax-1)=vcn(wmax)*(l*m-k*n)*fnr(2*(l+n)-1)/fnr(l)/fnr(n)&
        &  /fnr(n+l+m+k)/fnr(n+l-m-k)
         if(wmin.eq.wmax-1) return
         mk=m+k
         vcmax=abs(vcn(wmax))+abs(vcn(wmax-1))
!
!  a downwards recurrence is used initially
!
         do w=wmax,wmin+2,-1
            t1=2*w*fnr(w+w+1)*fnr(w+w-1)/(fnr(w+mk)*fnr(w-mk)&
        &     *fnr(n-l+w)*fnr(l-n+w)*fnr(n+l-w+1)*fnr(n+l+w+1))
            t2=dble((m-k)*w*(w-1)-mk*n*(n+1)+mk*l*(l+1))&
        &    /dble(2*w*(w-1))
            t3=fnr(w-mk-1)*fnr(w+mk-1)*fnr(l-n+w-1)*fnr(n-l+w-1)&
        &     *fnr(n+l-w+2)*fnr(n+l+w)/(dble(2*(w-1))*fnr(2*w-3)&
        &     *fnr(2*w-1))
            vcn(w-2)=(t2*vcn(w-1)-vcn(w)/t1)/t3
            if(mod(wmax-w,2).eq.1) then
               vctest=abs(vcn(w-2))+abs(vcn(w-1))
               vcmax=max(vcmax,vctest)
               rat=vctest/vcmax
!
!  if/when the coefficients start to decrease in magnitude, an upwards recurrence takes over
!
               if(rat.lt.0.01d0) exit
            endif
         enddo
         if(w-2.gt.wmin) then
            wmax=w-3
            call vcfuncuprec(m,n,k,l,wmax,vcn)
         endif
         end subroutine vcfunc
!
!  upwards VC coefficient recurrence
!
!
!  last revised: 15 January 2011
!
         subroutine vcfuncuprec(m,n,k,l,wmax,vcn)
         use numconstants
         implicit none
         integer :: m,n,k,l,wmax,wmin,w,mk,nl,m1,n1,l1,k1,w1,w2
         real(8) :: vcn(0:n+l),t1,t2,t3,vc1
         mk=abs(m+k)
         nl=abs(n-l)
         if(nl.ge.mk) then
            w=nl
            if(n.ge.l) then
               m1=m
               n1=n
               l1=l
               k1=k
            else
               m1=k
               n1=l
               k1=m
               l1=n
            endif
            vc1=(-1)**(k1+l1)*bcof(l1+k1,w-m1-k1) &
               *bcof(l1-k1,w+m1+k1)/bcof(l1+l1,w+w+1)
         else
            w=mk
            if(m+k.ge.0) then
               vc1=(-1)**(n+m)*bcof(n-l+w,l-k)*bcof(l-n+w,n-m) &
                  /bcof(w+w+1,n+l-w)
            else
               vc1=(-1)**(l+k)*bcof(n-l+w,l+k)*bcof(l-n+w,n+m) &
                 /bcof(w+w+1,n+l-w)
            endif
         endif
         w1=w
         vcn(w)=vc1
         w=w1+1
         mk=m+k
         w2=min(wmax,n+l)
         if(w2.gt.w1) then
            t1=2*w*fnr(w+w+1)*fnr(w+w-1)/(fnr(w+mk)*fnr(w-mk) &
              *fnr(n-l+w)*fnr(l-n+w)*fnr(n+l-w+1)*fnr(n+l+w+1))
            if(w1.eq.0) then
               t2=.5*dble(m-k)
            else
               t2=dble((m-k)*w*(w-1)-mk*n*(n+1)+mk*l*(l+1)) &
                 /dble(2*w*(w-1))
            endif
            vcn(w)=t1*t2*vcn(w1)
         endif
         do w=w1+2,w2
            t1=2*w*fnr(w+w+1)*fnr(w+w-1)/(fnr(w+mk)*fnr(w-mk) &
              *fnr(n-l+w)*fnr(l-n+w)*fnr(n+l-w+1)*fnr(n+l+w+1))
            t2=dble((m-k)*w*(w-1)-mk*n*(n+1)+mk*l*(l+1)) &
             /dble(2*w*(w-1))
            t3=fnr(w-mk-1)*fnr(w+mk-1)*fnr(l-n+w-1)*fnr(n-l+w-1) &
              *fnr(n+l-w+2)*fnr(n+l+w)/(dble(2*(w-1))*fnr(2*w-3) &
              *fnr(2*w-1))
            vcn(w)=t1*(t2*vcn(w-1)-t3*vcn(w-2))
         enddo
         end subroutine vcfuncuprec
!
!  Normalized associated legendre functions
!
!
!  last revised: 15 January 2011
!
         subroutine normalizedlegendre(cbe,mmax,nmax,dc)
         use numconstants
         implicit none
         integer :: nmax,mmax,m,n,np1,nm1,im
         real(8) :: dc(-mmax:mmax,0:nmax),cbe,sbe
         sbe=dsqrt((1.d0+cbe)*(1.d0-cbe))
         dc=0.d0
         do m=0,mmax
            dc(m,m)=(-1)**m*(0.5d0*sbe)**m*bcof(m,m)
            if(m.eq.nmax) exit
            dc(m,m+1)=fnr(m+m+1)*cbe*dc(m,m)
            do n=m+1,nmax-1
               dc(m,n+1)=(-fnr(n-m)*fnr(n+m)*dc(m,n-1)+dble(n+n+1)*cbe*dc(m,n)) &
                         /(fnr(n+1-m)*fnr(n+1+m))
            enddo
         enddo
         do m=1,mmax
            im=(-1)**m
            do n=m,nmax
               dc(-m,n)=im*dc(m,n)
            enddo
         enddo
         end subroutine normalizedlegendre
!
!  Generalized spherical functions
!
!  dc(m,n*(n+1)+k)=(-1)^(m + k)((n - k)!(n + k)!/(n - m)!/(n + m)!)^(1/2)
!  ((1 + x)/2)^((m + k)/2)((1 - x)/2)^((k - m)/2)JacobiP[n - k, k - m, k + m, x]
!
!  for |m| <= kmax, n=0,1,...nmax, |k| <= n
!
!
!  last revised: 15 January 2011
!
         subroutine rotcoef(cbe,kmax,nmax,dc)
         use numconstants
         implicit none
         integer :: kmax,nmax,k,m,in,n,knmax,nn1,kn,im,m1
         real(8) :: cbe,sbe,dc(-kmax:kmax,0:nmax*(nmax+2)),cbe2,sbe2,dk0(-nmax-1:nmax+1),&
                    dk01(-nmax-1:nmax+1),sben,dkt,fmn,dkm0,dkm1,dkn1
         sbe=dsqrt((1.d0+cbe)*(1.d0-cbe))
         cbe2=.5d0*(1.d0+cbe)
         sbe2=.5d0*(1.d0-cbe)
         in=1
         dk0(0)=1.d0
         sben=1.d0
         dc(0,0)=1.d0
         dk01(0)=0.
         do n=1,nmax
            knmax=min(n,kmax)
            nn1=n*(n+1)
            in=-in
            sben=sben*sbe/2.d0
            dk0(n)=in*sben*bcof(n,n)
            dk0(-n)=in*dk0(n)
            dk01(n)=0.
            dk01(-n)=0.
            dc(0,nn1+n)=dk0(n)
            dc(0,nn1-n)=dk0(-n)
            do k=-n+1,n-1
               kn=nn1+k
               dkt=dk01(k)
               dk01(k)=dk0(k)
               dk0(k)=(cbe*dble(n+n-1)*dk01(k)-fnr(n-k-1)*fnr(n+k-1)*dkt)&
                     /(fnr(n+k)*fnr(n-k))
               dc(0,kn)=dk0(k)
            enddo
            im=1
            do m=1,knmax
               im=-im
               fmn=1.d0/fnr(n-m+1)/fnr(n+m)
               m1=m-1
               dkm0=0.
               do k=-n,n
                  kn=nn1+k
                  dkm1=dkm0
                  dkm0=dc(m1,kn)
                  if(k.eq.n) then
                     dkn1=0.
                  else
                     dkn1=dc(m1,kn+1)
                  endif
                  dc(m,kn)=(fnr(n+k)*fnr(n-k+1)*cbe2*dkm1 &
                          -fnr(n-k)*fnr(n+k+1)*sbe2*dkn1  &
                          -dble(k)*sbe*dc(m1,kn))*fmn
                  dc(-m,nn1-k)=dc(m,kn)*(-1)**(k)*im
               enddo
            enddo
         enddo
         end subroutine rotcoef

         subroutine rotcoefvecarg(narg,cbe,kmax,nmax,dc)
         use numconstants
         implicit none
         integer :: kmax,nmax,k,m,in,n,knmax,nn1,kn,im,m1,narg
         real(8) :: cbe(narg),sbe(narg),dc(-kmax:kmax,0:nmax*(nmax+2),narg), &
                    cbe2(narg),sbe2(narg),dk0(-nmax-1:nmax+1,narg),&
                    dk01(-nmax-1:nmax+1,narg),sben(narg),dkt(narg), &
                    fmn,dkm0(narg),dkm1(narg),dkn1(narg)
         sbe=sqrt((1.d0+cbe)*(1.d0-cbe))
         cbe2=.5d0*(1.d0+cbe)
         sbe2=.5d0*(1.d0-cbe)
         in=1
         dk0(0,:)=1.d0
         sben=1.d0
         dc(0,0,:)=1.d0
         dk01(0,:)=0.
         do n=1,nmax
            knmax=min(n,kmax)
            nn1=n*(n+1)
            in=-in
            sben=sben*sbe/2.d0
            dk0(n,:)=in*sben(:)*bcof(n,n)
            dk0(-n,:)=in*dk0(n,:)
            dk01(n,:)=0.
            dk01(-n,:)=0.
            dc(0,nn1+n,:)=dk0(n,:)
            dc(0,nn1-n,:)=dk0(-n,:)
            do k=-n+1,n-1
               kn=nn1+k
               dkt(:)=dk01(k,:)
               dk01(k,:)=dk0(k,:)
               dk0(k,:)=(cbe(:)*dble(n+n-1)*dk01(k,:)-fnr(n-k-1)*fnr(n+k-1)*dkt(:)) &
                     /(fnr(n+k)*fnr(n-k))
               dc(0,kn,:)=dk0(k,:)
            enddo
            im=1
            do m=1,knmax
               im=-im
               fmn=1.d0/fnr(n-m+1)/fnr(n+m)
               m1=m-1
               dkm0=0.
               do k=-n,n
                  kn=nn1+k
                  dkm1=dkm0
                  dkm0(:)=dc(m1,kn,:)
                  if(k.eq.n) then
                     dkn1=0.
                  else
                     dkn1(:)=dc(m1,kn+1,:)
                  endif
                  dc(m,kn,:)=(fnr(n+k)*fnr(n-k+1)*cbe2(:)*dkm1(:) &
                          -fnr(n-k)*fnr(n+k+1)*sbe2(:)*dkn1(:)  &
                          -dble(k)*sbe(:)*dc(m1,kn,:))*fmn
                  dc(-m,nn1-k,:)=dc(m,kn,:)*(-1)**(k)*im
               enddo
            enddo
         enddo
         end subroutine rotcoefvecarg
!
!  tau are the vector spherical harmonic functions, normalized
!
!
!  last revised: 15 January 2011
!
         subroutine taufunc(cb,nmax,tau)
         use numconstants
         implicit none
         integer :: nmax,n,m,p,nn1,mn
         real(8) :: drot(-1:1,0:nmax*(nmax+2)),tau(0:nmax+1,nmax,2),cb,fnm
         call rotcoef(cb,1,nmax,drot)
         do n=1,nmax
            nn1=n*(n+1)
            fnm=sqrt(dble(n+n+1)/2.d0)/4.d0
            do m=-n,-1
               mn=nn1+m
               tau(n+1,-m,1)=-fnm*(-drot(-1,mn)+drot(1,mn))
               tau(n+1,-m,2)=-fnm*(drot(-1,mn)+drot(1,mn))
            enddo
            do m=0,n
               mn=nn1+m
               tau(m,n,1)=-fnm*(-drot(-1,mn)+drot(1,mn))
               tau(m,n,2)=-fnm*(drot(-1,mn)+drot(1,mn))
            enddo
         enddo
         end subroutine taufunc
!
! vector spherical harmonic function
! november 2011
!

         subroutine pifunc(cb,ephi,nmax,ndim,pivec)
         use numconstants
         implicit none
         integer :: nmax,n,m,p,nn1,mn,ndim
         real(8) :: drot(-1:1,0:nmax*(nmax+2)),tau(2),cb,fnm
         complex(8) :: pivec(0:ndim+1,ndim,2),ephi,ephim(-nmax:nmax),cin
         call rotcoef(cb,1,nmax,drot)
         ephim(0)=1.d0
         do m=1,nmax
            ephim(m)=ephi*ephim(m-1)
            ephim(-m)=dconjg(ephim(m))
         enddo
         do n=1,nmax
            cin=(0.d0,-1.d0)**(n+1)
            nn1=n*(n+1)
            fnm=sqrt(dble(n+n+1)/2.d0)/4.d0
            do m=-n,-1
               mn=nn1+m
               tau(1)=-fnm*(-drot(-1,mn)+drot(1,mn))
               tau(2)=-fnm*(drot(-1,mn)+drot(1,mn))
               pivec(n+1,-m,1)=cin*tau(1)*ephim(m)
               pivec(n+1,-m,2)=cin*tau(2)*ephim(m)
            enddo
            do m=0,n
               mn=nn1+m
               tau(1)=-fnm*(-drot(-1,mn)+drot(1,mn))
               tau(2)=-fnm*(drot(-1,mn)+drot(1,mn))
               pivec(m,n,1)=cin*tau(1)*ephim(m)
               pivec(m,n,2)=cin*tau(2)*ephim(m)
            enddo
         enddo
         end subroutine pifunc
!
!  regular vswf expansion coefficients for a plane wave.
!  alpha, beta: incident azimuth and polar angles.
!
!
!  last revised: 15 January 2011
!
         subroutine planewavecoef(alpha,beta,nodr,pmnp0)
         use numconstants
         implicit none
         integer :: nodr,m,n,p,k,ierr
         real(8) :: alpha,beta,cb,sb,ca,sa
         real(8), allocatable :: tau(:,:,:)
         complex(8) :: ealpha,ci,cin
         complex(8), allocatable :: ealpham(:)
         complex(8) :: pmnp0(0:nodr+1,nodr,2,2)
         data ci/(0.d0,1.d0)/
         call init(nodr)
         allocate(ealpham(-nodr:nodr))
         allocate(tau(0:nodr+1,nodr,2))
         cb=cos(beta)
         sb=sqrt((1.d0-cb)*(1.d0+cb))
         ca=cos(alpha)
         sa=sin(alpha)
         ealpha=dcmplx(ca,sa)
         call taufunc(cb,nodr,tau)
         call ephicoef(ealpha,nodr,ealpham)
         do n=1,nodr
            cin=4.d0*ci**(n+1)
            do p=1,2
               do m=-n,-1
                  pmnp0(n+1,-m,p,1)=-cin*tau(n+1,-m,p)*ealpham(-m)
                  pmnp0(n+1,-m,p,2)=ci*cin*tau(n+1,-m,3-p)*ealpham(-m)
               enddo
               do m=0,n
                  pmnp0(m,n,p,1)=-cin*tau(m,n,p)*ealpham(-m)
                  pmnp0(m,n,p,2)=ci*cin*tau(m,n,3-p)*ealpham(-m)
               enddo
            enddo
         enddo
         deallocate(ealpham,tau)
         end subroutine planewavecoef
!
!  regular vswf expansion coefficients for a gaussian beam, localized approximation.
!  cbeam = 1/(k omega)
!
!
!  last revised: 15 January 2011
!
         subroutine gaussianbeamcoef(alpha,beta,cbeam,nodr,pmnp0)
         use numconstants
         implicit none
         integer :: nodr,m,n,p,k,ierr
         real(8) :: alpha,beta,cbeam,gbn
         complex(8) :: pmnp0(0:nodr+1,nodr,2,2)
         call planewavecoef(alpha,beta,nodr,pmnp0)
         do n=1,nodr
            gbn=dexp(-((dble(n)+.5d0)*cbeam)**2.)
            do p=1,2
               do k=1,2
                  do m=-n,-1
                     pmnp0(n+1,-m,p,k)=pmnp0(n+1,-m,p,k)*gbn
                  enddo
                  do m=0,n
                     pmnp0(m,n,p,k)=pmnp0(m,n,p,k)*gbn
                  enddo
               enddo
            enddo
         enddo
         end subroutine gaussianbeamcoef
!
!  plane wave expansion coefficients at sphere origins.  uses a phase shift.
!
!
!  last revised: 15 January 2011
!
         subroutine sphereplanewavecoef(nsphere,neqns,nodr,nodrmax,alpha,beta,rpos,pmnp)
         implicit none
         integer :: m,n,p,nsphere,i,l,nodr(nsphere),nblk,nboff,nodrmax,neqns,k
         real(8) :: alpha,beta,cb,sb,ca,sa,rpos(3,nsphere)
         complex(8) :: ci,phasefac, pmnp(neqns,2)
         complex(8) :: pmnp0(0:nodrmax+1,nodrmax,2,2)
         data ci/(0.d0,1.d0)/
         call planewavecoef(alpha,beta,nodrmax,pmnp0)
         cb=cos(beta)
         sb=sqrt((1.d0-cb)*(1.d0+cb))
         ca=cos(alpha)
         sa=sin(alpha)
         l=0
         do i=1,nsphere
            phasefac=cdexp(ci*((ca*rpos(1,i)+sa*rpos(2,i))*sb+rpos(3,i)*cb))
            do p=1,2
               do n=1,nodr(i)
                  do m=0,nodr(i)+1
                     l=l+1
                     do k=1,2
                        pmnp(l,k)=phasefac*pmnp0(m,n,p,k)
                     enddo
                  enddo
               enddo
            enddo
         enddo
         end subroutine sphereplanewavecoef
!
! this computes the normalized translation coefficients for an
! axial translation of positive distance r.  For itype=1 or 3, the translation
! uses the spherical Bessel or Hankel functions as a basis function,
! respectively.    They are related to the coefficients appearing in
! M&M JOSA 96 by
!
! J^{ij}_{mnp mlq} = (E_{ml}/E_{mn})^(1/2) ac(s,n,l*(l+1)+m)
!
! where
!
!   E_{mn} = n(n+1)(n+m)!/((2n+1)(n-m)!)
!   s=mod(p+q,2)+1 (i.e., s=1 for the A coefficient, =2 for the B
!   coefficient)
!
!  The calculation procedure is based on the derivation
!  of the addition theorem for vector harmonics, appearing in
!  Fuller and Mackowski, proc. Light Scattering by Nonspherical
!  Particles, NASA/GISS Sept. 1998.
!
!  revised: 10 october 2011: used F90 vector arithmetic and precalculation
!           of various constants.
!
         subroutine axialtrancoef(itype,r,ri,nmax,lmax,ac)
         use numconstants
         implicit none
         integer :: itype,nmax,lmax,n,l,m,p,w,n21,ll1,nlmin,lblk,wmin,wmax,ml
         integer :: iadd,nlmax
         integer, save :: nlmax0
         real(8) :: r
         complex(8) :: ri,ci,z,xi(0:nmax+lmax)
         complex(8) :: ac(nmax,lmax*(lmax+3)/2,2)
         data ci,nlmax0/(0.d0,1.d0),0/
         nlmax=max(nmax,lmax)
         if(nlmax.gt.nlmax0) then
            nlmax0=nlmax
            call axialtrancoefinit(nlmax)
         endif
         if(r.eq.0.d0) then
            ac=(0.d0,0.d0)
            if(itype.ne.1) return
            do m=0,min(nmax,lmax)
               do n=max(1,m),min(nmax,lmax)
                  iadd=atcadd(m,n,lmax)
                  ac(n,iadd,l)=1.
               enddo
            enddo
            return
         endif
         z=r*ri
         if(itype.eq.1) then
            call cricbessel(nmax+lmax,z,xi)
         else
            call crichankel(nmax+lmax,z,xi)
         endif
         xi=xi/z
         do n=1,nmax
            do l=1,lmax
               wmin=abs(n-l)
               wmax=n+l
               do m=0,min(n,l)
                  iadd=atcadd(m,l,lmax)
                  ml=l*(l+1)/2+m
                  ac(n,iadd,1)=sum(vcc_const(n,ml,wmin:wmax:2)*xi(wmin:wmax:2))
                  ac(n,iadd,2)=ci*sum(vcc_const(n,ml,wmin+1:wmax-1:2)*xi(wmin+1:wmax-1:2))
               enddo
            enddo
         enddo
         end subroutine axialtrancoef
!
!  axial translation coefficients calculated by the diamond recurrence formula
!  new: 10 october 2011
!
         subroutine axialtrancoefrecurrence(itype,r,ri,nmax,lmax,ac)
         use numconstants
         implicit none
         integer :: itype,nmax,lmax,n,l,m,p,q,w,n21,ll1,nlmin,lblk, &
                    wmin,wmax,ml,m1,np1,nm1,iaddp1,iaddm1,lm1,lp1
         integer :: iadd,nlmax,iadd0,iadd1
         integer, save :: nlmax0
         real(8) :: r,fnp1,fn,fnm1,flp1,fl,flm1
         complex(8) :: ri,ci,z,xi(0:nmax+lmax)
         complex(8) :: ac(nmax,lmax*(lmax+3)/2,2)
         data ci,nlmax0/(0.d0,1.d0),0/
         nlmax=max(nmax,lmax)
         nlmin=min(nmax,lmax)
         if(nlmax.gt.nlmax0) then
            nlmax0=nlmax
            call axialtrancoefinit(nlmax)
         endif

         if(r.eq.0.d0) then
            ac=(0.d0,0.d0)
            if(itype.ne.1) return
            do m=0,nlmin
               m1=max(1,m)
               do n=m1,nlmin
                  iadd=atcadd(m,n,lmax)
                  ac(n,iadd,l)=1.
               enddo
            enddo
            return
         endif
         z=r*ri
         if(itype.eq.1) then
            call cricbessel(nmax+lmax,z,xi)
         else
            call crichankel(nmax+lmax,z,xi)
         endif
         xi=xi/z

         lm1=lmax-1
         do m=0,nlmin
            m1=max(1,abs(m))
            lp1=m1+1
            iadd0=atcadd(m,m1,lmax)
            iadd1=atcadd(m,lmax,lmax)
            iaddp1=iadd0+1
            iaddm1=iadd1-1

            iadd=iadd0-1
            n=m1
            do l=m1,lmax
               wmin=abs(n-l)
               wmax=n+l
               iadd=iadd+1
               ml=l*(l+1)/2+m
               ac(n,iadd,1)=sum(vcc_const(n,ml,wmin:wmax:2)*xi(wmin:wmax:2))
               ac(n,iadd,2)=ci*sum(vcc_const(n,ml,wmin+1:wmax-1:2)*xi(wmin+1:wmax-1:2))
            enddo
            l=lmax
            iadd=iadd1
            ml=l*(l+1)/2+m
            do n=m1+1,nmax
               wmin=abs(n-l)
               wmax=n+l
               ac(n,iadd,1)=sum(vcc_const(n,ml,wmin:wmax:2)*xi(wmin:wmax:2))
               ac(n,iadd,2)=ci*sum(vcc_const(n,ml,wmin+1:wmax-1:2)*xi(wmin+1:wmax-1:2))
            enddo
            if(m1.eq.nlmin) cycle

            do n=m1,nmax-1
               np1=n+1
               nm1=n-1
               do p=1,2
                  q=3-p
                  ac(np1,iadd0:iaddm1,p)= &
                    - ac(n,iaddp1:iadd1,p)*fnp1_const(m,m1:lm1) &
                    + (fn_const(m,m1:lm1)-fn_const(m,n))*ci*ac(n,iadd0:iaddm1,q)
                  ac(np1,iaddp1:iaddm1,p)=ac(np1,iaddp1:iaddm1,p) &
                    + ac(n,iadd0:iadd1-2,p)*fnm1_const(m,lp1:lm1)
                  if(n.gt.m1) then
                     ac(np1,iadd0:iaddm1,p)=ac(np1,iadd0:iaddm1,p) &
                       + ac(nm1,iadd0:iaddm1,p)*fnm1_const(m,n)
                  endif
                  ac(np1,iadd0:iaddm1,p)=ac(np1,iadd0:iaddm1,p)/fnp1_const(m,n)
               enddo
            enddo
         enddo
         end subroutine axialtrancoefrecurrence
!
!  constants for translation coefficient calculation
!
         subroutine axialtrancoefinit(nmax)
         use numconstants
         implicit none
         integer :: nmax,m,n,l,w,n21,ml,ll1,wmin,wmax,nlmin,lp1,lm1
         real(8) :: c1,c2,vc1(0:2*nmax),vc2(0:2*nmax),alnw
         complex(8) :: ci,inlw
         data ci/(0.d0,1.d0)/
         if(allocated(vcc_const)) deallocate(vcc_const,fnm1_const,fn_const,fnp1_const)
         allocate(vcc_const(nmax,nmax*(nmax+1)/2+nmax,0:2*nmax),fnm1_const(0:nmax,nmax), &
                  fn_const(0:nmax,nmax),fnp1_const(0:nmax,nmax))
         do n=1,nmax
            n21=n+n+1
            do l=1,nmax
               c1=fnr(n21)*fnr(l+l+1)
               ll1=l*(l+1)/2
               call vcfunc(-1,n,1,l,vc2)
               wmin=abs(n-l)
               wmax=n+l
               nlmin=min(l,n)
               do m=0,nlmin
                  ml=ll1+m
                  c2=-c1*(-1)**m
                  call vcfunc(-m,n,m,l,vc1)
                  do w=wmin,wmax
                     inlw=ci**(n-l+w)
                     vcc_const(n,ml,w)=c2*vc1(w)*vc2(w)*(dble(inlw)+dimag(inlw))
                  enddo
               enddo
            enddo
         enddo
         fnm1_const=0.
         fn_const=0.
         fnp1_const=0.
         do m=0,nmax
            do l=max(1,m),nmax
               lp1=l+1
               lm1=l-1
               fnm1_const(m,l)=fnr(lm1)*fnr(lp1)*fnr(l-m)*fnr(l+m)/fnr(lm1+l)/fnr(l+lp1)/dble(l)
               fn_const(m,l)=dble(m)/dble(l)/dble(lp1)
               fnp1_const(m,l)=fnr(l)*fnr(l+2)*fnr(lp1-m)*fnr(lp1+m)/fnr(l+lp1)/fnr(l+l+3)/dble(lp1)
            enddo
         enddo
         end subroutine axialtrancoefinit
!
!  test to determine convergence of regular vswf addition theorem for max. order lmax
!  and translation distance r w/ refractive index ri.
!
!
!  last revised: 15 January 2011
!
         subroutine tranordertest(r,ri,lmax,eps,nmax)
         use numconstants
         implicit none
         integer :: itype,nmax,lmax,n,l,m,p,w,n21,ll1,nlmin,lblk,wmin,wmax
         integer, parameter :: nlim=200
         integer :: iadd
         real(8) :: r,alnw,sum,eps
         real(8) :: vc1(0:nlim+lmax)
         complex(8) :: ri,ci,z,a,b,c
         complex(8) :: xi(0:nlim+lmax)
         data ci/(0.d0,1.d0)/
         if(r.eq.0.d0) then
            nmax=lmax
            return
         endif
         z=r*ri
         sum=0.d0
         do n=1,nlim
            call init(n+lmax)
            call cricbessel(n+lmax,z,xi)
            do l=0,n+lmax
               xi(l)=xi(l)/z*ci**l
            enddo
            n21=n+n+1
            l=lmax
            c=fnr(n21)*fnr(l+l+1)*ci**(n-l)
            call vcfunc(-1,n,1,l,vc1)
            wmin=abs(n-l)
            wmax=n+l
            m=1
            a=0.
            b=0.
            do w=wmin,wmax
               alnw=vc1(w)*vc1(w)
               if(mod(n+l+w,2).eq.0) then
                  a=a+alnw*xi(w)
               else
                  b=b+alnw*xi(w)
               endif
            enddo
            a=c*a
            b=c*b
            sum=sum+a*conjg(a)+b*conjg(b)
            if(abs(1.d0-sum).lt.eps) exit
         enddo
         nmax=min(n,nlim)
         nmax=max(nmax,lmax)
         end subroutine tranordertest
!
!  address for axial translation coefficient
!
!
!  last revised: 15 January 2011
!
         integer function atcadd(m,n,ntot)
         implicit none
         integer :: m,n,ntot
         atcadd=n-ntot+(max(1,m)*(1+2*ntot-max(1,m)))/2+ntot*min(1,m)
         end function atcadd
!
!   gentrancoef: calculates the vwh translation coefficients for
!   a general translation from one origin to another
!
!   input: itype: integer, =1, regular, =3, outgoing type harmonics
!          xptran: real, dim 3 vector: x,y,z components of translation, in units
!                   of 1/k
!          ri: complex, refractive index of medium
!          nrow0,nrow1,ncol0,ncol1: integer, starting and stopping row and column order
!          iaddrow0,iaddcol0: address offset for row and column order (see below)
!   output: ac(p,mn,kl): complex translation matrix.  calculated for mode p=1,2 (A or B type),
!           order n=nrow0,nrow1, degree m=-n,n
!           order l=ncol0,ncol1, degree k=-n,n
!           address is given by
!           mn=m+n*(n+1)-(nrow0-1)*(nrow0+1)+iaddrow0
!           kl=k+l*(l+1)-(ncol0-1)*(ncol0+1)+iaddcol0
!           that is, if iaddrow0=0 the address is mn=1 for n=nrow0 and m=-n.
!
!
!  last revised: 15 January 2011
!
         subroutine gentrancoef(itype,xptran,ri,nrow0,nrow1,ncol0,ncol1, &
                               iaddrow0,iaddcol0,ac)
         use numconstants
         implicit none
         integer :: itype,nrow0,nrow1,ncol0,ncol1,iaddrow0,iaddcol0,kmax
         integer :: ntot,nblkr0,nblkr1,nblkc0,nblkc1
         integer :: v,vw,w,wmax,wmin,n,l,m,k,p,nn1,ll1,mn,kl,m1m
         real(8) :: vc1(0:nrow1+ncol1),vc2(0:nrow1+ncol1),&
                    xptran(3),r,ct,ct0
         real(8) :: drot(0:0,0:(nrow1+ncol1)*(nrow1+ncol1+2))
         complex(8) :: ri,ci,ephi,ac(2,nrow1*(nrow1+2)-(nrow0-1)*(nrow0+1)-iaddrow0,&
                       ncol1*(ncol1+2)-(ncol0-1)*(ncol0+1)-iaddcol0),&
                       z,c,a,b
         complex(8) :: ephim(-(nrow1+ncol1):nrow1+ncol1),jnc(0:nrow1+ncol1)
         data ci/(0.d0,1.d0)/
         call cartosphere(xptran,r,ct,ephi)
         ntot=nrow1+ncol1
         nblkr0=(nrow0-1)*(nrow0+1)
         nblkr1=nrow1*(nrow1+2)
         nblkc0=(ncol0-1)*(ncol0+1)
         nblkc1=ncol1*(ncol1+2)
         if(r.eq.0.d0) then
            do n=nblkr0+1,nblkr1
               mn=n-nblkr0+iaddrow0
               do l=nblkc0+1,nblkc1
                  kl=l-nblkc0+iaddcol0
                  do p=1,2
                     ac(p,mn,kl)=0.d0
                  enddo
               enddo
               if(n.gt.nblkc0.and.n.le.nblkc1.and.itype.eq.1) then
                  ac(1,mn,n-nblkc0+iaddcol0)=1.d0
               endif
            enddo
            return
         endif
         kmax=0
         ct0=ct
         call rotcoef(ct0,kmax,ntot,drot)
         call ephicoef(ephi,ntot,ephim)
         z=ri*r
         if(itype.eq.1) then
            call cricbessel(ntot,z,jnc)
         else
            call crichankel(ntot,z,jnc)
         endif
         do n=0,ntot
            c=ci**n
            jnc(n)=c*jnc(n)/z
         enddo
         do l=ncol0,ncol1
            ll1=l*(l+1)
            do n=nrow0,nrow1
               nn1=n*(n+1)
               wmax=n+l
               call vcfunc(-1,n,1,l,vc2)
               c=-ci**(n-l)*fnr(n+n+1)*fnr(l+l+1)
               do k=-l,l
                  kl=ll1+k-nblkc0+iaddcol0
                  do m=-n,n
                     m1m=(-1)**m
                     mn=nn1+m-nblkr0+iaddrow0
                     v=k-m
                     call vcfunc(-m,n,k,l,vc1)
                     a=0.
                     b=0.
                     wmin=max(abs(v),abs(n-l))
                     do w=wmax,wmin,-1
                        vw=w*(w+1)+v
                        if(mod(wmax-w,2).eq.0) then
                           a=a+vc1(w)*vc2(w)*jnc(w)*drot(0,vw)
                        else
                           b=b+vc1(w)*vc2(w)*jnc(w)*drot(0,vw)
                        endif
                     enddo
                     ac(1,mn,kl)=a*c*m1m*ephim(v)
                     ac(2,mn,kl)=b*c*m1m*ephim(v)
                  enddo
               enddo
            enddo
         enddo
         return
         end subroutine gentrancoef
!
! cartosphere takes the cartesian point (x,y,z) = xp(1), xp(2), xp(3)
! and converts to polar form: r: radius, ct: cos(theta), ep = exp(i phi)
!
!
!  last revised: 15 January 2011
!
         subroutine cartosphere(xp,r,ct,ep)
         implicit none
         real(8) :: xp(3),r,ct
         complex(8) :: ep
         r=xp(1)*xp(1)+xp(2)*xp(2)+xp(3)*xp(3)
         if(r.eq.0.d0) then
            ct=1.d0
            ep=(1.d0,0.d0)
            return
         endif
         r=sqrt(r)
         ct=xp(3)/r
         if(xp(1).eq.0.d0.and.xp(2).eq.0.d0) then
            ep=(1.d0,0.d0)
         else
            ep=dcmplx(xp(1),xp(2))/sqrt(xp(1)*xp(1)+xp(2)*xp(2))
         endif
         return
         end subroutine cartosphere
!
! ephicoef returns the complex array epm(m) = exp(i m phi) for
! m=-nodr,nodr.   ep =exp(i phi), and epm is dimensioned epm(-nd:nd)
!
!
!  last revised: 15 January 2011
!
         subroutine ephicoef(ep,nodr,epm)
         implicit none
         integer :: nodr,m
         complex(8) :: ep,epm(-nodr:nodr)
         epm(0)=(1.d0,0.d0)
         do m=1,nodr
            epm(m)=ep*epm(m-1)
            epm(-m)=dconjg(epm(m))
         enddo
         return
         end subroutine ephicoef
!
!  test to determine max order of vswf expansion of a plane wave at distance r
!
!
!  last revised: 15 January 2011
!
         subroutine planewavetruncationorder(r,eps,nodr)
         implicit none
         integer :: nodr,n1,n
         real(8) :: r,eps,err
         real(8), allocatable :: jn(:)
         complex(8) :: sum, ci,eir
         data ci/(0.d0,1.d0)/
         n1=max(10,int(3.*r+1))
         allocate(jn(0:n1))
         call ricbessel(n1,r,-1.d0,n1,jn)
         jn(0:n1)=jn(0:n1)/r
         eir=cdexp(-ci*r)
         sum=jn(0)*eir
         do n=1,n1
            sum=sum+ci**n*dble(n+n+1)*jn(n)*eir
            err=cdabs(1.d0-sum)
            if(err.lt.eps) then
               nodr=n
               deallocate(jn)
               return
            endif
         enddo
         nodr=n1
         deallocate(jn)
         end subroutine planewavetruncationorder
!
!  calculates the cartesian components of the vswf at position rpos, in ref. index ri.
!
!
!  original: 15 January 2011
!  revised: 23 February 2011: multiplied by root 2
!
         subroutine vwhcalc(rpos,ri,nodr,itype,vwh)
         use numconstants
         implicit none
         integer :: nodr,itype,m,n,p,nodrp1,nodrm1,nn1,mn,np1,nm1,mp1,mm1,ndim, &
                    nblkp
         integer, save :: nodrmax
         real(8) ::  rpos(3),r,ct,fnorm1,fnorm2
         real(8) pmn(0:0,0:(nodr+1)*(nodr+3))
         complex(8) :: ci,vwh(3,2,1:*),ri,ephi,a,b,a1,b1,z1,a2,b2,z2
         complex(8)  :: a1vec(-nodr:nodr), &
                       b1vec(-nodr:nodr),z1vec(-nodr:nodr),a2vec(-nodr:nodr), &
                       b2vec(-nodr:nodr),z2vec(-nodr:nodr)
         complex(8) :: umn(-nodr-2:nodr+2,0:nodr+1), hn(0:nodr+1), ephim(-nodr-1:nodr+1)
         data ci,nodrmax/(0.d0,1.d0),0/
         if(nodr.gt.nodrmax) then
            nodrmax=nodr
            call init(nodr+2)
         endif
         call cartosphere(rpos,r,ct,ephi)
         if(r.le.1.d-4) then
            vwh(:,:,1:nodr*(nodr+1))=(0.d0,0.d0)
            if(itype.eq.3) return
            vwh(1,1,1)=.5d0*fnr(2)/fnr(3)
            vwh(2,1,1)=-.5d0*ci*fnr(2)/fnr(3)
            vwh(3,1,2)=1.d0*fnr(2)/fnr(6)
            vwh(1,1,3)=-.5d0*fnr(2)/fnr(3)
            vwh(2,1,3)=-.5d0*ci*fnr(2)/fnr(3)
            return
         endif
         nodrp1=nodr+1
         nodrm1=nodr-1
         a=ri*r
         if(itype.eq.1) then
            call cricbessel(nodrp1,a,hn)
         else
            call crichankel(nodrp1,a,hn)
         endif
         hn(0:nodrp1)=hn(0:nodrp1)/a
         call rotcoef(ct,0,nodrp1,pmn)
         call ephicoef(ephi,nodrp1,ephim)
         umn=0.d0
         umn(0,0)=hn(0)*fnr(2)
         do n=1,nodrp1
            nn1=n*(n+1)
            umn(-n:n,n)=fnr(2)*pmn(0,nn1-n:nn1+n)*ephim(-n:n)*hn(n)
            umn(-n-1,n)=0.d0
            umn(n+1,n)=0.d0
         enddo
         do n=1,nodr
            nn1=n*(n+1)
            np1=n+1
            nm1=n-1
            a1vec(-n:n)=vwh_coef(-n:n,n,1,1)*umn(-nm1:np1,np1) &
               +vwh_coef(-n:n,n,1,-1)*umn(-nm1:np1,nm1)
            b1vec(-n:n)=vwh_coef(-n:n,n,-1,1)*umn(-np1:nm1,np1) &
               +vwh_coef(-n:n,n,-1,-1)*umn(-np1:nm1,nm1)
            z1vec(-n:n)=vwh_coef(-n:n,n,0,1)*umn(-n:n,np1) &
               +vwh_coef(-n:n,n,0,-1)*umn(-n:n,nm1)
            a2vec(-n:n)=vwh_coef(-n:n,n,1,0)*umn(-nm1:np1,n)
            b2vec(-n:n)=vwh_coef(-n:n,n,-1,0)*umn(-np1:nm1,n)
            z2vec(-n:n)=vwh_coef(-n:n,n,0,0)*umn(-n:n,n)
            vwh(1,1,nn1-n:nn1+n)=-0.5d0*(a1vec(-n:n)+b1vec(-n:n))
            vwh(2,1,nn1-n:nn1+n)=-0.5d0*ci*(-a1vec(-n:n)+b1vec(-n:n))
            vwh(3,1,nn1-n:nn1+n)=-z1vec(-n:n)
            vwh(1,2,nn1-n:nn1+n)=-0.5d0*ci*(a2vec(-n:n)+b2vec(-n:n))
            vwh(2,2,nn1-n:nn1+n)=-0.5d0*(a2vec(-n:n)-b2vec(-n:n))
            vwh(3,2,nn1-n:nn1+n)=-ci*z2vec(-n:n)
         enddo
         end subroutine vwhcalc
!
!  svwf calculation for an axial translation
!
!
!  original: 15 January 2011
!  revised: 23 February 2011: multiplied by root 2
!
         subroutine vwhaxialcalc(rpos,ri,nodr,itype,vwh)
         use numconstants
         implicit none
         integer :: nodr,itype,m,n,p,nodrp1,nodrm1,nn1,mn,np1,nm1,mp1,mm1,ndim, &
                    nblkp
         integer, save :: nodrmax
         real(8) ::  rpos(3),r,ct
         real(8) pmn(-2:2,0:nodr+1)
         complex(8) :: ci,vwh(3,2,2,1:nodr),ri,ephi,a,b,a1,b1,z1,a2,b2,z2
         complex(8) :: umn(-2:2,0:nodr+1), hn(0:nodr+1), ephim(-2:2)
         data ci,nodrmax/(0.d0,1.d0),0/
         if(nodr.gt.nodrmax) then
            nodrmax=nodr
            call init(nodr+2)
         endif
         call cartosphere(rpos,r,ct,ephi)
         if(r.le.1.d-4) then
            vwh(:,:,:,1:nodr)=(0.d0,0.d0)
            if(itype.eq.3) return
            vwh(1,1,1,1)=.5d0*fnr(2)/fnr(3)
            vwh(2,1,1,1)=-.5d0*ci*fnr(2)/fnr(3)
            vwh(1,1,2,1)=-.5d0*fnr(2)/fnr(3)
            vwh(2,1,2,1)=-.5d0*ci*fnr(2)/fnr(3)
            return
         endif
         nodrp1=nodr+1
         nodrm1=nodr-1
         a=ri*r
         if(itype.eq.1) then
            call cricbessel(nodrp1,a,hn)
         else
            call crichankel(nodrp1,a,hn)
         endif
         hn(0:nodrp1)=hn(0:nodrp1)/a
         call normalizedlegendre(ct,2,nodrp1,pmn)
         call ephicoef(ephi,2,ephim)
         umn(-2:2,0:nodrp1)=0.d0
         umn(0,0)=hn(0)*fnr(2)
         do n=1,nodrp1
            p=min(n,2)
            do m=-p,p
               umn(m,n)=fnr(2)*pmn(m,n)*ephim(m)*hn(n)
            enddo
         enddo
         vwh(:,:,:,1:nodr)=0.d0
         do n=1,nodr
            np1=n+1
            nm1=n-1
            m=-1
            mp1=m+1
            mm1=m-1
            a1=vwh_coef(m,n,1,1)*umn(mp1,np1) &
               +vwh_coef(m,n,1,-1)*umn(mp1,nm1)
            b1=vwh_coef(m,n,-1,1)*umn(mm1,np1) &
               +vwh_coef(m,n,-1,-1)*umn(mm1,nm1)
            z1=vwh_coef(m,n,0,1)*umn(m,np1) &
               +vwh_coef(m,n,0,-1)*umn(m,nm1)
            a2=vwh_coef(m,n,1,0)*umn(mp1,n)
            b2=vwh_coef(m,n,-1,0)*umn(mm1,n)
            z2=vwh_coef(m,n,0,0)*umn(m,n)
            vwh(1,1,1,n)=-0.5d0*(a1+b1)
            vwh(2,1,1,n)=-0.5d0*ci*(-a1+b1)
            vwh(3,1,1,n)=-z1
            vwh(1,2,1,n)=-0.5d0*ci*(a2+b2)
            vwh(2,2,1,n)=-0.5d0*(a2-b2)
            vwh(3,2,1,n)=-ci*z2
            m=1
            mp1=m+1
            mm1=m-1
            a1=vwh_coef(m,n,1,1)*umn(mp1,np1) &
               +vwh_coef(m,n,1,-1)*umn(mp1,nm1)
            b1=vwh_coef(m,n,-1,1)*umn(mm1,np1) &
               +vwh_coef(m,n,-1,-1)*umn(mm1,nm1)
            z1=vwh_coef(m,n,0,1)*umn(m,np1) &
               +vwh_coef(m,n,0,-1)*umn(m,nm1)
            a2=vwh_coef(m,n,1,0)*umn(mp1,n)
            b2=vwh_coef(m,n,-1,0)*umn(mm1,n)
            z2=vwh_coef(m,n,0,0)*umn(m,n)
            vwh(1,1,2,n)=-0.5d0*(a1+b1)
            vwh(2,1,2,n)=-0.5d0*ci*(-a1+b1)
            vwh(3,1,2,n)=-z1
            vwh(1,2,2,n)=-0.5d0*ci*(a2+b2)
            vwh(2,2,2,n)=-0.5d0*(a2-b2)
            vwh(3,2,2,n)=-ci*z2
         enddo
         return
         end subroutine vwhaxialcalc

      end module specialfuncs
!
!  module mpidata
!
!
!  last revised: 15 January 2011
!
      module mpidata
      implicit none
      integer :: group_comm,root_group_comm,base_rank,group_rank,root_group_rank, &
                 base_group,number_groups,proc_per_group,number_proc
      integer, allocatable :: mpi_sphere_index(:), mpi_sphere_number(:)

      contains
!
! allocates the processors into groups
!
!  last revised: 15 January 2011: original
!  20 April 2011: fixedorran=0 now looks for 2 groups.
!  10 october 2011: option for not storing matrices.  If fixorran=0, 2 groups, else
!     nproc groups
!  november 2011: near and far field translation differentiation
!
         subroutine mpisetup(nsphere,nodr,rpos,fixorran,maxmbperproc,istore, &
                    nfdistance,fftranpresent,iunit)
         use mpidefs
         use intrinsics
         use specialfuncs
         implicit none
         integer :: nsphere,numprocs,ierr,i,iunit,nodr(nsphere),fixorran, &
                    nodrmax,nodrmin,temp_comm,newgroup,j,rank,maxmbperproc, &
                    istore,nfspheres,fftranpresent,ffspheres
         integer, allocatable :: grouplist1(:),grouplist2(:)
         real(8) :: memrow(nsphere),memtot,maxmemproc,memperproc
         real(8) :: fp,sum,rpos(3,*),nfdistance,rij(3),r,avenfspheres,rmax, &
                    nfdistancei,aveffspheres
         maxmemproc=maxmbperproc*1.d6
         call ms_mpi(mpi_command='size',mpi_size=numprocs)
         call ms_mpi(mpi_command='rank',mpi_rank=rank)
         call ms_mpi(mpi_command='group',mpi_group=base_group)
         base_rank=rank
         number_proc=numprocs
         memrow=0.d0
         memtot=0.d0
!
!  compute the memory storage requirements
!
         avenfspheres=0.
         aveffspheres=0.
         rmax=0.
         if(1.eq.1) then
            do i=1,nsphere
               nfspheres=0
               do j=1,nsphere
                  rij(:)=rpos(:,i)-rpos(:,j)
                  if(j.ne.i) then
                     if(nfdistance.lt.0.) then
                        nfdistancei=(.5*dble(nodr(i)+nodr(j)))**2.
                     else
                        nfdistancei=nfdistance
                     endif
                     r=sqrt(dot_product(rij,rij))
                     rmax=max(rmax,r)
                     if(r.le.nfdistancei) then
                        nfspheres=nfspheres+1
                        nodrmax=max(nodr(j),nodr(i))
                        nodrmin=min(nodr(j),nodr(i))
                        memrow(i)=memrow(i)+(2*nodrmin+1)*(1+nodrmax*(nodrmax+2))*8.d0
                        memrow(i)=memrow(i)+nodr(i)*nodr(j)*(nodr(j)+3)*16.d0
                        memrow(i)=memrow(i)+(2*nodrmax+1)*16.d0
                     endif
                     if(r.gt.nfdistancei.and.istore.eq.2) then
                        memrow(i)=memrow(i)+2*nodrmax*(nodrmax+2)*16.d0
                     endif
                  endif
               enddo
               ffspheres=nsphere-1-nfspheres
               avenfspheres=avenfspheres+nfspheres
               aveffspheres=aveffspheres+ffspheres
               memtot=memtot+memrow(i)
            enddo
            if(aveffspheres.eq.0) then
               fftranpresent=0
            else
               fftranpresent=1
            endif
            proc_per_group=ceiling(memtot/maxmemproc)
            proc_per_group=min(proc_per_group,numprocs)
            proc_per_group=max(proc_per_group,1)
            do
               if(mod(numprocs,proc_per_group).eq.0) exit
               if(proc_per_group.eq.numprocs) exit
               proc_per_group=proc_per_group+1
            enddo
         endif
         avenfspheres=avenfspheres/dble(nsphere)
         if(rank.eq.0) then
            write(iunit,'('' average near field translations per sphere:'', f10.1)') avenfspheres
            call flush(iunit)
         endif
!
! no-store option
!
         if(istore.eq.0) then
            if(fixorran.eq.0) then
               proc_per_group=max(floor(dble(numprocs)/2.),1)
            else
               proc_per_group=1
            endif
            memrow=1.d0
            memtot=dble(nsphere)
         else
!
! only one or two groups for fixed orientation
!
            if(fixorran.eq.0) proc_per_group=max(floor(dble(numprocs)/2.),proc_per_group)
         endif
         number_groups=numprocs/proc_per_group
         if(allocated(mpi_sphere_index)) deallocate(mpi_sphere_index)
         if(allocated(mpi_sphere_number)) deallocate(mpi_sphere_number)
         allocate(mpi_sphere_index(0:proc_per_group-1),mpi_sphere_number(0:proc_per_group-1), &
                  grouplist1(proc_per_group),grouplist2(number_groups))
         memperproc=memtot/dble(proc_per_group)
!
!  associate the spheres with the processors in a group
!
         mpi_sphere_index(0)=0
         do j=1,proc_per_group-1
            memtot=0.d0
            do i=1,nsphere
               memtot=memtot+memrow(i)
               if(memtot.gt.dble(j)*memperproc) then
                  mpi_sphere_index(j)=i-1
                  exit
               endif
            enddo
         enddo
         do i=0,proc_per_group-2
            mpi_sphere_number(i)=mpi_sphere_index(i+1)-mpi_sphere_index(i)
         enddo
         mpi_sphere_number(proc_per_group-1)=nsphere-mpi_sphere_index(proc_per_group-1)
!
!  assign the sphere-based groups
!
         do i=0,number_groups-1
            do j=0,proc_per_group-1
               grouplist1(j+1)=i*proc_per_group+j
            enddo
            call ms_mpi(mpi_command='incl',mpi_group=base_group,mpi_size=proc_per_group, &
                        mpi_new_group_list=grouplist1,mpi_new_group=newgroup)
            call ms_mpi(mpi_command='create',mpi_group=newgroup,mpi_new_comm=temp_comm)
            if(rank.ge.grouplist1(1).and.rank.le.grouplist1(proc_per_group)) then
               group_comm=temp_comm
            endif
            grouplist2(i+1)=i*proc_per_group
         enddo
!
!  make a group associated with the rank 0 members of the sphere groups
!
         call ms_mpi(mpi_command='incl',mpi_group=base_group,mpi_size=number_groups, &
                     mpi_new_group_list=grouplist2,mpi_new_group=newgroup)
         call ms_mpi(mpi_command='create',mpi_group=newgroup,mpi_new_comm=temp_comm)
         group_rank=mod(rank,proc_per_group)
         root_group_rank=floor(dble(rank)/dble(proc_per_group))
         if(group_rank.eq.0) root_group_comm=temp_comm
         if(rank.eq.0) then
            if(istore.ge.1) then
               write(iunit,'('' number of processors, number groups, mb mem/processor:'',2i5,f9.3)') &
                 numprocs,number_groups,memperproc*1.d-6
               if(memperproc.gt.maxmemproc) then
                  write(iunit,'('' warning: set maximum memory/processor is exceeded!!'')')
               endif
            else
               write(iunit,'('' number of processors, number groups:'',2i5)') &
                 numprocs,number_groups
            endif
            call flush(iunit)
         endif
         deallocate(grouplist1,grouplist2)
         end subroutine mpisetup

      end module mpidata

!
! module spheredata: used to 1) input sphere data, 2) dimension sphere data
! arrays, and 3) provide common access to the data in other subroutines.
!
!
!  last revised: 15 January 2011
!
!  30 March 2011: added optical activity
!
      module spheredata
      use specialfuncs
      use mpidata
      implicit none
      integer, private :: numberspheres,numberiterations,fixedorrandom,numbertheta, &
               calcnf,nfplane,calctmatrix,runprintunit,calcamn,maxmemperproc, &
               trackiterations,nfoutdata,normalizesm,storetranmat,niterstep, &
               fftranpresent
      real(8), private :: lengthscalefactor,realriscalefactor,imriscalefactor,epsmie, &
                 epstran,epssoln,phideg,thetamindeg,thetamaxdeg,alphadeg, &
                 betadeg,epstcon,nfplanepos,nfplanevert(2,2),deltax,gammadeg,epspw, &
                 cgaussbeam,gaussbeamfocus(3),realchiralfactor,imchiralfactor,nfdistance
      character(30), private :: positionfile,outputfile,nfoutputfile,tmatrixfile,printfile, &
                                amnfile
      real(8), private :: xspmax,xvsp
      real(8), private, allocatable :: rpos(:,:),xsp(:)
      complex(8), private, allocatable :: ri(:,:)
      data numberiterations,fixedorrandom,numbertheta/2000,0,181/
      data calcamn,trackiterations,niterstep/1,1,20/
      data lengthscalefactor,realriscalefactor,imriscalefactor,epsmie, &
                 epstran,epssoln,phideg,thetamindeg,thetamaxdeg,alphadeg, &
                 betadeg,epstcon/1.d0,1.d0,1.d0,1.d-4,1.d-6,1.d-10,0.d0,0.d0, &
                 180.d0,0.d0,0.d0,1.d-6/
      data realchiralfactor,imchiralfactor/0.d0,0.d0/
      data normalizesm,storetranmat,nfdistance/0,1,-1.d0/
      data maxmemperproc/1500/
      data cgaussbeam/0.d0/
      data gaussbeamfocus/0.d0,0.d0,0.d0/
      data calcnf,calctmatrix,nfoutdata/0,1,1/
      data runprintunit/6/
      data positionfile,outputfile,tmatrixfile,printfile/'at_bottom','test.dat','tmatrix-temp.dat',' '/
      data nfoutputfile/'nf-temp.dat'/
      data amnfile/'amn-temp.dat'/

      contains
!
!  Find the number of data points in input unit iunit, and reposition the unit to the
!  point after record containing parmid
!
!
!  last revised: 15 January 2011
!
         subroutine numberinrecord(iunit,parmid,numrec)
         implicit none
         integer :: numrec,iunit
         character*1 :: a
         character*35 :: parmid
         character*10 :: rec
         numrec=0
         do
            read(iunit,"(a)",advance="no",err=100,eor=100) a
            if(a.ne.' '.and.a.ne.',') then
!
! start of a number
!
               numrec=numrec+1
!
! look for the delimeter
!
               do
                  read(iunit,"(a)",advance="no",err=100,eor=100) a
                  if(a.eq.' '.or.a.eq.',') exit
               enddo
            endif
         enddo
100      if(parmid.eq.'rewind') then
            rewind(iunit)
         else
            backspace(iunit)
            backspace(iunit)
            backspace(iunit)
            do
               read(iunit,'(a10)') rec
               if(rec.eq.parmid(1:10)) exit
            enddo
         endif
         end subroutine numberinrecord
!
!  inputdata:  reads parameters from inputfile
!              reads sphere data from position file
!
!
!  original: 15 January 2011
!  revised: 21 February 2011: fix output file initialization.
!  30 March 2011: added optical activity
!
!
         subroutine inputdata(inputfile,printdata)
         integer :: imax,i,j,ierr,iunit,numrec,nsphere,printdata
         real(8) :: rmax,rtoi,rposmean(3),rireal,riimag,dtemp,betareal,betaimag, &
                    rij,xij(3),rijmax
         real(8), allocatable :: sdat(:)
         complex(8) :: ribulk,beta
         character*35 :: parmid
         character*30 :: inputfile
!
!  cycle through parameter input operations
!
         open(1,file=inputfile)
         do
            read(1,'(a)',end=10) parmid
            parmid=parmid(:index(parmid,' '))
            if(parmid.eq.'number_spheres') then
               read(1,*) numberspheres
               cycle
            endif
            if(parmid.eq.'sphere_position_file') then
               read(1,'(a)') positionfile
               positionfile=positionfile(:index(positionfile,' '))
               cycle
            endif
            if(parmid.eq.'output_file') then
               read(1,'(a)') outputfile
               outputfile=outputfile(:index(outputfile,' '))
               cycle
            endif
            if(parmid.eq.'run_print_file') then
               read(1,'(a)') printfile
               printfile=printfile(:index(printfile,' '))
               if(printdata.eq.1) then
                  if((printfile.eq.' '.or.printfile.eq.'console')) then
                     printfile=' '
                     runprintunit=6
                  else
                     runprintunit=4
                     open(runprintunit,file=printfile)
                  endif
               else
                  runprintunit=6
               endif
               cycle
            endif
            if(parmid.eq.'length_scale_factor') then
               read(1,*) lengthscalefactor
               cycle
            endif
            if(parmid.eq.'real_ref_index_scale_factor') then
               read(1,*) realriscalefactor
               cycle
            endif
            if(parmid.eq.'imag_ref_index_scale_factor') then
               read(1,*) imriscalefactor
               cycle
            endif
            if(parmid.eq.'real_chiral_factor') then
               read(1,*) realchiralfactor
               cycle
            endif
            if(parmid.eq.'imag_chiral_factor') then
               read(1,*) imchiralfactor
               cycle
            endif
            if(parmid.eq.'mie_epsilon') then
               read(1,*) epsmie
               cycle
            endif
            if(parmid.eq.'translation_epsilon') then
               read(1,*) epstran
               cycle
            endif
            if(parmid.eq.'solution_epsilon') then
               read(1,*) epssoln
               cycle
            endif
            if(parmid.eq.'max_number_iterations') then
               read(1,*) numberiterations
               cycle
            endif
            if(parmid.eq.'max_memory_per_processor') then
               read(1,*) maxmemperproc
               cycle
            endif
            if(parmid.eq.'store_translation_matrix') then
               read(1,*) storetranmat
               cycle
            endif
            if(parmid.eq.'near_field_distance') then
               read(1,*) nfdistance
               cycle
            endif
            if(parmid.eq.'iterations_per_correction') then
               read(1,*) niterstep
               cycle
            endif
            if(parmid.eq.'fixed_or_random_orientation') then
               read(1,*) fixedorrandom
               cycle
            endif
            if(parmid.eq.'scattering_plane_angle_deg') then
               read(1,*) phideg
               cycle
            endif
            if(parmid.eq.'min_scattering_angle_deg') then
               read(1,*) thetamindeg
               cycle
            endif
            if(parmid.eq.'max_scattering_angle_deg') then
               read(1,*) thetamaxdeg
               cycle
            endif
            if(parmid.eq.'number_scattering_angles') then
               read(1,*) numbertheta
               cycle
            endif
            if(parmid.eq.'normalize_scattering_matrix') then
               read(1,*) normalizesm
               cycle
            endif
            if(parmid.eq.'incident_azimuth_angle_deg') then
               read(1,*) alphadeg
               cycle
            endif
            if(parmid.eq.'incident_polar_angle_deg') then
               read(1,*) betadeg
               cycle
            endif
            if(parmid.eq.'calculate_scattering_coefficients') then
               read(1,*) calcamn
               cycle
            endif
            if(parmid.eq.'scattering_coefficient_file') then
               read(1,'(a)') amnfile
               if(amnfile.eq.' ') then
                  amnfile='amn-temp.dat'
               else
                  amnfile=amnfile(:index(amnfile,' '))
               endif
               cycle
            endif
            if(parmid.eq.'track_iterations') then
               read(1,*) trackiterations
               cycle
            endif
            if(parmid.eq.'calculate_near_field') then
               read(1,*) calcnf
               cycle
            endif
            if(parmid.eq.'near_field_plane_coord') then
               read(1,*) nfplane
               cycle
            endif
            if(parmid.eq.'near_field_plane_position') then
               read(1,*) nfplanepos
               cycle
            endif
            if(parmid.eq.'near_field_plane_vertices') then
               read(1,*) nfplanevert
               cycle
            endif
            if(parmid.eq.'spacial_step_size') then
               read(1,*) deltax
               cycle
            endif
            if(parmid.eq.'polarization_angle_deg') then
               read(1,*) gammadeg
               cycle
            endif
            if(parmid.eq.'near_field_output_file') then
               read(1,'(a)') nfoutputfile
               if(nfoutputfile.eq.' ') then
                  nfoutputfile='nf-temp.dat'
               else
                  nfoutputfile=nfoutputfile(:index(nfoutputfile,' '))
               endif
               cycle
            endif
            if(parmid.eq.'near_field_output_data') then
               read(1,*) nfoutdata
               cycle
            endif
            if(parmid.eq.'plane_wave_epsilon') then
               read(1,*) epspw
               cycle
            endif
            if(parmid.eq.'gaussian_beam_constant') then
               read(1,*) cgaussbeam
               cycle
            endif
            if(parmid.eq.'gaussian_beam_focal_point') then
               read(1,*) gaussbeamfocus
               cycle
            endif
            if(parmid.eq.'t_matrix_convergence_epsilon') then
               read(1,*) epstcon
               cycle
            endif
            if(parmid.eq.'calculate_t_matrix') then
               read(1,*) calctmatrix
               cycle
            endif
            if(parmid.eq.'t_matrix_file') then
               read(1,'(a)') tmatrixfile
               if(tmatrixfile.eq.' ') then
                  tmatrixfile='tmatrix-temp.dat'
               else
                  tmatrixfile=tmatrixfile(:index(tmatrixfile,' '))
               endif
               cycle
            endif
            if(parmid.eq.'sphere_sizes_and_positions') exit
            if(parmid.eq.'end_of_options') exit
            write(*,'('' warning: unknown parameter ID:'',a35)') parmid
         enddo
!
!  end of parameter input options.   Input of sphere data follows
!
10       write(runprintunit,'('' input file is '',a30)') inputfile
         if(positionfile.ne.'at_bottom'.and.positionfile.ne.' ') then
            close(1)
            open(1,file=positionfile)
            parmid='rewind'
         endif
!
!  find number of records in position file
!
         call numberinrecord(1,parmid,numrec)
         if(printdata.eq.1) write(runprintunit,'('' position data has '',i3,'' records'')') numrec
         nsphere=numberspheres
         iunit=1
         allocate(sdat(numrec))
         allocate(xsp(0:nsphere),rpos(3,0:nsphere),ri(2,0:nsphere),stat=ierr)
         xvsp=0.d0
         do i=1,nsphere
            read(iunit,*,end=20) sdat
            xsp(i)=sdat(1)*lengthscalefactor
            rpos(1:3,i)=sdat(2:4)*lengthscalefactor
            if(numrec.gt.4) then
               rireal=sdat(5)*realriscalefactor
               riimag=sdat(6)*imriscalefactor
            else
               rireal=realriscalefactor
               riimag=imriscalefactor
            endif
            if(numrec.gt.6) then
               betareal=sdat(7)*realchiralfactor
               betaimag=sdat(8)*imchiralfactor
            else
               betareal=realchiralfactor
               betaimag=imchiralfactor
            endif
            ribulk=dcmplx(rireal,riimag)
            beta=dcmplx(betareal,betaimag)
            if(beta.eq.(0.d0,0.d0)) then
               ri(1,i)=ribulk
               ri(2,i)=ribulk
            else
               ri(1,i)=ribulk/(1.d0-beta*ribulk)
               ri(2,i)=ribulk/(1.d0+beta*ribulk)
            endif
            xvsp=xvsp+xsp(i)**3.d0
         enddo
20       nsphere=min(nsphere,i-1)
         close(iunit)
         deallocate(sdat)
         if(nsphere.ne.numberspheres.and.printdata.eq.1) then
            write(runprintunit,'('' warning: insufficient position points in file.'')')
            write(runprintunit,'('' number of spheres truncated to:'',i5)') nsphere
         endif
!
! check for overlapping spheres, and find maximum translation
!
         rijmax=0.
         do i=1,nsphere
            do j=i+1,nsphere
               xij=rpos(:,i)-rpos(:,j)
               rij=sqrt(dot_product(xij,xij))
               rijmax=max(rijmax,rij)
               if(rij/(xsp(i)+xsp(j)).lt..999d0) then
                  write(runprintunit,'('' warning: spheres '',i4,'' and '',i4 '' overlap. '',&
                  & '' scaled distance:'' f8.4)') i,j,rij/(xsp(i)+xsp(j))
               endif
            enddo
         enddo
         if(rijmax.gt.nfdistance) then
            fftranpresent=1
         else
            fftranpresent=0
         endif
         numberspheres=nsphere
         xvsp=xvsp**(1.d0/3.d0)
         gaussbeamfocus=gaussbeamfocus*lengthscalefactor
         if(nsphere.eq.1) then
            rposmean=rpos(:,1)
            rpos(:,1)=0.d0
            xspmax=xsp(1)
         else
            rposmean=0.d0
            do i=1,nsphere
               rposmean=rposmean+rpos(:,i)
            enddo
            rposmean=rposmean/dble(nsphere)
            rmax=0.d0
!
!  the target origin is defined as the GB focal point.
!
            do i=1,nsphere
!               rpos(1:3,i)=rpos(1:3,i)-rposmean(1:3)
               rpos(1:3,i)=rpos(1:3,i)-gaussbeamfocus(1:3)
               rtoi=dot_product(rpos(:,i),rpos(:,i))
               if(rtoi.gt.rmax) then
                  rmax=rtoi
                  imax=i
               endif
            enddo
            xspmax=sqrt(rmax)+xsp(imax)
         endif
!
!  xsp(0) is the circumscribing sphere size parameter
!
         xsp(0)=xspmax
         ri(1,0)=(1.d0,0.d0)
         ri(2,0)=(1.d0,0.d0)
         rpos(:,0)=0.d0
!
!  write run data to run file and output file
!
         if(printdata.eq.1) then
            call writerundata(runprintunit)
            call flush(runprintunit)
            open(1,file=outputfile,status='replace',action='write')
            call writerundata(1)
            close(1)
         endif
         end subroutine inputdata
!
!  writes run data to output unit iunit
!
!
!  last revised: 15 January 2011
!  30 March 2011: added optical activity
!
         subroutine writerundata(iunit)
         implicit none
         integer :: iunit,i
         character*1 :: lf
         if(iunit.ne.1) then
            lf = ' '
         else
            lf = '/'
         endif
         write(iunit,'('' number of spheres, volume size parameter:'' '//lf//',i5,e13.5)') &
                       numberspheres,xvsp
         write(iunit,'('' position file:'' '//lf//',a)') positionfile
         write(iunit,'('' output file:'' '//lf//',a)') outputfile
         write(iunit,'('' length, ref. indx. scale factors:'' '//lf//',3f8.3)') lengthscalefactor, &
                      realriscalefactor,imriscalefactor
         write(iunit,'('' chiral factors:'' '//lf//',2e13.5)')  &
                      realchiralfactor,imchiralfactor
         write(iunit,'('' thetamin, thetamax, num. theta:'' '//lf//',2f9.1,i5)') &
                      thetamindeg,thetamaxdeg,numbertheta
         write(iunit,'('' epsmie, epssoln, max number iterations:'' '//lf//',2e12.4,i5)') epsmie, &
                      epssoln, numberiterations
         if(fftranpresent.eq.1) then
            write(iunit,'('' far field kr, iterations/correction:'' '//lf//',e12.4,i5)') &
                 nfdistance,niterstep
         else
            write(iunit,'('' all translations computed exactly'' '//lf//')')
         endif
         if(cgaussbeam.ne.0.d0) then
            write(iunit,'('' gaussian incident beam: 1/width:'' '//lf//',f9.4,)') cgaussbeam
            write(iunit,'('' beam focal point:'' '//lf//',3f9.3,)') gaussbeamfocus
         else
            write(iunit,'('' plane wave incidence'')')
         endif
         if(fixedorrandom.eq.0) then
            write(iunit,'('' fixed orientation calculations'')')
            write(iunit,'('' scattering plane, incident alpha, beta:'' '//lf//',3f9.2)') &
                     phideg,alphadeg,betadeg
            write(iunit,'('' common expansion epsilon:'' '//lf//',e12.4)') epstran
            if(calcamn.eq.0) then
               write(iunit,'('' scattering coefficients read from file '' '//lf//',a)') amnfile
            else
               write(iunit,'('' scattering coefficients calculated, stored in file '' '//lf//',a)') amnfile
            endif
            if(calcnf.eq.1) then
               write(iunit,'('' near field calculated, stored in file '' '//lf//',a)') nfoutputfile
               write(iunit,'('' near field data output option: '' '//lf//',i4)') nfoutdata
               write(iunit,'('' near field plane, position: '' '//lf//', i4,f9.3)') nfplane, nfplanepos
               write(iunit,'('' near field plane vertices: '' '//lf//',4f9.3)') nfplanevert
               write(iunit,'('' spacial step size:'' '//lf//',f9.4)') deltax
               write(iunit,'('' polarization angle, deg.:'' '//lf//',f9.2)') gammadeg
               write(iunit,'('' plane wave epsilon:'' '//lf//',e13.5)') epspw
            endif
         else
            write(iunit,'('' random orientation calculations'')')
            if(calctmatrix.eq.0) then
               write(iunit,'('' t matrix read from file '' '//lf//',a)') tmatrixfile
            elseif(calctmatrix.eq.1) then
               write(iunit,'('' t matrix calculated, stored in file '' '//lf//',a)') tmatrixfile
               write(iunit,'('' t matrix convergence epsilon:'' '//lf//',e12.4)') epstcon
            else
               write(iunit,'('' t matrix calculated from end of file '' '//lf//',a)') tmatrixfile
               write(iunit,'('' t matrix convergence epsilon:'' '//lf//',e12.4)') epstcon
            endif
         endif
         end subroutine writerundata
!
!  getspheredata: retrieves sphere data
!
!
!  last revised: 15 January 2011
!  30 March 2011: added optical activity
!
         subroutine getspheredata(number_spheres, sphere_size_parameters, sphere_positions, &
              sphere_refractive_indices, volume_size_parameter)
         implicit none
         integer, optional :: number_spheres
         real(8), optional :: sphere_size_parameters(numberspheres), &
                              sphere_positions(3,numberspheres), volume_size_parameter
         complex(8), optional :: sphere_refractive_indices(2,numberspheres)
         if (present(number_spheres)) number_spheres=numberspheres
         if (present(sphere_size_parameters)) sphere_size_parameters(1:numberspheres)=xsp(1:numberspheres)
         if (present(sphere_positions)) sphere_positions(:,1:numberspheres)=rpos(:,1:numberspheres)
         if (present(sphere_refractive_indices)) &
               sphere_refractive_indices(:,1:numberspheres)=ri(:,1:numberspheres)
         if (present(volume_size_parameter)) volume_size_parameter=xvsp
         end subroutine getspheredata

         subroutine getspheredataone(sphere,sphere_size_parameter, sphere_position, &
              sphere_refractive_index)
         implicit none
         integer :: sphere
         real(8), optional :: sphere_size_parameter,sphere_position(3)
         complex(8), optional :: sphere_refractive_index(2)
         if (present(sphere_size_parameter)) sphere_size_parameter=xsp(sphere)
         if (present(sphere_position)) sphere_position(:)=rpos(:,sphere)
         if (present(sphere_refractive_index)) &
               sphere_refractive_index(:)=ri(:,sphere)
         end subroutine getspheredataone
!
!  setspheredata: sets sphere data
!
         subroutine setspheredata(number_spheres, sphere_size_parameters, sphere_positions, &
              sphere_refractive_indices, volume_size_parameter)
         implicit none
         integer :: i
         integer, optional :: number_spheres
         real(8), optional :: sphere_size_parameters(*), &
                              sphere_positions(3,*), volume_size_parameter
         complex(8), optional :: sphere_refractive_indices(2,*)
         if (present(number_spheres)) then
            numberspheres=number_spheres
            if(allocated(xsp)) deallocate(xsp,rpos,ri)
            allocate(xsp(0:numberspheres),rpos(3,0:numberspheres),ri(2,0:numberspheres))
         endif
         if (present(sphere_size_parameters))    xsp(1:numberspheres)       =sphere_size_parameters(1:numberspheres)
         if (present(sphere_positions))          rpos(:,1:numberspheres)    =sphere_positions(:,1:numberspheres)
         if (present(sphere_refractive_indices)) ri(:,1:numberspheres)      =sphere_refractive_indices(:,1:numberspheres)
         if (present(volume_size_parameter))     xvsp                       =volume_size_parameter
         end subroutine setspheredata
!
!  getrunparameters: retrieves run parameters read from input file
!
!
!  last revised: 15 January 2011
!  30 March 2011: added optical activity
!
         subroutine getrunparameters(number_spheres,sphere_position_file,output_file, &
                       length_scale_factor,real_ref_index_scale_factor, &
                       imag_ref_index_scale_factor,mie_epsilon,translation_epsilon,solution_epsilon, &
                       max_number_iterations,fixed_or_random_orientation,scattering_plane_angle_deg, &
                       min_scattering_angle_deg,max_scattering_angle_deg,number_scattering_angles, &
                       incident_azimuth_angle_deg,incident_polar_angle_deg,calculate_near_field, &
                       near_field_plane_coord,near_field_plane_position,near_field_plane_vertices, &
                       spacial_step_size,polarization_angle_deg,near_field_output_file, &
                       plane_wave_epsilon,t_matrix_convergence_epsilon,gaussian_beam_constant, &
                       gaussian_beam_focal_point,calculate_t_matrix,t_matrix_file,run_print_file, &
                       run_print_unit,calculate_scattering_coefficients,scattering_coefficient_file, &
                       max_memory_per_processor,track_iterations,near_field_output_data, &
                       real_chiral_factor,imag_chiral_factor,normalize_scattering_matrix, &
                       store_translation_matrix,near_field_distance, &
                       iterations_per_correction)
         implicit none
         integer, optional :: number_spheres,max_number_iterations,fixed_or_random_orientation, &
                              number_scattering_angles,calculate_near_field,near_field_plane_coord, &
                              calculate_t_matrix,run_print_unit,calculate_scattering_coefficients, &
                              max_memory_per_processor,track_iterations,near_field_output_data, &
                              normalize_scattering_matrix,store_translation_matrix, &
                              iterations_per_correction
         real(8), optional :: length_scale_factor,real_ref_index_scale_factor, &
                       imag_ref_index_scale_factor,mie_epsilon,translation_epsilon,solution_epsilon, &
                       scattering_plane_angle_deg, &
                       min_scattering_angle_deg,max_scattering_angle_deg, &
                       incident_azimuth_angle_deg,incident_polar_angle_deg,t_matrix_convergence_epsilon, &
                       near_field_plane_position,near_field_plane_vertices(2,2),spacial_step_size, &
                       polarization_angle_deg,plane_wave_epsilon,gaussian_beam_constant, &
                       gaussian_beam_focal_point(3),real_chiral_factor,imag_chiral_factor, &
                       near_field_distance
         character*30, optional :: sphere_position_file,output_file,near_field_output_file, &
                                   t_matrix_file,run_print_file,scattering_coefficient_file
         if(present(number_spheres))                    number_spheres                    =numberspheres
         if(present(sphere_position_file))              sphere_position_file              =positionfile
         if(present(output_file))                       output_file                       =outputfile
         if(present(length_scale_factor))               length_scale_factor               =lengthscalefactor
         if(present(real_ref_index_scale_factor))       real_ref_index_scale_factor       =realriscalefactor
         if(present(imag_ref_index_scale_factor))       imag_ref_index_scale_factor       =imriscalefactor
         if(present(mie_epsilon))                       mie_epsilon                       =epsmie
         if(present(translation_epsilon))               translation_epsilon               =epstran
         if(present(solution_epsilon))                  solution_epsilon                  =epssoln
         if(present(max_number_iterations))             max_number_iterations             =numberiterations
         if(present(track_iterations))                  track_iterations                  =trackiterations
         if(present(max_memory_per_processor))          max_memory_per_processor          =maxmemperproc
         if(present(fixed_or_random_orientation))       fixed_or_random_orientation       =fixedorrandom
         if(present(scattering_plane_angle_deg))        scattering_plane_angle_deg        =phideg
         if(present(min_scattering_angle_deg))          min_scattering_angle_deg          =thetamindeg
         if(present(max_scattering_angle_deg))          max_scattering_angle_deg          =thetamaxdeg
         if(present(number_scattering_angles))          number_scattering_angles          =numbertheta
         if(present(normalize_scattering_matrix))       normalize_scattering_matrix       =normalizesm
         if(present(incident_azimuth_angle_deg))        incident_azimuth_angle_deg        =alphadeg
         if(present(incident_polar_angle_deg))          incident_polar_angle_deg          =betadeg
         if(present(t_matrix_convergence_epsilon))      t_matrix_convergence_epsilon      =epstcon
         if(present(calculate_near_field))              calculate_near_field              =calcnf
         if(present(near_field_plane_coord))            near_field_plane_coord            =nfplane
         if(present(near_field_plane_position))         near_field_plane_position         =nfplanepos
         if(present(near_field_plane_vertices))         near_field_plane_vertices         =nfplanevert
         if(present(spacial_step_size))                 spacial_step_size                 =deltax
         if(present(polarization_angle_deg))            polarization_angle_deg            =gammadeg
         if(present(near_field_output_file))            near_field_output_file            =nfoutputfile
         if(present(near_field_output_data))            near_field_output_data            =nfoutdata
         if(present(plane_wave_epsilon))                plane_wave_epsilon                =epspw
         if(present(gaussian_beam_constant))            gaussian_beam_constant            =cgaussbeam
         if(present(gaussian_beam_focal_point))         gaussian_beam_focal_point         =gaussbeamfocus
         if(present(t_matrix_file))                     t_matrix_file                     =tmatrixfile
         if(present(calculate_t_matrix))                calculate_t_matrix                =calctmatrix
         if(present(run_print_file))                    run_print_file                    =printfile
         if(present(run_print_unit))                    run_print_unit                    =runprintunit
         if(present(calculate_scattering_coefficients)) calculate_scattering_coefficients =calcamn
         if(present(scattering_coefficient_file))       scattering_coefficient_file       =amnfile
         if(present(real_chiral_factor))                real_chiral_factor                =realchiralfactor
         if(present(imag_chiral_factor))                imag_chiral_factor                =imchiralfactor
         if(present(store_translation_matrix))          store_translation_matrix          =storetranmat
         if(present(near_field_distance))               near_field_distance               =nfdistance
         if(present(iterations_per_correction))         iterations_per_correction         =niterstep
         end subroutine getrunparameters
!
!  set run parameters: set run parameters
!
!
!  last revised: 15 January 2011
!  30 March 2011: added optical activity
!
         subroutine setrunparameters(number_spheres,sphere_position_file,output_file, &
                       length_scale_factor,real_ref_index_scale_factor, &
                       imag_ref_index_scale_factor,mie_epsilon,translation_epsilon,solution_epsilon, &
                       max_number_iterations,fixed_or_random_orientation,scattering_plane_angle_deg, &
                       min_scattering_angle_deg,max_scattering_angle_deg,number_scattering_angles, &
                       incident_azimuth_angle_deg,incident_polar_angle_deg,calculate_near_field, &
                       near_field_plane_coord,near_field_plane_position,near_field_plane_vertices, &
                       spacial_step_size,polarization_angle_deg,near_field_output_file, &
                       plane_wave_epsilon,t_matrix_convergence_epsilon,gaussian_beam_constant, &
                       gaussian_beam_focal_point,calculate_t_matrix,t_matrix_file,run_print_file, &
                       run_print_unit,calculate_scattering_coefficients,scattering_coefficient_file, &
                       max_memory_per_processor,track_iterations,near_field_output_data, &
                       real_chiral_factor,imag_chiral_factor,store_translation_matrix, &
                       near_field_distance,iterations_per_correction)
         implicit none
         integer, optional :: number_spheres,max_number_iterations,fixed_or_random_orientation, &
                              number_scattering_angles,calculate_near_field,near_field_plane_coord, &
                              calculate_t_matrix,run_print_unit,calculate_scattering_coefficients, &
                              max_memory_per_processor,track_iterations,near_field_output_data, &
                              store_translation_matrix,iterations_per_correction
         real(8), optional :: length_scale_factor,real_ref_index_scale_factor, &
                       imag_ref_index_scale_factor,mie_epsilon,translation_epsilon,solution_epsilon, &
                       scattering_plane_angle_deg,near_field_distance,&
                       min_scattering_angle_deg,max_scattering_angle_deg, &
                       incident_azimuth_angle_deg,incident_polar_angle_deg,t_matrix_convergence_epsilon, &
                       near_field_plane_position,near_field_plane_vertices(2,2),spacial_step_size, &
                       polarization_angle_deg,plane_wave_epsilon,gaussian_beam_constant, &
                       gaussian_beam_focal_point(3),real_chiral_factor,imag_chiral_factor
         character*30, optional :: sphere_position_file,output_file,near_field_output_file, &
                                   t_matrix_file,run_print_file,scattering_coefficient_file

         if(present(number_spheres))                     numberspheres        =number_spheres
         if(present(sphere_position_file))               positionfile         =sphere_position_file
         if(present(output_file))                        outputfile           =output_file
         if(present(length_scale_factor))                lengthscalefactor    =length_scale_factor
         if(present(real_ref_index_scale_factor))        realriscalefactor    =real_ref_index_scale_factor
         if(present(imag_ref_index_scale_factor))        imriscalefactor      =imag_ref_index_scale_factor
         if(present(mie_epsilon))                        epsmie               =mie_epsilon
         if(present(translation_epsilon))                epstran              =translation_epsilon
         if(present(solution_epsilon))                   epssoln              =solution_epsilon
         if(present(max_number_iterations))              numberiterations     =max_number_iterations
         if(present(track_iterations))                   trackiterations      =track_iterations
         if(present(max_memory_per_processor))           maxmemperproc        =max_memory_per_processor
         if(present(fixed_or_random_orientation))        fixedorrandom        =fixed_or_random_orientation
         if(present(scattering_plane_angle_deg))         phideg               =scattering_plane_angle_deg
         if(present(min_scattering_angle_deg))           thetamindeg          =min_scattering_angle_deg
         if(present(max_scattering_angle_deg))           thetamaxdeg          =max_scattering_angle_deg
         if(present(number_scattering_angles))           numbertheta          =number_scattering_angles
         if(present(incident_azimuth_angle_deg))         alphadeg             =incident_azimuth_angle_deg
         if(present(incident_polar_angle_deg))           betadeg              =incident_polar_angle_deg
         if(present(t_matrix_convergence_epsilon))       epstcon              =t_matrix_convergence_epsilon
         if(present(calculate_near_field))               calcnf               =calculate_near_field
         if(present(near_field_plane_coord))             nfplane              =near_field_plane_coord
         if(present(near_field_plane_position))          nfplanepos           =near_field_plane_position
         if(present(near_field_plane_vertices))          nfplanevert          =near_field_plane_vertices
         if(present(spacial_step_size))                  deltax               =spacial_step_size
         if(present(polarization_angle_deg))             gammadeg             =polarization_angle_deg
         if(present(near_field_output_file))             nfoutputfile         =near_field_output_file
         if(present(near_field_output_data))             nfoutdata            =near_field_output_data
         if(present(plane_wave_epsilon))                 epspw                =plane_wave_epsilon
         if(present(gaussian_beam_constant))             cgaussbeam           =gaussian_beam_constant
         if(present(gaussian_beam_focal_point))          gaussbeamfocus       =gaussian_beam_focal_point
         if(present(t_matrix_file))                      tmatrixfile          =t_matrix_file
         if(present(calculate_t_matrix))                 calctmatrix          =calculate_t_matrix
         if(present(run_print_file))                     printfile            =run_print_file
         if(present(run_print_unit))                     runprintunit         =run_print_unit
         if(present(calculate_scattering_coefficients))  calcamn              =calculate_scattering_coefficients
         if(present(scattering_coefficient_file))        amnfile              =scattering_coefficient_file
         if(present(real_chiral_factor))                 realchiralfactor     =real_chiral_factor
         if(present(imag_chiral_factor))                 imchiralfactor       =imag_chiral_factor
         if(present(store_translation_matrix))           storetranmat         =store_translation_matrix
         if(present(near_field_distance))                nfdistance           =near_field_distance
         if(present(iterations_per_correction))          niterstep            =iterations_per_correction
         end subroutine setrunparameters

      end module spheredata
!
! module miecoefdata: used to 1) calculate single sphere mie coefficient values,
! 2) store values in an allocated array, 3) provide common access to values, and
! 4) perform multiplication of coefficient values with vectors containing VWH scattering
! coefficients.
!
!
!  last revised: 15 January 2011
!  30 March 2011: added optical activity
!
      module miecoefdata
      implicit none
      integer, private :: numeqns,maxorder
      integer, allocatable, private :: nodr(:),nodroffset(:),nblk(:),nblkoffset(:)
      real(8), allocatable, private :: qextmie(:),qabsmie(:)
      complex(8), allocatable, private :: anmie(:,:,:),cnmie(:,:,:)
      interface getmiedata
            module procedure getmiedataall, getmiedataone
      end interface getmiedata

      contains
!
!  calculation of the max order of sphere expansions and storage of mie coefficients
!
!
!  last revised: 15 January 2011
!  30 March 2011: added optical activity
!
         subroutine miecoefcalc(nsphere,xsp,ri,qeps)
         implicit none
         integer :: n,nodrn,nsphere,nodrtot,ierr,nblktot
         real(8) :: qext,qabs,qsca,qeps,xsp(nsphere)
         complex(8) :: ri(2,nsphere)
         complex(8), allocatable :: anp(:,:,:),cnp(:,:,:)
         if(allocated(nodr)) deallocate(nodr,nodroffset,nblk, &
                      nblkoffset,qextmie,qabsmie)
         allocate(nodr(nsphere),nodroffset(nsphere+1), &
                  nblk(nsphere),nblkoffset(nsphere+1),  &
                  qextmie(nsphere),qabsmie(nsphere),stat=ierr)
         if(ierr.ne.0) then
            write(*,'('' bad allocation in nodr: stat:'',i4)') ierr
         endif
         nodrtot=0
         nblktot=0
         maxorder=0
!
!  calculate the order limits and efficiencies
!
         do n=1,nsphere
            call mieoa(xsp(n),ri(1,n),nodrn,qeps,qext,qsca)
            nodroffset(n)=nodrtot
            nblkoffset(n)=nblktot
            nodr(n)=nodrn
            maxorder=max(maxorder,nodrn)
            nblk(n)=nodrn*(nodrn+2)*2
            nodrtot=nodrtot+nodrn
            nblktot=nblktot+nblk(n)
            qextmie(n)=qext
            qabsmie(n)=qext-qsca
         enddo
         nodroffset(nsphere+1)=nodrtot
         nblkoffset(nsphere+1)=nblktot
         numeqns=nblktot
!
! calculate the mie coefficients, and store in memory
!
         if(allocated(anmie)) deallocate(anmie,cnmie)
         allocate(anmie(2,2,nodrtot),cnmie(2,2,nodrtot),stat=ierr)
         if(ierr.ne.0) then
            write(*,'('' bad allocation in anmie: stat:'',i4)') ierr
         endif
         do n=1,nsphere
            if(abs(ri(1,n)-ri(2,n)).eq.0) then
               allocate(anp(2,1,nodr(n)),cnp(2,1,nodr(n)))
               call mieregular(xsp(n),ri(1,n),nodrn,qeps,qext,qsca,anp_mie=anp,cnp_mie=cnp)
               anmie(1,1,nodroffset(n)+1:nodroffset(n+1))=anp(1,1,1:nodr(n))
               anmie(2,2,nodroffset(n)+1:nodroffset(n+1))=anp(2,1,1:nodr(n))
               anmie(1,2,nodroffset(n)+1:nodroffset(n+1))=0.d0
               anmie(2,1,nodroffset(n)+1:nodroffset(n+1))=0.d0
               cnmie(1,1,nodroffset(n)+1:nodroffset(n+1))=cnp(1,1,1:nodr(n))
               cnmie(2,2,nodroffset(n)+1:nodroffset(n+1))=cnp(2,1,1:nodr(n))
               cnmie(1,2,nodroffset(n)+1:nodroffset(n+1))=0.d0
               cnmie(2,1,nodroffset(n)+1:nodroffset(n+1))=0.d0
               deallocate(anp,cnp)
            else
               allocate(anp(2,2,nodr(n)),cnp(2,2,nodr(n)))
               call mieoa(xsp(n),ri(1,n),nodrn,qeps,qext,qsca,anp_mie=anp,cnp_mie=cnp)
               anmie(1:2,1:2,nodroffset(n)+1:nodroffset(n+1))=anp(1:2,1:2,1:nodr(n))
               cnmie(1:2,1:2,nodroffset(n)+1:nodroffset(n+1))=cnp(1:2,1:2,1:nodr(n))
               deallocate(anp,cnp)
            endif
         enddo
         end subroutine miecoefcalc
!
!  retrieve the array of mie data
!
!
!  last revised: 15 January 2011
!  30 March 2011: added optical activity
!
         subroutine getmiedataall(sphere_order, sphere_block, &
                     sphere_order_offset, sphere_block_offset, sphere_qext, &
                     sphere_qabs, sphere_mie_coefficients, sphere_int_mie_coefficients, &
                     number_equations, max_order)
         use spheredata
         implicit none
         integer, optional :: sphere_order(:), sphere_block(:), sphere_order_offset(:), &
                     sphere_block_offset(:),number_equations, max_order
         integer :: i,nsphere
         real(8), optional :: sphere_qext(:), sphere_qabs(:)
         complex(8), optional :: sphere_mie_coefficients(:,:,:,:), &
                       sphere_int_mie_coefficients(:,:,:,:)
         call getspheredata(number_spheres=nsphere)
         if(present(sphere_order)) sphere_order=nodr
         if(present(sphere_block)) sphere_block=nblk
         if(present(sphere_order_offset)) sphere_order_offset=nodroffset
         if(present(sphere_block_offset)) sphere_block_offset=nblkoffset
         if(present(sphere_qext)) sphere_qext=qextmie
         if(present(sphere_qabs)) sphere_qabs=qabsmie
         if(present(number_equations)) number_equations=numeqns
         if(present(max_order)) max_order=maxorder
         if(present(sphere_mie_coefficients)) then
            do i=1,nsphere
               sphere_mie_coefficients(1:2,1:2,1:nodr(i),i)  &
                =anmie(1:2,1:2,nodroffset(i)+1:nodroffset(i+1))
            enddo
         endif
         if(present(sphere_int_mie_coefficients)) then
            do i=1,nsphere
               sphere_int_mie_coefficients(1:2,1:2,1:nodr(i),i)  &
                =cnmie(1:2,1:2,nodroffset(i)+1:nodroffset(i+1))
            enddo
         endif
         end subroutine getmiedataall
!
!  retrieve mie data for a single sphere
!
!
!  last revised: 15 January 2011
!  30 March 2011: added optical activity
!
         subroutine getmiedataone(which_sphere, sphere_order, sphere_block, &
                     sphere_order_offset, sphere_block_offset, sphere_qext, &
                     sphere_qabs, sphere_mie_coefficients, sphere_int_mie_coefficients, &
                     number_equations, max_order)
         use spheredata
         implicit none
         integer, optional :: sphere_order, sphere_block, sphere_order_offset, &
                     sphere_block_offset, number_equations, max_order
         integer :: which_sphere
         integer :: i,nsphere
         real(8), optional :: sphere_qext, sphere_qabs
         complex(8), optional :: sphere_mie_coefficients(:,:,:), sphere_int_mie_coefficients(:,:,:)
         i=which_sphere
         if(present(sphere_order)) sphere_order=nodr(i)
         if(present(sphere_block)) sphere_block=nblk(i)
         if(present(sphere_order_offset)) sphere_order_offset=nodroffset(i)
         if(present(sphere_block_offset)) sphere_block_offset=nblkoffset(i)
         if(present(sphere_qext)) sphere_qext=qextmie(i)
         if(present(sphere_qabs)) sphere_qabs=qabsmie(i)
         if(present(number_equations)) number_equations=numeqns
         if(present(max_order)) max_order=maxorder
         if(present(sphere_mie_coefficients)) &
            sphere_mie_coefficients(1:2,1:2,1:nodr(i))  &
                =anmie(1:2,1:2,nodroffset(i)+1:nodroffset(i+1))
         if(present(sphere_int_mie_coefficients)) &
            sphere_int_mie_coefficients(1:2,1:2,1:nodr(i))  &
                =cnmie(1:2,1:2,nodroffset(i)+1:nodroffset(i+1))
         end subroutine getmiedataone
!
!  retrieve mie coefficients for sphere n
!  30 March 2011: added optical activity
!
         function miecoef(n)
         implicit none
         integer :: n
         complex(8), dimension(2,2,nodr(n)) :: miecoef
         miecoef=anmie(1:2,1:2,nodroffset(n)+1:nodroffset(n+1))
         end function miecoef

         function internalmiecoef(n)
         implicit none
         integer :: n
         complex(8), dimension(2,2,nodr(n)) :: internalmiecoef
         internalmiecoef=cnmie(1:2,1:2,nodroffset(n)+1:nodroffset(n+1))
         end function internalmiecoef
!
!  multiples the solution vector cx by mie coefficients and returns in y
!  i1: starting sphere, i2: ending sphere
!
!
!  last revised: 15 January 2011
!  30 March 2011: added optical activity
!
         subroutine miecoeffmult(i1,i2,neqns,cx,cy)
         implicit none
         integer :: i1,i2,neqns,i,n,p,nodrvec(3),nodri,nblki,noffi,icon,q
         complex(8) :: cx(neqns),cy(neqns)
         complex(8), allocatable :: cxt(:,:,:),an1(:,:,:),cxtt(:,:,:)

         do i=i1,i2
            nodri=nodr(i)
            nblki=nblk(i)
            noffi=nblkoffset(i)
            allocate(cxt(0:nodri+1,nodri,2),cxtt(0:nodri+1,nodri,2),an1(2,2,nodri))
            cxt=reshape(cx(noffi+1:noffi+nblki),(/nodri+2,nodri,2/))
            cxtt=0.d0
            an1=miecoef(i)
            do n=1,nodri
               do p=1,2
                  cxtt(n+1,n:1:-1,p)=an1(p,1,n)*cxt(n+1,n:1:-1,1)+an1(p,2,n)*cxt(n+1,n:1:-1,2)
                  cxtt(0:n,n,p)=an1(p,1,n)*cxt(0:n,n,1)+an1(p,2,n)*cxt(0:n,n,2)
               enddo
            enddo
            cy(noffi+1:noffi+nblki)=reshape(cxtt(0:nodri+1,1:nodri,1:2),(/nblki/))
            deallocate(cxt,cxtt,an1)
         enddo
         end subroutine miecoeffmult

         subroutine internalmiecoeffmult(i1,i2,neqns,cx,cy)
         implicit none
         integer :: i1,i2,neqns,i,n,p,nodrvec(3),nodri,nblki,noffi,icon,q
         complex(8) :: cx(neqns),cy(neqns)
         complex(8), allocatable :: cxt(:,:,:),an1(:,:,:),cxtt(:,:,:)

         do i=i1,i2
            nodri=nodr(i)
            nblki=nblk(i)
            noffi=nblkoffset(i)
            allocate(cxt(0:nodri+1,nodri,2),cxtt(0:nodri+1,nodri,2),an1(2,2,nodri))
            cxt=reshape(cx(noffi+1:noffi+nblki),(/nodri+2,nodri,2/))
            cxtt=0.d0
            an1=internalmiecoef(n)
            do n=1,nodri
               do p=1,2
                  cxtt(n+1,n:1:-1,p)=an1(p,1,n)*cxt(n+1,n:1:-1,1)+an1(p,2,n)*cxt(n+1,n:1:-1,2)
                  cxtt(0:n,n,p)=an1(p,1,n)*cxt(0:n,n,1)+an1(p,2,n)*cxt(0:n,n,2)
               enddo
            enddo
            cy(noffi+1:noffi+nblki)=reshape(cxtt(0:nodri+1,1:nodri,1:2),(/nblki/))
            deallocate(cxt,cxtt,an1)
         enddo
         end subroutine internalmiecoeffmult
!
! single-sphere lorenz/mie coefficients
!
!
!  last revised: 15 January 2011
!
         subroutine mieregular(x,ri,nstop,qeps,qext,qsca,anp_mie,cnp_mie)
         use specialfuncs
         implicit none
         integer :: nstop,n,iancalc
         real(8) :: x,qeps,qext,qsca,prn,prp,qext1,err
         complex(8), optional :: anp_mie(2,*), cnp_mie(2,*)
         complex(8) :: ri,y,pcp,xip,da,db,na,nb,an1,an2,cn1,cn2
         complex(8), allocatable :: pc(:),xi(:)
!
!  modified LM criterion
!
         if(qeps.gt.0.) nstop=nint(x+4.*x**(1./3.))+15
!
!  user-set order limit
!
         if(qeps.lt.0) nstop=-qeps
!
!  basic calculations follow
!
         allocate(pc(0:nstop),xi(0:nstop))
         y=x*ri
         call cricbessel(nstop,y,pc)
         call richankel(nstop,x,xi)
         qsca=0.0
         qext=0.0
         do n=1,nstop
            prn=dble(xi(n))
            pcp=pc(n-1)-n*pc(n)/y
            xip=xi(n-1)-n*xi(n)/x
            prp=dble(xip)
            da=ri*xip*pc(n)-xi(n)*pcp
            db=ri*xi(n)*pcp-xip*pc(n)
            na=ri*prp*pc(n)-prn*pcp
            nb=ri*prn*pcp-prp*pc(n)
            an1=-na/da
            an2=-nb/db
            cn1=-dcmplx(0.d0,1.d0)*ri/na
            cn2=dcmplx(0.d0,1.d0)*ri/nb
            if(present(anp_mie)) then
               anp_mie(1,n)=an1
               anp_mie(2,n)=an2
            endif
            if(present(cnp_mie)) then
               cnp_mie(1,n)=cn1
               cnp_mie(2,n)=cn2
            endif
            qsca=qsca+(n+n+1)*(cdabs(an1)*cdabs(an1) &
                     +cdabs(an2)*cdabs(an2))
            qext1=-(n+n+1)*dble(an1+an2)
            qext=qext+qext1
            err=abs(qext1)/abs(qext)
            if(err.lt.qeps.or.n.eq.nstop) exit
         enddo
         nstop=n
         qsca=2./x/x*qsca
         qext=2./x/x*qext
         deallocate(pc,xi)
         end subroutine mieregular
!
! optically active lorenz/mie coefficients
! 30 March 2011
!
         subroutine mieoa(x,ri,nstop,qeps,qext,qsca,anp_mie,cnp_mie)
         use specialfuncs
         implicit none
         integer :: nstop
         real(8) :: x,qeps,qext,qsca,fn1,err
         complex(8) :: ri(2)
         complex(8), optional :: anp_mie(2,2,*),cnp_mie(2,2,*)
         integer :: n,i,p,q
         real(8) :: psi,psip,qext1
         complex (8) :: xri(2),xip,psicp,psic,wn(2),vn(2),an(2),bn(2), &
                        den,xi,anct(2,2),cnct(2,2),ri0,ci
         complex(8), allocatable :: psicn(:,:),xin(:)
         data ci/(0.d0,1.d0)/

         ri0=2.d0/(1.d0/ri(1)+1.d0/ri(2))
         if(qeps.ge.0.) then
            nstop=nint(x+4.*x**(1./3.))+5.
         else
            nstop=-qeps
         endif
         allocate(psicn(0:nstop+1,2),xin(0:nstop+1))
         do i=1,2
            xri(i)=x*ri(i)
            call cricbessel(nstop+1,xri(i),psicn(0,i))
         enddo
         call richankel(nstop+1,x,xin)
         qsca=0.0
         qext=0.0
         do n=1,nstop
            do i=1,2
               psic=psicn(n,i)
               psicp=psicn(n-1,i)-dble(n)*psic/xri(i)
               xi=xin(n)
               xip=xin(n-1)-dble(n)*xi/x
               psi=dble(xi)
               psip=dble(xip)
               wn(i)=ri0*psic*xip-xi*psicp
               vn(i)=psic*xip-ri0*xi*psicp
               an(i)=ri0*psic*psip-psi*psicp
               bn(i)=psic*psip-ri0*psi*psicp
            enddo
            den=wn(1)*vn(2)+wn(2)*vn(1)
            anct(1,1)=-(vn(1)*an(2)+vn(2)*an(1))/den
            anct(2,2)=-(wn(1)*bn(2)+wn(2)*bn(1))/den
            anct(1,2)=(wn(1)*an(2)-wn(2)*an(1))/den
            anct(2,1)=anct(1,2)
            den=an(1)*bn(2)+an(2)*bn(1)
            cnct(1,1)=-ci*ri(1)*bn(2)/den
            cnct(1,2)=-ci*ri(1)*an(2)/den
            cnct(2,1)=ri(2)*ri0*bn(1)/den
            cnct(2,2)=-ri(2)*ri0*an(1)/den
            if(present(anp_mie)) then
               do p=1,2
                  do q=1,2
                     anp_mie(p,q,n)=anct(p,q)
                     cnp_mie(p,q,n)=cnct(p,q)
                  enddo
               enddo
            endif
            qext1=0.d0
            fn1=n+n+1
            do p=1,2
               do q=1,2
                  qsca=qsca+fn1*cdabs(anct(p,q))*cdabs(anct(p,q))
               enddo
               qext1=qext1-fn1*dble(anct(p,p))
            enddo
            qext=qext+qext1
            err=abs(qext1)/abs(qext)
            if(err.lt.qeps.or.n.eq.nstop) exit
         enddo
         nstop=min(n,nstop)
         qsca=2./x/x*qsca
         qext=2./x/x*qext
         return
         end subroutine mieoa

      end module miecoefdata
!
!  module translation contains subroutines for VSWF translation and rotation
!
!
!  last revised: 15 January 2011
!
      module translation
      implicit none
      integer, private :: stored_max_order,store_tran_mat
      integer, allocatable, private :: nsizerot(:,:),nsizetran(:,:),nsizeephi(:,:), &
                 noffrot(:,:),nofftran(:,:),noffephi(:,:)
      real(8), private :: near_field_distance
      real(8), allocatable, private :: sphere_position(:,:)
      real(8), target, allocatable, private :: rotmatstore(:)
      complex(8), target, allocatable, private :: tranmatstore(:), ephimatstore(:)
      complex(8), allocatable, private :: rvec_temp(:,:),tvec_temp(:,:),c_temp(:,:,:), &
                  ct_temp(:,:,:),rvec2_temp(:,:),tvec2_temp(:,:),c2_temp(:,:,:), &
                                ct2_temp(:,:,:)

      contains
!
!  rotation of expansion coefficients amn by euler angles alpha,beta,gamma
!  idir=1: forward rotation, idir=-1, reverse rotation.
!
!
!  last revised: 15 January 2011
!
         subroutine rotvec(alpha,beta,gamma,nmax,mmax,amn,idir)
         use numconstants
         use specialfuncs
         implicit none
         integer :: nmax,mmax,idir,k,n,m,in,kmax,kn,ka,na,p,im,m1
         real(8) :: dc(-nmax-1:nmax+1,-nmax-1:nmax+1),dk0(-nmax-1:nmax+1), &
                    dk01(-nmax-1:nmax+1),sbe,cbe,sbe2,cbe2,sben,dkt, &
                    fmn,dkm0,dkm1,alpha,beta,gamma
         complex(8) :: ealpha,amn(0:nmax+1,nmax,2),ealpham(-nmax:nmax), &
                       amnt(2,-nmax:nmax),a,b,ci,egamma,egammam(-nmax:nmax)
         data ci/(0.d0,1.d0)/
         call init(nmax)
         dc=0.d0
         dk01=0.d0
         dk0=0.d0
         ealpha=cdexp(ci*alpha)
         egamma=cdexp(ci*gamma)
         cbe=cos(beta)
         sbe=sqrt((1.d0+cbe)*(1.d0-cbe))
         cbe2=.5d0*(1.d0+cbe)
         sbe2=.5d0*(1.d0-cbe)
         call ephicoef(ealpha,nmax,ealpham)
         call ephicoef(egamma,nmax,egammam)
         in=1
         dk0(0)=1.d0
         sben=1.d0
         dk01(0)=0.d0
         do n=1,nmax
            kmax=min(n,mmax)
            do k=-kmax,kmax
               if(k.le.-1) then
                  ka=n+1
                  na=-k
               else
                  ka=k
                  na=n
               endif
               if(idir.eq.1) then
                  amnt(1,k)=amn(ka,na,1)*ealpham(k)
                  amnt(2,k)=amn(ka,na,2)*ealpham(k)
               else
                  amnt(1,-k)=amn(ka,na,1)*egammam(k)
                  amnt(2,-k)=amn(ka,na,2)*egammam(k)
               endif
            enddo
            in=-in
            sben=sben*sbe/2.d0
            dk0(n)=in*sben*bcof(n,n)
            dk0(-n)=in*dk0(n)
            dk01(n)=0.d0
            dk01(-n)=0.d0
            dc(0,n)=dk0(n)
            dc(0,-n)=dk0(-n)
            do k=-n+1,n-1
               dkt=dk01(k)
               dk01(k)=dk0(k)
               dk0(k)=(cbe*(n+n-1)*dk01(k)-fnr(n-k-1)*fnr(n+k-1)*dkt) &
                     /(fnr(n+k)*fnr(n-k))
               dc(0,k)=dk0(k)
            enddo
            im=1
            do m=1,kmax
               im=-im
               fmn=1./fnr(n-m+1)/fnr(n+m)
               m1=m-1
               dkm0=0.
               do k=-n,n
                  dkm1=dkm0
                  dkm0=dc(m1,k)
                  dc(m,k)=(fnr(n+k)*fnr(n-k+1)*cbe2*dkm1 &
                         -fnr(n-k)*fnr(n+k+1)*sbe2*dc(m1,k+1) &
                         -k*sbe*dc(m1,k))*fmn
                  dc(-m,-k)=dc(m,k)*(-1)**(k)*im
               enddo
            enddo
            do m=-n,n
               if(m.le.-1) then
                  ka=n+1
                  na=-m
               else
                  ka=m
                  na=n
               endif
               a=0.
               b=0.
               do k=-kmax,kmax
                  a=a+dc(-k,-m)*amnt(1,k)
                  b=b+dc(-k,-m)*amnt(2,k)
               enddo
               if(idir.eq.1) then
                  amn(ka,na,1)=a*egammam(m)
                  amn(ka,na,2)=b*egammam(m)
               else
                  amn(ka,na,1)=a*ealpham(m)
                  amn(ka,na,2)=b*ealpham(m)
               endif
            enddo
         enddo
         end subroutine rotvec
!
!  sets up the stored translation matrices for mpi
!
!
!  last revised: 15 January 2011
!  november 2011: added near and far field translation
!
         subroutine mpirottranmtrxsetup(nsphere,nodr,rpos,ri,istore,nfdistance,&
                    runprintunit)
         use mpidefs
         use mpidata
         use intrinsics
         use numconstants
         use specialfuncs
         implicit none
         integer :: nsphere,nodr(nsphere),i,j,nodrmax,nodrmin,n,ntotrot,ntottran,ntotephi, &
                    ierr,n1,n2,nt,rank,nsrank,runprintunit,isendok,tag,sendrank,numprocs,brank, &
                    nsend,istore
         real(8) :: rpos(3,nsphere),xij(3),r,ct,memused(1),memusedmax(1),memusedmin(1), &
                    nfdistance,nfdistancei
         real(8), allocatable :: rotmat(:,:)
         complex(8) :: ri,ephi
         complex(8), allocatable :: tranmat(:,:,:),ephimat(:),pivec(:,:,:)
         data isendok,tag/0,1/
         numprocs=proc_per_group
         rank=group_rank
         brank=base_rank
         nsrank=mpi_sphere_number(rank)
         nodrmax=maxval(nodr)
         call init(nodrmax)
         store_tran_mat=istore
         near_field_distance=nfdistance
         if(allocated(sphere_position)) deallocate(sphere_position)
         allocate(sphere_position(3,nsphere))
         sphere_position=rpos
         if(istore.eq.0) then
            return
         endif
         if(allocated(nsizerot)) deallocate(nsizerot,nsizetran,nsizeephi,noffrot,nofftran,noffephi)
         allocate(nsizerot(nsphere,nsphere),nsizetran(nsphere,nsphere),nsizeephi(nsphere,nsphere), &
                  noffrot(nsphere,nsphere),nofftran(nsphere,nsphere),noffephi(nsphere,nsphere))
         if(allocated(rvec_temp)) deallocate(rvec_temp,tvec_temp,c_temp,ct_temp, &
                     rvec2_temp,tvec2_temp,c2_temp,ct2_temp)
         allocate(rvec_temp(-nodrmax:nodrmax,2),tvec_temp(nodrmax,2), &
                  c_temp(-nodrmax:nodrmax,nodrmax,2),ct_temp(nodrmax,2,2), &
                       rvec2_temp(-nodrmax:nodrmax,2),tvec2_temp(nodrmax,2), &
                       c2_temp(-nodrmax:nodrmax,nodrmax,2),ct2_temp(nodrmax,2,2))
         stored_max_order=nodrmax
!
!  determine the memory requirements
!
         ntotrot=0
         ntottran=0
         ntotephi=0
         do i=mpi_sphere_index(rank)+1,mpi_sphere_index(rank)+nsrank
            do j=1,nsphere
               xij(:)=rpos(:,i)-rpos(:,j)
               if(j.ne.i) then
                  if(nfdistance.lt.0.) then
                     nfdistancei=(.5*dble(nodr(i)+nodr(j)))**2.
                  else
                     nfdistancei=nfdistance
                  endif
                  r=sqrt(dot_product(xij,xij))
                  if(r.le.nfdistancei) then
                     nodrmax=max(nodr(j),nodr(i))
                     nodrmin=min(nodr(j),nodr(i))
                     noffrot(i,j)=ntotrot
                     nofftran(i,j)=ntottran
                     noffephi(i,j)=ntotephi
                     nsizerot(i,j)=(2*nodrmin+1)*(1+nodrmax*(nodrmax+2))
                     nsizetran(i,j)=nodr(i)*nodr(j)*(nodr(j)+3)
                     nsizeephi(i,j)=2*nodrmax+1
                     ntotrot=ntotrot+nsizerot(i,j)
                     ntottran=ntottran+nsizetran(i,j)
                     ntotephi=ntotephi+nsizeephi(i,j)
                  endif
                  if(r.gt.nfdistancei.and.istore.eq.2) then
                     nodrmax=max(nodr(j),nodr(i))
                     nofftran(i,j)=ntottran
                     nsizetran(i,j)=2*nodrmax*(nodrmax+2)
                     ntottran=ntottran+nsizetran(i,j)
                  endif
               endif
            enddo
         enddo
         memused(1)=dble(8*ntotrot+16*(ntottran+ntotephi))*1.d-6
         nsend=1
         call ms_mpi(mpi_command='reduce',mpi_send_buf_dp=memused,mpi_recv_buf_dp=memusedmax,&
                     mpi_number=1,mpi_rank=0,mpi_operation=ms_mpi_max)
         call ms_mpi(mpi_command='reduce',mpi_send_buf_dp=memused,mpi_recv_buf_dp=memusedmin,&
                     mpi_number=1,mpi_rank=0,mpi_operation=ms_mpi_min)
         call ms_mpi(mpi_command='barrier')
         if(brank.eq.0) then
            write(runprintunit,'('' maximum translation matrix storage:'',f9.4,'' MB'')') memusedmax
            write(runprintunit,'('' minimum translation matrix storage:'',f9.4,'' MB'')') memusedmin
            call flush(runprintunit)
         endif
!
!  calculate the matrices and store in memory
!
         if(allocated(rotmatstore)) deallocate(rotmatstore,tranmatstore,ephimatstore)
         allocate(rotmatstore(ntotrot),stat=ierr)
         allocate(tranmatstore(ntottran),stat=ierr)
         allocate(ephimatstore(ntotephi),stat=ierr)
         do i=mpi_sphere_index(rank)+1,mpi_sphere_index(rank)+nsrank
            do j=1,nsphere
               if(j.ne.i) then
                  nodrmax=max(nodr(j),nodr(i))
                  nodrmin=min(nodr(j),nodr(i))
                  xij=rpos(:,i)-rpos(:,j)
                  call cartosphere(xij,r,ct,ephi)
                  if(nfdistance.lt.0.) then
                     nfdistancei=(.5*dble(nodr(i)+nodr(j)))**2.
                  else
                     nfdistancei=nfdistance
                  endif
                  if(r.le.nfdistancei) then
!
!  rotation matrix
!
                     n1=noffrot(i,j)+1
                     nt=nsizerot(i,j)
                     n2=n1+nt-1
                     allocate(rotmat(-nodrmin:nodrmin,0:nodrmax*(nodrmax+2)))
                     call rotcoef(ct,nodrmin,nodrmax,rotmat)
                     rotmatstore(n1:n2)=reshape(rotmat,(/nt/))
                     deallocate(rotmat)
!
!  axial translation matrix
!
                     n1=nofftran(i,j)+1
                     nt=nsizetran(i,j)
                     n2=n1+nt-1
                     allocate(tranmat(nodr(i),nodr(j)*(nodr(j)+3)/2,2))
                     call axialtrancoef(3,r,ri,nodr(i),nodr(j),tranmat)
                     tranmatstore(n1:n2)=reshape(tranmat,(/nt/))
                     deallocate(tranmat)
!
!  ephi matrix
!
                     n1=noffephi(i,j)+1
                     nt=nsizeephi(i,j)
                     n2=n1+nt-1
                     allocate(ephimat(-nodrmax:nodrmax))
                     call ephicoef(ephi,nodrmax,ephimat)
                     ephimatstore(n1:n2)=ephimat(-nodrmax:nodrmax)
                     deallocate(ephimat)
!
!  ff translation matrix storage
!
                  elseif(istore.eq.2) then
                     n1=nofftran(i,j)+1
                     nt=nsizetran(i,j)
                     n2=n1+nt-1
                     nodrmax=max(nodr(j),nodr(i))
                     allocate(pivec(0:nodrmax+1,nodrmax,2))
                     call pifunc(ct,ephi,nodrmax,nodrmax,pivec)
                     tranmatstore(n1:n2)=reshape(pivec,(/nt/))
                     deallocate(pivec)
                  endif
               endif
            enddo
         enddo
         end subroutine mpirottranmtrxsetup
!
!  clear the stored translation matrices
!
!
!  last revised: 15 January 2011
!
         subroutine rottranmtrxclear()
         implicit none
         if(allocated(rotmatstore)) deallocate(rotmatstore,tranmatstore,ephimatstore)
         if(allocated(sphere_position)) deallocate(sphere_position)
         end subroutine rottranmtrxclear
!
!  translation coefficient vector cx by xij in medium with ri by rotation-translation
!  itype: 1 or 3
!  icalc: =1, calculate matrices; = 0, use stored matrix
!  idir: =1, translation of xij, =-1, -xij (reverse)
!  itran=1, A(i-j) a(j), = -1, a(j) A(i-j)
!
!
!  last revised: 15 January 2011
!
         subroutine rottran(cx,cy,xij,ri,nodrx,nodry,itype,icalc,idir,itran)
         use numconstants
         use specialfuncs
         implicit none
         integer :: nodrx,nodry,itype,icalc,idir,itran,nmax,nmin,n,m,p,nblk
         real(8) :: xij(3),r,ct
         complex(8) :: ri,ephi,cx(0:nodrx+1,nodrx,2),cy(0:nodry+1,nodry,2)
         real(8), allocatable, save :: rotmat(:,:)
         complex(8), allocatable, save  :: ephimat(:), tranmat(:,:,:)
         if(icalc.eq.1) then
            nmax=max(nodrx,nodry)
            nmin=min(nodrx,nodry)
            call cartosphere(xij,r,ct,ephi)
            if(r.lt.1.d-4) then
               do p=1,2
                  do n=1,nmin
                     do m=0,nmin+1
                        cy(m,n,p)=cy(m,n,p)+cx(m,n,p)
                     enddo
                  enddo
               enddo
               return
            endif
            if(allocated(ephimat)) deallocate(rotmat,ephimat,tranmat)
            if(nmax.gt.stored_max_order) then
               if(allocated(rvec_temp)) deallocate(rvec_temp,tvec_temp, &
                       c_temp,ct_temp,rvec2_temp,tvec2_temp, &
                       c2_temp,ct2_temp)
               allocate(rvec_temp(-nmax:nmax,2),tvec_temp(nmax,2), &
                       c_temp(-nmax:nmax,nmax,2),ct_temp(nmax,2,2), &
                       rvec2_temp(-nmax:nmax,2),tvec2_temp(nmax,2), &
                       c2_temp(-nmax:nmax,nmax,2),ct2_temp(nmax,2,2))
               stored_max_order=nmax
            endif
            nblk=(nodrx*(nodrx+3))/2
            allocate(rotmat(-nmin:nmin,0:nmax*(nmax+2)))
            allocate(ephimat(-nmax:nmax))
            allocate(tranmat(1:nodry,1:nblk,1:2))
            call rotcoef(ct,nmin,nmax,rotmat)
!            call axialtrancoef(itype,r,ri,nodry,nodrx,tranmat)
            call axialtrancoefrecurrence(itype,r,ri,nodry,nodrx,tranmat)
            call ephicoef(ephi,nmax,ephimat)
         endif
         call rottranmtrx(cx,cy,idir,itran,nodrx,nodry,ephimat,rotmat,tranmat)
         return
         end subroutine rottran
!
!  far field formula for outgoing SVWF translation
!  October 2011
!
         subroutine farfieldtranslation(cx,cy,xij,ri,nodrx,nodry,icase, &
                    stored_pivec_matrix)
         use numconstants
         use specialfuncs
         implicit none
         integer :: nodrx,nodry,itype,icalc,icase,nmax,nmin,n,m,p,nblk,im
         real(8) :: xij(3),r,ct,xijt(3)
         complex(8) :: ri,ephi,cx(0:nodrx+1,nodrx,2),cy(0:nodry+1,nodry,2), &
                       cxt(0:nodrx+1,nodrx,2),cyt(0:nodry+1,nodry,2), &
                       sumx(2),c1,pivec(0:max(nodrx,nodry)+1,max(nodrx,nodry),2)
         complex(8), optional :: stored_pivec_matrix(0:max(nodrx,nodry)+1,max(nodrx,nodry),2)

         call cartosphere(xij,r,ct,ephi)
         nmax=max(nodrx,nodry)
         if(present(stored_pivec_matrix)) then
            pivec=stored_pivec_matrix
         else
            call pifunc(ct,ephi,nmax,nmax,pivec)
         endif
         if(icase.eq.1) then
            sumx(1)=sum(pivec(0:nodrx+1,1:nodrx,1:2)*cx(0:nodrx+1,1:nodrx,1:2))
            sumx(2)=sum(pivec(0:nodrx+1,1:nodrx,2:1:-1)*cx(0:nodrx+1,1:nodrx,1:2))
            sumx=sumx*cdexp((0.d0,1.d0)*ri*r)/((0.d0,1.d0)*ri*r)*8.d0
            cyt(0:nodry+1,1:nodry,1) = conjg(pivec(0:nodry+1,1:nodry,1))*sumx(1) &
                  +conjg(pivec(0:nodry+1,1:nodry,2))*sumx(2)
            cyt(0:nodry+1,1:nodry,2) = conjg(pivec(0:nodry+1,1:nodry,2))*sumx(1) &
                  +conjg(pivec(0:nodry+1,1:nodry,1))*sumx(2)
         else
            do n=1,nodrx
               do p=1,2
                  im=(-1)**(n+p)
                  cxt(n+1,1:n,p)=im*cx(n+1,1:n,p)
                  cxt(0:n,n,p)=im*cx(0:n,n,p)
               enddo
            enddo
            sumx(1)=sum(conjg(pivec(0:nodrx+1,1:nodrx,1:2))*cxt(0:nodrx+1,1:nodrx,1:2))
            sumx(2)=sum(conjg(pivec(0:nodrx+1,1:nodrx,2:1:-1))*cxt(0:nodrx+1,1:nodrx,1:2))
            sumx=sumx*cdexp((0.d0,1.d0)*ri*r)/((0.d0,1.d0)*ri*r)*8.d0
            cyt(0:nodry+1,1:nodry,1) = pivec(0:nodry+1,1:nodry,1)*sumx(1) &
                  +pivec(0:nodry+1,1:nodry,2)*sumx(2)
            cyt(0:nodry+1,1:nodry,2) = pivec(0:nodry+1,1:nodry,2)*sumx(1) &
                  +pivec(0:nodry+1,1:nodry,1)*sumx(2)
            do n=1,nodry
               do p=1,2
                  im=(-1)**(n+p)
                  cyt(n+1,1:n,p)=im*cyt(n+1,1:n,p)
                  cyt(0:n,n,p)=im*cyt(0:n,n,p)
               enddo
            enddo
         endif
         cy=cy+cyt
         end subroutine farfieldtranslation
!
! far field translation: normal and transpose, for bcgm solution
! october 2011
!
         subroutine farfieldtranslationtwovec(cx1,cx2,cy1,cy2,xij,ri,nodrx,nodry, &
                    stored_pivec_matrix)
         use numconstants
         use specialfuncs
         implicit none
         integer :: nodrx,nodry,itype,icalc,icase,nmax,nmin,n,m,p,nblk,im
         real(8) :: xij(3),r,ct,xijt(3)
         complex(8) :: ri,ephi,cx1(0:nodrx+1,nodrx,2),cy1(0:nodry+1,nodry,2), &
                       cx2(0:nodrx+1,nodrx,2),cy2(0:nodry+1,nodry,2), &
                       cxt(0:nodrx+1,nodrx,2),cyt1(0:nodry+1,nodry,2), &
                       cyt2(0:nodry+1,nodry,2), &
                       sumx(2),c1,phasefunc, &
                       pivec(0:max(nodrx,nodry)+1,max(nodrx,nodry),2)
         complex(8), optional :: stored_pivec_matrix(0:max(nodrx,nodry)+1,max(nodrx,nodry),2)

         call cartosphere(xij,r,ct,ephi)
         nmax=max(nodrx,nodry)
         if(present(stored_pivec_matrix)) then
            pivec=stored_pivec_matrix
         else
            call pifunc(ct,ephi,nmax,nmax,pivec)
         endif
         phasefunc=cdexp((0.d0,1.d0)*ri*r)/((0.d0,1.d0)*ri*r)*8.d0
         sumx(1)=sum(pivec(0:nodrx+1,1:nodrx,1:2)*cx1(0:nodrx+1,1:nodrx,1:2))
         sumx(2)=sum(pivec(0:nodrx+1,1:nodrx,2:1:-1)*cx1(0:nodrx+1,1:nodrx,1:2))
         sumx=sumx*phasefunc
         cyt1(0:nodry+1,1:nodry,1) = conjg(pivec(0:nodry+1,1:nodry,1))*sumx(1) &
               +conjg(pivec(0:nodry+1,1:nodry,2))*sumx(2)
         cyt1(0:nodry+1,1:nodry,2) = conjg(pivec(0:nodry+1,1:nodry,2))*sumx(1) &
               +conjg(pivec(0:nodry+1,1:nodry,1))*sumx(2)
         do n=1,nodrx
            do p=1,2
               im=(-1)**(n+p)
               cxt(n+1,1:n,p)=im*cx2(n+1,1:n,p)
               cxt(0:n,n,p)=im*cx2(0:n,n,p)
            enddo
         enddo
         sumx(1)=sum(conjg(pivec(0:nodrx+1,1:nodrx,1:2))*cxt(0:nodrx+1,1:nodrx,1:2))
         sumx(2)=sum(conjg(pivec(0:nodrx+1,1:nodrx,2:1:-1))*cxt(0:nodrx+1,1:nodrx,1:2))
         sumx=sumx*phasefunc
         cyt2(0:nodry+1,1:nodry,1) = pivec(0:nodry+1,1:nodry,1)*sumx(1) &
               +pivec(0:nodry+1,1:nodry,2)*sumx(2)
         cyt2(0:nodry+1,1:nodry,2) = pivec(0:nodry+1,1:nodry,2)*sumx(1) &
               +pivec(0:nodry+1,1:nodry,1)*sumx(2)
         do n=1,nodry
            do p=1,2
               im=(-1)**(n+p)
               cyt2(n+1,1:n,p)=im*cyt2(n+1,1:n,p)
               cyt2(0:n,n,p)=im*cyt2(0:n,n,p)
            enddo
         enddo
         cy1=cy1+cyt1
         cy2=cy2+cyt2
         end subroutine farfieldtranslationtwovec
!
! correction term for hybrid bcgm solution: difference between exact and
! ff translation field
! november 2011
!
         subroutine fftranslationerror(cx,cy,jx,iy,nodrx,nodry)
         use numconstants
         use specialfuncs
         implicit none
         integer :: nodrx,nodry,idir,itran,iy,jx,istore
         integer :: nr1,nr2,nt1,nt2,ne1,ne2
         real(8) :: xj(3),xi(3),xij(3),rij,nfdist
         complex(8) :: cx(0:nodrx+1,nodrx,2),cy(0:nodry+1,nodry,2), &
                       cyt(0:nodry+1,nodry,2)
         xj(:)=sphere_position(:,jx)
         xi(:)=sphere_position(:,iy)
         xij=xi-xj
         rij=sqrt(dot_product(xij,xij))
         if(near_field_distance.lt.0.) then
            nfdist=(.5*(nodrx+nodry))**2.
         else
            nfdist=near_field_distance
         endif
         if(rij.gt.nfdist) then
            cyt=0.d0
            call farfieldtranslation(cx,cyt,xij,(1.d0,0.d0),nodrx,nodry,1)
            cyt=-cyt
            call rottran(cx,cyt,xij,(1.d0,0.d0),nodrx,nodry,3,1,1,1)
            cy=cy+cyt
         endif
         end subroutine fftranslationerror
!
!  translation via stored or calculated matrices (replaces rottranstoredmatrix)
!
!  12 October 2011.
!     if rij> near_field_distance, the far field formula is
!     applied.
!
         subroutine rottranjtoi(cx,cy,jx,iy,nodrx,nodry,idir,itran)
         use numconstants
         use specialfuncs
         implicit none
         integer :: nodrx,nodry,idir,itran,iy,jx,istore
         integer :: nr1,nr2,nt1,nt2,ne1,ne2
         real(8) :: xj(3),xi(3),xij(3),rij,nfdist
         complex(8) :: cx(0:nodrx+1,nodrx,2),cy(0:nodry+1,nodry,2)
         xj(:)=sphere_position(:,jx)
         xi(:)=sphere_position(:,iy)
         xij=xi-xj
         rij=sqrt(dot_product(xij,xij))
         if(near_field_distance.lt.0.) then
            nfdist=(.5*(nodrx+nodry))**2.
         else
            nfdist=near_field_distance
         endif
         if(rij.gt.nfdist) then
            if(store_tran_mat.eq.2) then
               nt1=nofftran(iy,jx)+1
               nt2=nt1+nsizetran(iy,jx)-1
               call farfieldtranslation(cx,cy,xij,(1.d0,0.d0),nodrx,nodry,itran, &
                    stored_pivec_matrix=tranmatstore(nt1:nt2))
            else
               call farfieldtranslation(cx,cy,xij,(1.d0,0.d0),nodrx,nodry,itran)
            endif
         else
            if(store_tran_mat.eq.0) then
               call rottran(cx,cy,xij,(1.d0,0.d0),nodrx,nodry,3,1,idir,itran)
            else
               nr1=noffrot(iy,jx)+1
               nr2=nr1+nsizerot(iy,jx)-1
               nt1=nofftran(iy,jx)+1
               nt2=nt1+nsizetran(iy,jx)-1
               ne1=noffephi(iy,jx)+1
               ne2=ne1+nsizeephi(iy,jx)-1
               call rottranmtrx(cx,cy,idir,itran,nodrx,nodry,ephimatstore(ne1:ne2), &
                                rotmatstore(nr1:nr2),tranmatstore(nt1:nt2))
            endif
         endif
         end subroutine rottranjtoi
!
! normal and transpose translation, for bcgm
! november 2011
!
         subroutine rottrantwojtoi(cx1,cx2,cy1,cy2,jx,iy,nodrx,nodry)
         use numconstants
         use specialfuncs
         implicit none
         integer :: nodrx,nodry,idir,itran,iy,jx,istore
         integer :: nr1,nr2,nt1,nt2,ne1,ne2
         real(8) :: xj(3),xi(3),xij(3),rij,nfdist
         complex(8) :: cx1(0:nodrx+1,nodrx,2),cy1(0:nodry+1,nodry,2), &
                       cx2(0:nodrx+1,nodrx,2),cy2(0:nodry+1,nodry,2)
         xj(:)=sphere_position(:,jx)
         xi(:)=sphere_position(:,iy)
         xij=xi-xj
         rij=sqrt(dot_product(xij,xij))
         if(near_field_distance.lt.0.) then
            nfdist=(.5*(nodrx+nodry))**2.
         else
            nfdist=near_field_distance
         endif
         if(rij.gt.nfdist) then
            if(store_tran_mat.eq.2) then
               nt1=nofftran(iy,jx)+1
               nt2=nt1+nsizetran(iy,jx)-1
               call farfieldtranslationtwovec(cx1,cx2,cy1,cy2,xij,(1.d0,0.d0),nodrx,nodry, &
               stored_pivec_matrix=tranmatstore(nt1:nt2))
            else
               call farfieldtranslationtwovec(cx1,cx2,cy1,cy2,xij,(1.d0,0.d0),nodrx,nodry)
            endif
         else
            if(store_tran_mat.eq.0) then
               call rottran(cx1,cy1,xij,(1.d0,0.d0),nodrx,nodry,3,1,1,1)
               call rottran(cx2,cy2,xij,(1.d0,0.d0),nodrx,nodry,3,0,-1,-1)
            else
               nr1=noffrot(iy,jx)+1
               nr2=nr1+nsizerot(iy,jx)-1
               nt1=nofftran(iy,jx)+1
               nt2=nt1+nsizetran(iy,jx)-1
               ne1=noffephi(iy,jx)+1
               ne2=ne1+nsizeephi(iy,jx)-1
               call rottranmtrxtwovec(cx1,cx2,cy1,cy2,nodrx,nodry,ephimatstore(ne1:ne2), &
                                rotmatstore(nr1:nr2),tranmatstore(nt1:nt2))
            endif
         endif
         end subroutine rottrantwojtoi
!
!  the vectorized rotation-translation-rotation operation
!
!
!  last revised: 15 January 2011
!
         subroutine rottranmtrx(cx,cy,idir,itran,nodrx,nodry,ephimat,rotmat,tranmat)
         use numconstants
         use specialfuncs
         implicit none
         integer :: nodrx,nodry,itype,icalc,idir,itran,nmax,nmin
         integer :: m,n,k,l,nn1,nn2,ll1,mn,kl,m1,p,n1,addr(2)
         real(8), target :: rotmat(-min(nodrx,nodry):min(nodrx,nodry), &
                            0:max(nodrx,nodry)*(max(nodrx,nodry)+2))
         real(8), pointer :: rmat(:,:)
         complex(8) :: cx(0:nodrx+1,nodrx,2),cy(0:nodry+1,nodry,2), &
                       ephimat(-max(nodrx,nodry):max(nodrx,nodry))
         complex(8), target :: tranmat(nodry,nodrx*(nodrx+3)/2,2)
         complex(8), pointer :: tmat1(:,:),tmat2(:,:)
         c_temp=(0.d0,0.d0)
         nmin=min(nodrx,nodry)
!
!  rotation to origin of target
!
         do n=1,nodrx
            nn1=n*(n+1)-n
            nn2=nn1+(2*n+1)-1
            n1=min(n,nodry)
            rmat=>rotmat(-n1:n1,nn1:nn2)
            do p=1,2
               rvec_temp(-n:-1,p)=cx(n+1,n:1:-1,p)
               rvec_temp(0:n,p)=cx(0:n,n,p)
               if(itran.eq.1) then
                  rvec_temp(-n:n,p)=rvec_temp(-n:n,p)*ephimat(-n:n)
               else
                  rvec_temp(-n:n,p)=rvec_temp(-n:n,p)*conjg(ephimat(-n:n))
               endif
            enddo
            c_temp(-n1:n1,n,1:2)=matmul(rmat,rvec_temp(-n:n,1:2))
         enddo
!
!  axial translation to target
!
         do m=0,nmin
            m1=max(1,m)
            nn1=atcadd(m,m1,nodrx)
            nn2=atcadd(m,nodrx,nodrx)
            tmat1=>tranmat(m1:nodry,nn1:nn2,1)
            tmat2=>tranmat(m1:nodry,nn1:nn2,2)
            tvec_temp(m1:nodrx,1)=idir*c_temp(m,m1:nodrx,1)
            tvec_temp(m1:nodrx,2)=c_temp(m,m1:nodrx,2)
            if(itran*idir.eq.-1) then
               tvec_temp(m1:nodrx,1)=tvec_temp(m1:nodrx,1)*monen(m1:nodrx)
               tvec_temp(m1:nodrx,2)=tvec_temp(m1:nodrx,2)*monen(m1:nodrx)
            endif
            ct_temp=(0.d0,0.d0)
            ct_temp(m1:nodry,1,1:2)=matmul(tmat1,tvec_temp(m1:nodrx,1:2))
            ct_temp(m1:nodry,2,1:2)=matmul(tmat2,tvec_temp(m1:nodrx,1:2))
            c_temp(m,m1:nodry,1)=idir*(ct_temp(m1:nodry,1,1)+ct_temp(m1:nodry,2,2))
            c_temp(m,m1:nodry,2)=ct_temp(m1:nodry,2,1)+ct_temp(m1:nodry,1,2)
            if(itran*idir.eq.-1) then
               c_temp(m,m1:nodry,1)=c_temp(m,m1:nodry,1)*monen(m1:nodry)
               c_temp(m,m1:nodry,2)=c_temp(m,m1:nodry,2)*monen(m1:nodry)
            endif
            if(m.gt.0) then
               tvec_temp(m1:nodrx,1)=idir*c_temp(-m,m1:nodrx,1)
               tvec_temp(m1:nodrx,2)=c_temp(-m,m1:nodrx,2)
               if(itran*idir.eq.-1) then
                  tvec_temp(m1:nodrx,1)=tvec_temp(m1:nodrx,1)*monen(m1:nodrx)
                  tvec_temp(m1:nodrx,2)=tvec_temp(m1:nodrx,2)*monen(m1:nodrx)
               endif
               ct_temp=(0.d0,0.d0)
               ct_temp(m1:nodry,1,1:2)=matmul(tmat1,tvec_temp(m1:nodrx,1:2))
               ct_temp(m1:nodry,2,1:2)=matmul(tmat2,tvec_temp(m1:nodrx,1:2))
               c_temp(-m,m1:nodry,1)=idir*(ct_temp(m1:nodry,1,1)-ct_temp(m1:nodry,2,2))
               c_temp(-m,m1:nodry,2)=-ct_temp(m1:nodry,2,1)+ct_temp(m1:nodry,1,2)
               if(itran*idir.eq.-1) then
                  c_temp(-m,m1:nodry,1)=c_temp(-m,m1:nodry,1)*monen(m1:nodry)
                  c_temp(-m,m1:nodry,2)=c_temp(-m,m1:nodry,2)*monen(m1:nodry)
               endif
            endif
         enddo
!
!  rotation back to original frame
!
         do n=1,nodry
            rvec_temp=(0.d0,0.d0)
            m1=min(n,nmin)
            nn1=n*(n+1)-n
            nn2=n*(n+1)+n
            rmat=>rotmat(-m1:m1,nn1:nn2)
            do p=1,2
               if(itran.eq.1) then
                  rvec_temp(-n:n,p)=matmul(c_temp(-m1:m1,n,p),rmat)*conjg(ephimat(-n:n))
               else
                  rvec_temp(-n:n,p)=matmul(c_temp(-m1:m1,n,p),rmat)*ephimat(-n:n)
               endif
               cy(n+1,n:1:-1,p)=cy(n+1,n:1:-1,p)+rvec_temp(-n:-1,p)
               cy(0:n,n,p)=cy(0:n,n,p)+rvec_temp(0:n,p)
            enddo
         enddo
         end subroutine rottranmtrx
!
! two vector rotation: normal and transpose
! november 2011
!
         subroutine rottranmtrxtwovec(cx1,cx2,cy1,cy2,nodrx,nodry, &
          ephimat,rotmat,tranmat)
         use numconstants
         use specialfuncs
         implicit none
         integer :: nodrx,nodry,itype,icalc,idir,itran,nmax,nmin
         integer :: m,n,k,l,nn1,nn2,ll1,mn,kl,m1,p,n1,addr(2)
         real(8), target :: rotmat(-min(nodrx,nodry):min(nodrx,nodry), &
                            0:max(nodrx,nodry)*(max(nodrx,nodry)+2))
         real(8), pointer :: rmat(:,:)
         complex(8) :: cx1(0:nodrx+1,nodrx,2),cy1(0:nodry+1,nodry,2), &
                       cx2(0:nodrx+1,nodrx,2),cy2(0:nodry+1,nodry,2), &
                       ephimat(-max(nodrx,nodry):max(nodrx,nodry))
         complex(8), target :: tranmat(nodry,nodrx*(nodrx+3)/2,2)
         complex(8), pointer :: tmat1(:,:),tmat2(:,:)
         c_temp=(0.d0,0.d0)
         nmin=min(nodrx,nodry)
!
!  rotation to origin of target
!
         do n=1,nodrx
            nn1=n*(n+1)-n
            nn2=nn1+(2*n+1)-1
            n1=min(n,nodry)
            rmat=>rotmat(-n1:n1,nn1:nn2)
            do p=1,2
               rvec_temp(-n:-1,p)=cx1(n+1,n:1:-1,p)
               rvec_temp(0:n,p)=cx1(0:n,n,p)
               rvec2_temp(-n:-1,p)=cx2(n+1,n:1:-1,p)
               rvec2_temp(0:n,p)=cx2(0:n,n,p)
               rvec_temp(-n:n,p)=rvec_temp(-n:n,p)*ephimat(-n:n)
               rvec2_temp(-n:n,p)=rvec2_temp(-n:n,p)*conjg(ephimat(-n:n))
            enddo
            c_temp(-n1:n1,n,1:2)=matmul(rmat,rvec_temp(-n:n,1:2))
            c2_temp(-n1:n1,n,1:2)=matmul(rmat,rvec2_temp(-n:n,1:2))
         enddo
!
!  axial translation to target
!
         do m=0,nmin
            m1=max(1,m)
            nn1=atcadd(m,m1,nodrx)
            nn2=atcadd(m,nodrx,nodrx)
            tmat1=>tranmat(m1:nodry,nn1:nn2,1)
            tmat2=>tranmat(m1:nodry,nn1:nn2,2)
            tvec_temp(m1:nodrx,1)=c_temp(m,m1:nodrx,1)
            tvec_temp(m1:nodrx,2)=c_temp(m,m1:nodrx,2)
            tvec2_temp(m1:nodrx,1)=-c2_temp(m,m1:nodrx,1)
            tvec2_temp(m1:nodrx,2)=c2_temp(m,m1:nodrx,2)
            ct_temp=(0.d0,0.d0)
            ct2_temp=(0.d0,0.d0)
            ct_temp(m1:nodry,1,1:2)=matmul(tmat1,tvec_temp(m1:nodrx,1:2))
            ct_temp(m1:nodry,2,1:2)=matmul(tmat2,tvec_temp(m1:nodrx,1:2))
            ct2_temp(m1:nodry,1,1:2)=matmul(tmat1,tvec2_temp(m1:nodrx,1:2))
            ct2_temp(m1:nodry,2,1:2)=matmul(tmat2,tvec2_temp(m1:nodrx,1:2))
            c_temp(m,m1:nodry,1)=(ct_temp(m1:nodry,1,1)+ct_temp(m1:nodry,2,2))
            c_temp(m,m1:nodry,2)=ct_temp(m1:nodry,2,1)+ct_temp(m1:nodry,1,2)
            c2_temp(m,m1:nodry,1)=-(ct2_temp(m1:nodry,1,1)+ct2_temp(m1:nodry,2,2))
            c2_temp(m,m1:nodry,2)=ct2_temp(m1:nodry,2,1)+ct2_temp(m1:nodry,1,2)
            if(m.gt.0) then
               tvec_temp(m1:nodrx,1)=c_temp(-m,m1:nodrx,1)
               tvec_temp(m1:nodrx,2)=c_temp(-m,m1:nodrx,2)
               tvec2_temp(m1:nodrx,1)=-c2_temp(-m,m1:nodrx,1)
               tvec2_temp(m1:nodrx,2)=c2_temp(-m,m1:nodrx,2)
               ct_temp=(0.d0,0.d0)
               ct2_temp=(0.d0,0.d0)
               ct_temp(m1:nodry,1,1:2)=matmul(tmat1,tvec_temp(m1:nodrx,1:2))
               ct_temp(m1:nodry,2,1:2)=matmul(tmat2,tvec_temp(m1:nodrx,1:2))
               ct2_temp(m1:nodry,1,1:2)=matmul(tmat1,tvec2_temp(m1:nodrx,1:2))
               ct2_temp(m1:nodry,2,1:2)=matmul(tmat2,tvec2_temp(m1:nodrx,1:2))
               c_temp(-m,m1:nodry,1)=(ct_temp(m1:nodry,1,1)-ct_temp(m1:nodry,2,2))
               c_temp(-m,m1:nodry,2)=-ct_temp(m1:nodry,2,1)+ct_temp(m1:nodry,1,2)
               c2_temp(-m,m1:nodry,1)=-(ct2_temp(m1:nodry,1,1)-ct2_temp(m1:nodry,2,2))
               c2_temp(-m,m1:nodry,2)=-ct2_temp(m1:nodry,2,1)+ct2_temp(m1:nodry,1,2)
            endif
         enddo
!
!  rotation back to original frame
!
         do n=1,nodry
            rvec_temp=(0.d0,0.d0)
            rvec2_temp=(0.d0,0.d0)
            m1=min(n,nmin)
            nn1=n*(n+1)-n
            nn2=n*(n+1)+n
            rmat=>rotmat(-m1:m1,nn1:nn2)
            do p=1,2
               rvec_temp(-n:n,p)=matmul(c_temp(-m1:m1,n,p),rmat)*conjg(ephimat(-n:n))
               rvec2_temp(-n:n,p)=matmul(c2_temp(-m1:m1,n,p),rmat)*ephimat(-n:n)
               cy1(n+1,n:1:-1,p)=cy1(n+1,n:1:-1,p)+rvec_temp(-n:-1,p)
               cy1(0:n,n,p)=cy1(0:n,n,p)+rvec_temp(0:n,p)
               cy2(n+1,n:1:-1,p)=cy2(n+1,n:1:-1,p)+rvec2_temp(-n:-1,p)
               cy2(0:n,n,p)=cy2(0:n,n,p)+rvec2_temp(0:n,p)
            enddo
         enddo
         end subroutine rottranmtrxtwovec
!
!  GB coefficients for sphere-centered expansions, obtained via translation
!
!  last revised: 15 January 2011
!
         subroutine spheregaussianbeamcoef(nsphere,neqns,nodr,alpha,beta,cbeam, &
                    rpos,rbeam,epstran,pmnp)
         use specialfuncs
         implicit none
         integer :: m,n,p,nsphere,i,l,nodr(nsphere),nblk,noff,nodrgb,neqns,k
         real(8) :: alpha,beta,cb,sb,ca,sa,rpos(3,nsphere),rmax,rbeam(3),xib(3),rib, &
                    cbeam,epstran
         complex(8) :: pmnp(neqns,2)
         complex(8), allocatable :: pmnp0(:,:,:,:)
         nodrgb=0
         rmax=0.d0
         do i=1,nsphere
            xib(:)=rpos(:,i)-rbeam(:)
            rib=sqrt(dot_product(xib,xib))
            rmax=max(rmax,rib)
            call tranordertest(rib,(1.d0,0.d0),nodr(i),epstran,n)
            nodrgb=max(n,nodrgb)
         enddo
         allocate(pmnp0(0:nodrgb+1,nodrgb,2,2))
         call gaussianbeamcoef(alpha,beta,cbeam,nodrgb,pmnp0)
         pmnp=0.d0
         noff=0
         do i=1,nsphere
            nblk=2*nodr(i)*(nodr(i)+2)
            xib(:)=rpos(:,i)-rbeam(:)
            do k=1,2
               call rottran(pmnp0(0:nodrgb+1,1:nodrgb,1:2,k),pmnp(noff+1:noff+nblk,k),xib, &
                    (1.d0,0.d0),nodrgb,nodr(i),1,1,1,1)
            enddo
            noff=noff+nblk
         enddo
         deallocate(pmnp0)
         end subroutine spheregaussianbeamcoef

      end module translation
!
! scatprops module: various subroutines for calculation of observables from the solution
!
!
!  last revised: 15 January 2011
!
      module scatprops
      implicit none
      contains
!
!  determination of maximum orders for target--based expansions
!
!
!  last revised: 15 January 2011
!
         subroutine tranorders(nsphere,nodr,rpos,eps,ntran,nodrt)
         use numconstants
         use specialfuncs
         use translation
         implicit none
         integer :: nsphere,nodr(nsphere),nodrt,ntran(nsphere),i
         real(8) :: rpos(3,nsphere),r,eps
         nodrt=0
         do i=1,nsphere
            r=sqrt(dot_product(rpos(:,i),rpos(:,i)))
            call tranordertest(r,(1.d0,0.d0),nodr(i),eps,ntran(i))
            if(print_intermediate_results.eq.1) &
               write(*,'('' i, nodr, ntran:'',3i7)') i,nodr(i),ntran(i)
            nodrt=max(nodrt,ntran(i))
         enddo
         end subroutine tranorders
!
!  translation of sphere-based expansions to common target origin
!
!
!  last revised: 15 January 2011
!
         subroutine amncommonorigin(neqns,nsphere,nodr,ntran,nodrt,rpos,amnp,amnp0)
         use specialfuncs
         use translation
         implicit none
         integer :: neqns,nsphere,nodr(nsphere),nodrt,i,m,n,p,nblk,ntran(nsphere),noff
         real(8) :: rpos(3,nsphere),r,eps,xij(3)
         complex(8) :: amnp(neqns),amnp0(0:nodrt+1,nodrt,2)
         complex(8), allocatable :: amnpt(:,:,:)
         amnp0=(0.d0,0.d0)
         noff=0
         do i=1,nsphere
            allocate(amnpt(0:ntran(i)+1,ntran(i),2))
            amnpt=(0.d0,0.d0)
            nblk=nodr(i)*(nodr(i)+2)*2
            xij=-rpos(:,i)
            call rottran(amnp(noff+1:noff+nblk),amnpt,xij,(1.d0,0.d0), &
                 nodr(i),ntran(i),1,1,1,1)
            do p=1,2
               do n=1,ntran(i)
                  do m=0,ntran(i)+1
                     amnp0(m,n,p)=amnp0(m,n,p)+amnpt(m,n,p)
                  enddo
               enddo
            enddo
            deallocate(amnpt)
            noff=noff+nblk
         enddo
         end subroutine amncommonorigin
!
!  sphereqeff computes the efficiency factors for the sphere, given an1: mie coefficients,
!  anp: scattering coefficients, pnp: incident field coefficients.
!
! This subroutine is specific to the OA model for the sphere.
!
!
!  original: 15 January 2011
!  revised: 21 February 2011: polarized and cross-polarized efficiency calculation
!  30 March 2011: added optical activity
!
         subroutine sphereqeff(nsphere,neqns,nodr,nodrmax,xsp,anp1,anp2,&
                    pnp1,pnp2,qext,qabs,qsca)
         use miecoefdata
         use spheredata
         implicit none
         integer :: nsphere,m,n,p,i,nodr(nsphere),nblk,noff,neqns,nodrmax
         real(8) :: xsp(nsphere),qext(nsphere),qabs(nsphere),qsca(nsphere), &
                    qe,qa,qs
         complex(8) :: anp1(neqns),pnp1(neqns),anp2(neqns),pnp2(neqns)
         complex(8) :: anmie(2,2,nodrmax)
         qext=0.d0
         qabs=0.d0
         qsca=0.d0
         noff=0
         do i=1,nsphere
            nblk=nodr(i)*(nodr(i)+2)*2
            call getmiedata(which_sphere=i,sphere_mie_coefficients=anmie)
            call qeffcalc(nodr(i),anp1(noff+1:noff+nblk),anp2(noff+1:noff+nblk), &
                    pnp1(noff+1:noff+nblk),pnp2(noff+1:noff+nblk),anmie,qe,qa,qs)
            noff=noff+nblk
            qext(i)=2.d0*qe/xsp(i)/xsp(i)
            qabs(i)=2.d0*qa/xsp(i)/xsp(i)
            qsca(i)=2.d0*qs/xsp(i)/xsp(i)
         enddo
         end subroutine sphereqeff
!
!  calculation of sphere efficiency factors for scattered and incident field
!  coefficient anp1, pnp1, anp2, pnp2  and mie coefficients anmie
!
!  original: 15 January 2011
!  revised: 21 February 2011: polarized and cross-polarized efficiency calculation
!  30 March 2011: added optical activity
!
         subroutine qeffcalc(nodr,anp1,anp2,pnp1,pnp2,anmie,qe,qa,qs)
         implicit none
         integer :: nodr,m,n,p,q
         real(8) :: qe,qa,qs,babs,aninv(2,2)
         complex(8) :: anp1(0:nodr+1,nodr,2),pnp1(0:nodr+1,nodr,2), &
                       anp2(0:nodr+1,nodr,2),pnp2(0:nodr+1,nodr,2),anmie(2,2,nodr), &
                       a
         qe=0.d0
         qa=0.d0
         qs=0.d0
         do n=1,nodr
            a=anmie(1,1,n)*anmie(2,2,n)-anmie(1,2,n)*anmie(1,2,n)
            do p=1,2
               do q=1,2
                  aninv(p,q)=(-1)**(p+q)*anmie(3-p,3-q,n)/a
               enddo
               aninv(p,p)=aninv(p,p)+1.d0
            enddo
            do p=1,2
!               babs=-(1.d0/anmie(p,n)+1.d0)
               do m=-n,-1
                  qe=qe-(anp1(n+1,-m,p)*conjg(pnp2(n+1,-m,p)) &
                       + anp2(n+1,-m,p)*conjg(pnp1(n+1,-m,p)))*.5d0
                  qs=qs+anp1(n+1,-m,p)*conjg(anp2(n+1,-m,p))
                  do q=1,2
                     qa=qa-conjg(anp1(n+1,-m,p))*aninv(p,q)*anp2(n+1,-m,q)
                  enddo
               enddo
               do m=0,n
                  qe=qe-(anp1(m,n,p)*conjg(pnp2(m,n,p)) &
                       +anp2(m,n,p)*conjg(pnp1(m,n,p)))*.5d0
                  qs=qs+anp1(m,n,p)*conjg(anp2(m,n,p))
                  do q=1,2
                     qa=qa-conjg(anp1(m,n,p))*aninv(p,q)*anp2(m,n,q)
                  enddo
               enddo
            enddo
         enddo
         end subroutine qeffcalc
!
!  scattering amplitude sa and matrix sm calculation
!
!  original: 15 January 2011
!  revised: 21 February 2011: S11 normalization changed
!
         subroutine scatteringmatrix(amn0,nodrt,xv,ct,phi,sa,sm)
         use specialfuncs
         use numconstants
         implicit none
         integer :: nodrt,m,n,p,m1,n1,i,j
         real(8) :: xv,ct,phi,sm(4,4),tau(0:nodrt+1,nodrt,2),cphi,sphi,qsca
         complex(8) :: amn0(0:nodrt+1,nodrt,2,2),sa(4),ephi,ephim(-nodrt:nodrt), &
                       ci,cin,a,b,sp(4,4)
         data ci/(0.d0,1.d0)/


         call taufunc(ct,nodrt,tau)
         cphi=cos(phi)
         sphi=sin(phi)
         ephi=dcmplx(cphi,sphi)
         call ephicoef(ephi,nodrt,ephim)
         sa=(0.d0,0.d0)
         qsca=0.d0
         do n=1,nodrt
            cin=(-ci)**n
            do m=-n,n
               if(m.le.-1) then
                  m1=n+1
                  n1=-m
               else
                  m1=m
                  n1=n
               endif
               do p=1,2
                  qsca=qsca+amn0(m1,n1,p,1)*dconjg(amn0(m1,n1,p,1)) &
                           + amn0(m1,n1,p,2)*dconjg(amn0(m1,n1,p,2))
                  a=amn0(m1,n1,p,1)*cphi+amn0(m1,n1,p,2)*sphi
                  b=amn0(m1,n1,p,1)*sphi-amn0(m1,n1,p,2)*cphi
                  sa(1)=sa(1)+cin*tau(m1,n1,3-p)*b*ephim(m)
                  sa(2)=sa(2)+ci*cin*tau(m1,n1,p)*a*ephim(m)
                  sa(3)=sa(3)+ci*cin*tau(m1,n1,p)*b*ephim(m)
                  sa(4)=sa(4)+cin*tau(m1,n1,3-p)*a*ephim(m)
               enddo
            enddo
         enddo
         qsca=qsca*2.d0
         do i=1,4
            do j=1,4
               sp(i,j)=sa(i)*dconjg(sa(j))*16.d0/qsca
            enddo
         enddo
         sm(1,1)=sp(1,1)+sp(2,2)+sp(3,3)+sp(4,4)
         sm(1,2)=-sp(1,1)+sp(2,2)-sp(3,3)+sp(4,4)
         sm(2,1)=-sp(1,1)+sp(2,2)+sp(3,3)-sp(4,4)
         sm(2,2)=sp(1,1)+sp(2,2)-sp(3,3)-sp(4,4)
         sm(3,3)=2.*(sp(1,2)+sp(3,4))
         sm(3,4)=-2.*dimag(sp(1,2)+sp(3,4))
         sm(4,3)=2.*dimag(sp(1,2)-sp(3,4))
         sm(4,4)=2.*(sp(1,2)-sp(3,4))
         sm(1,3)=2.*(sp(2,3)+sp(1,4))
         sm(3,1)=2.*(sp(2,4)+sp(1,3))
         sm(1,4)=2.*dimag(sp(2,3)-sp(1,4))
         sm(4,1)=-2.*dimag(sp(2,4)+sp(1,3))
         sm(2,3)=2.*(sp(2,3)-sp(1,4))
         sm(3,2)=2.*(sp(2,4)-sp(1,3))
         sm(2,4)=2.*dimag(sp(2,3)+sp(1,4))
         sm(4,2)=-2.*dimag(sp(2,4)-sp(1,3))
!         do i=1,4
!            do j=1,4
!               if(i.ne.1.or.j.ne.1) then
!                  sm(i,j)=sm(i,j)/sm(1,1)
!               endif
!            enddo
!         enddo
         end subroutine scatteringmatrix
!   c                                                                               c
!   c  subroutine scatexp(amn0,nodrt,nodrg,gmn) computes the expansion coefficients c
!   c  for the spherical harmonic expansion of the scattering phase function from   c
!   c  the scattering coefficients amn0.  For a complete expansion, the max. order  c
!   c  of the phase function expansion (nodrg) will be 2*nodrt, where nodrt is      c
!   c  the max. order of the scattered field expansion.   In this code nodrg is     c
!   c  typically set to 1, so that the subroutine returns the first moments         c
!   c  of the phase function; gmn(1) and gmn(2).                                    c
!   c                                                                               c
!   c  The expansion coefficients are normalized so that gmn(0)=1                   c
!   c                                                                               c
!   c  gmn(1)/3 is the asymmetry parameter.                                         c
!   c                                                                               c
         subroutine s11expansion(amn0,nodrt,mmax,nodrg,gmn)
         use specialfuncs
         use numconstants
         implicit none
         integer :: nodrt,m,n,p,ma,na,mmax,nodrg,w,w1,w2,u,uw,ww1, &
                    l1,l2,ka,la,k,l,q,ik
         real(8) :: vc1(0:nodrt*2+1),vc2(0:nodrt*2+1),g0
         complex(8) :: amn0(0:nodrt+1,nodrt,2,2),gmn(0:nodrg*(nodrg+3)/2), &
                       a(2,2),c,c2
         gmn=(0.d0,0.d0)
         do n=1,nodrt
            l1=max(1,n-nodrg)
            l2=min(nodrt,n+nodrg)
            do l=l1,l2
               c=sqrt(dble((n+n+1)*(l+l+1)))*dcmplx(0.d0,1.d0)**(l-n)
               w2=min(n+l,nodrg)
               call vcfunc(-1,l,1,n,vc2)
               do m=-n,n
                  if(m.le.-1) then
                     ma=n+1
                     na=-m
                  else
                     ma=m
                     na=n
                  endif
                  do k=-l,min(l,m)
                     if(k.le.-1) then
                        ka=l+1
                        la=-k
                     else
                        ka=k
                        la=l
                     endif
                     u=m-k
                     if(u.le.mmax) then
                        ik=(-1)**k
                        c2=ik*c
                        do p=1,2
                           do q=1,2
                              a(p,q)=c2*(amn0(ma,na,p,1)*conjg(amn0(ka,la,q,1)) &
                                    +amn0(ma,na,p,2)*conjg(amn0(ka,la,q,2)))
                           enddo
                        enddo
                        w1=max(abs(n-l),abs(u))
                        w2=min(n+l,nodrg)
                        call vcfunc(-k,l,m,n,vc1)
                        do w=w1,w2
                           uw=(w*(w+1))/2+u
                           do p=1,2
                              if(mod(n+l+w,2).eq.0) then
                                 q=p
                              else
                                 q=3-p
                              endif
                              gmn(uw)=gmn(uw)-vc1(w)*vc2(w)*a(p,q)
                           enddo
                        enddo
                     endif
                  enddo
               enddo
            enddo
         enddo
         g0=dble(gmn(0))
         gmn(0)=1.d0
         do w=1,nodrg
            ww1=(w*(w+1))/2
            gmn(ww1)=dcmplx(dble(gmn(ww1)),0.d0)/g0
            do u=1,min(mmax,w)
               uw=ww1+u
               gmn(uw)=(-1)**u*2.d0*gmn(uw)/g0
            enddo
         enddo
         end subroutine s11expansion
!
!  calculate azimuth--averaged scattering matrix from expansion, for cos(theta) = ct
!
!
!  original: 15 January 2011
!  revised: 21 February 2011: changed normalization on S11
!
         subroutine fosmcalc(ntot,s00,s02,sp22,sm22,ct,sm)
         use numconstants
         use specialfuncs
         integer :: ntot,w,i,j,ww1
         real(8) :: s00(4,4,0:ntot*2),s02(4,4,0:ntot*2),sp22(4,4,0:ntot*2),sm22(4,4,0:ntot*2), &
                    sm(4,4),dc(-2:2,0:2*ntot*(2*ntot+2)),ct
         call rotcoef(ct,2,2*ntot,dc)
         sm=0.d0
         do w=0,2*ntot
            ww1=w*(w+1)
            sm(:,:)=sm(:,:)+s00(:,:,w)*dc(0,ww1)+s02(:,:,w)*dc(0,ww1+2) &
                   +sp22(:,:,w)*dc(2,ww1+2)+sm22(:,:,w)*dc(-2,ww1+2)
         enddo
         sm=sm/s00(1,1,0)
!         do i=1,4
!            do j=1,4
!               if(i.ne.1.or.j.ne.1) then
!                  sm(i,j)=sm(i,j)/sm(1,1)
!               endif
!            enddo
!         enddo
         end subroutine fosmcalc
!
!  determine the generalized spherical function expansion for the azimuth-averaged scattering matrix
!  corresponding to the target-based scattering field expansion of amnp.
!
!
!  original: 15 January 2011
!  revised: 21 February 2011: fixed flush call.
!
         subroutine fosmexpansion(ntot,amnp,s00,s02,sp22,sm22)
         use mpidefs
         use mpidata
         use specialfuncs
         use numconstants
         use spheredata
         integer :: ntot,n,p,m,l,wmin,wmax,m1m,q,m1mq,m1mnpl,w,m1w,fe,fo,i,j,wtot
         integer :: rank,numprocs,nl,nsend,runprintunit
         integer, allocatable :: nlindex(:),nlnum(:)
         real(8) :: s00(4,4,0:ntot*2),s02(4,4,0:ntot*2),sp22(4,4,0:ntot*2),sm22(4,4,0:ntot*2), &
                    cm1p1(0:ntot*2),cm1m1(0:ntot*2),cmmpm(0:ntot*2),cmmm2pm(0:ntot*2), &
                    cmmp2pm(0:ntot*2),sum,nlperproc
         complex(8) :: amnp(0:ntot+1,ntot,2,2),a1(-ntot-2:ntot+2,ntot,2),a2(-ntot-2:ntot+2,ntot,2), &
                       ci,fnl,a1122,a2112,a1p2,a1m2
         data ci/(0.d0,1.d0)/
         call init(2*ntot)
         call getrunparameters(run_print_unit=runprintunit)
         call ms_mpi(mpi_command='rank',mpi_rank=rank)
         call ms_mpi(mpi_command='size',mpi_size=numprocs)
         allocate(nlindex(0:numprocs-1),nlnum(0:numprocs-1))
         nlperproc=dble(ntot*ntot)/dble(numprocs)
         sum=0.
         do i=0,numprocs-1
            nlindex(i)=floor(sum)
            sum=sum+nlperproc
         enddo
         do i=0,numprocs-2
            nlnum(i)=nlindex(i+1)-nlindex(i)
         enddo
         nlnum(numprocs-1)=ntot*ntot-nlindex(numprocs-1)
         if(rank.eq.0) then
            write(runprintunit,'('' SM calc, orders per processor:'',f10.4)') nlperproc
            call flush(runprintunit)
         endif
         a1=(0.d0,0.d0)
         a2=(0.d0,0.d0)
         s00=0.d0
         s02=0.d0
         sp22=0.d0
         sm22=0.d0
         wtot=ntot+ntot
         do n=1,ntot
            do p=1,2
               do m=-n,-1
                  a1(m,n,p)=amnp(n+1,-m,p,1)
                  a2(m,n,p)=amnp(n+1,-m,p,2)
               enddo
               do m=0,n
                  a1(m,n,p)=amnp(m,n,p,1)
                  a2(m,n,p)=amnp(m,n,p,2)
               enddo
            enddo
         enddo
         do nl=nlindex(rank)+1,nlindex(rank)+nlnum(rank)
            n=floor((nl-1)/dble(ntot))+1
            l=mod(nl-1,ntot)+1
            wmin=abs(n-l)
            wmax=n+l
            fnl=sqrt(dble((n+n+1)*(l+l+1)))*ci**(l-n)
            call vcfunc(-1,n,1,l,cm1p1)
            call vcfunc(-1,n,-1,l,cm1m1)
            do m=-min(n,l+2),min(n,l+2)
               m1m=(-1)**m
               if(abs(m).le.l) then
                  call vcfunc(-m,n,m,l,cmmpm)
               else
                  cmmpm=0.d0
               endif
               if(abs(-2+m).le.l) then
                  call vcfunc(-m,n,-2+m,l,cmmm2pm)
               else
                  cmmm2pm=0.d0
               endif
               if(abs(2+m).le.l) then
                  call vcfunc(-m,n,2+m,l,cmmp2pm)
               else
                  cmmp2pm=0.d0
               endif
               do p=1,2
                  do q=1,2
                     m1mq=(-1)**(m+q)
                     m1mnpl=(-1)**(m+n+p+l)
                     a1122=(a1(m,n,p)*conjg(a1(m,l,q)) + a2(m,n,p)*conjg(a2(m,l,q)))
                     a2112=(a2(m,n,p)*conjg(a1(m,l,q)) - a1(m,n,p)*conjg(a2(m,l,q)))
                     a1p2=(a1(m,n,p)+ci*a2(m,n,p))*conjg(a1(m-2,l,q)-ci*a2(m-2,l,q))
                     a1m2=(a1(m,n,p)-ci*a2(m,n,p))*conjg(a1(m+2,l,q)+ci*a2(m+2,l,q))
                     do w=wmin,wmax
                        m1w=(-1)**w
                        if(mod(n+l+w+p+q,2).eq.0) then
                           fe=1
                           fo=0
                        else
                           fe=0
                           fo=1
                        endif
                        s00(1,1,w) = s00(1,1,w)-(m1m*fe*fnl*a1122*cm1p1(w)*cmmpm(w))/2.
                        s00(3,2,w) = s00(3,2,w)+ (ci/2.*m1m*fnl*fo*a1122*cm1p1(w)*cmmpm(w))
                        s00(4,2,w) = s00(4,2,w)+ dimag(-ci/2.*m1m*fnl*fo*a1122*cm1p1(w)*cmmpm(w))
                        s00(1,4,w) = s00(1,4,w)+ dimag(m1m*fe*fnl*(-a2112)*cm1p1(w)*cmmpm(w))/2.
                        s00(2,3,w) = s00(2,3,w)+ (m1m*fe*fnl*(-a2112)*cm1p1(w)*cmmpm(w))/2.
                        s00(4,3,w) = s00(4,3,w)+ dimag(ci/2.*m1m*fnl*fo*a2112*cm1p1(w)*cmmpm(w))
                        s00(4,4,w) = s00(4,4,w)+ (ci/2.*m1m*fnl*fo*a2112*cm1p1(w)*cmmpm(w))

                        if(w.lt.2) cycle

                        s02(2,1,w) = s02(2,1,w)-(m1mq*a1122*fe*fnl*cm1m1(w)*cmmpm(w))/2.
                        s02(3,1,w) = s02(3,1,w)+ (-ci/2.*m1mq*a1122*fnl*fo*cm1m1(w)*cmmpm(w))
                        s02(4,1,w) = s02(4,1,w)+ dimag(ci/2.*m1mq*a1122*fnl*fo*cm1m1(w)*cmmpm(w))
                        s02(1,3,w) = s02(1,3,w)-(m1mq*a2112*fe*fnl*cm1m1(w)*cmmpm(w))/2.
                        s02(2,4,w) = s02(2,4,w)-dimag(m1mq*a2112*fe*fnl*cm1m1(w)*cmmpm(w))/2.
                        s02(3,3,w) = s02(3,3,w)+ (ci/2.*m1mq*a2112*fnl*fo*cm1m1(w)*cmmpm(w))
                        s02(3,4,w) = s02(3,4,w)+ dimag(-ci/2.*m1mq*a2112*fnl*fo*cm1m1(w)*cmmpm(w))

                        s02(1,2,w) = s02(1,2,w)-(m1m*a1p2*fe*fnl*cm1p1(w)*cmmm2pm(w))/4.
                        s02(1,3,w) = s02(1,3,w)+ (-ci/4.*m1m*a1p2*fe*fnl*cm1p1(w)*cmmm2pm(w))
                        s02(2,4,w) = s02(2,4,w)+ dimag(-ci/4.*m1m*a1p2*fe*fnl*cm1p1(w)*cmmm2pm(w))
                        s02(3,1,w) = s02(3,1,w)+ (ci/4.*m1m*a1p2*fnl*fo*cm1p1(w)*cmmm2pm(w))
                        s02(4,1,w) = s02(4,1,w)+ dimag(-ci/4.*m1m*a1p2*fnl*fo*cm1p1(w)*cmmm2pm(w))
                        s02(4,3,w) = s02(4,3,w)+ dimag(m1m*a1p2*fnl*fo*cm1p1(w)*cmmm2pm(w))/4.
                        s02(4,4,w) = s02(4,4,w)+ (m1m*a1p2*fnl*fo*cm1p1(w)*cmmm2pm(w))/4.

                        sm22(1,4,w) = sm22(1,4,w)+ dimag(-ci/8.*m1mnpl*m1w*a1p2*fnl*cm1m1(w)*cmmm2pm(w))
                        sm22(2,2,w) = sm22(2,2,w)-(m1mnpl*m1w*a1p2*fnl*cm1m1(w)*cmmm2pm(w))/8.
                        sm22(2,3,w) = sm22(2,3,w)+ (-ci/8.*m1mnpl*m1w*a1p2*fnl*cm1m1(w)*cmmm2pm(w))
                        sm22(3,2,w) = sm22(3,2,w)+ (ci/8.*m1mnpl*m1w*a1p2*fnl*cm1m1(w)*cmmm2pm(w))
                        sm22(3,3,w) = sm22(3,3,w)-(m1mnpl*m1w*a1p2*fnl*cm1m1(w)*cmmm2pm(w))/8.
                        sm22(3,4,w) = sm22(3,4,w)+ dimag(m1mnpl*m1w*a1p2*fnl*cm1m1(w)*cmmm2pm(w))/8.
                        sm22(4,2,w) = sm22(4,2,w)+ dimag(-ci/8.*m1mnpl*m1w*a1p2*fnl*cm1m1(w)*cmmm2pm(w))

                        sp22(1,4,w) = sp22(1,4,w)+ dimag(-ci/8.*m1mq*a1p2*fnl*cm1m1(w)*cmmm2pm(w))
                        sp22(2,2,w) = sp22(2,2,w)-(m1mq*a1p2*fnl*cm1m1(w)*cmmm2pm(w))/8.
                        sp22(2,3,w) = sp22(2,3,w)+ (-ci/8.*m1mq*a1p2*fnl*cm1m1(w)*cmmm2pm(w))
                        sp22(3,2,w) = sp22(3,2,w)+ (-ci/8.*m1mq*a1p2*fnl*cm1m1(w)*cmmm2pm(w))
                        sp22(3,3,w) = sp22(3,3,w)+ (m1mq*a1p2*fnl*cm1m1(w)*cmmm2pm(w))/8.
                        sp22(3,4,w) = sp22(3,4,w)-dimag(m1mq*a1p2*fnl*cm1m1(w)*cmmm2pm(w))/8.
                        sp22(4,2,w) = sp22(4,2,w)+ dimag(ci/8.*m1mq*a1p2*fnl*cm1m1(w)*cmmm2pm(w))

                        s02(1,2,w) = s02(1,2,w)-(m1m*a1m2*fe*fnl*cm1p1(w)*cmmp2pm(w))/4.
                        s02(1,3,w) = s02(1,3,w)+ (ci/4.*m1m*a1m2*fe*fnl*cm1p1(w)*cmmp2pm(w))
                        s02(2,4,w) = s02(2,4,w)+ dimag(ci/4.*m1m*a1m2*fe*fnl*cm1p1(w)*cmmp2pm(w))
                        s02(3,1,w) = s02(3,1,w)+ (ci/4.*m1m*a1m2*fnl*fo*cm1p1(w)*cmmp2pm(w))
                        s02(4,1,w) = s02(4,1,w)+ dimag(-ci/4.*m1m*a1m2*fnl*fo*cm1p1(w)*cmmp2pm(w))
                        s02(4,3,w) = s02(4,3,w)-dimag(m1m*a1m2*fnl*fo*cm1p1(w)*cmmp2pm(w))/4.
                        s02(4,4,w) = s02(4,4,w)-(m1m*a1m2*fnl*fo*cm1p1(w)*cmmp2pm(w))/4.

                        sm22(1,4,w) = sm22(1,4,w)+ dimag(ci/8.*m1mq*a1m2*fnl*cm1m1(w)*cmmp2pm(w))
                        sm22(2,2,w) = sm22(2,2,w)-(m1mq*a1m2*fnl*cm1m1(w)*cmmp2pm(w))/8.
                        sm22(2,3,w) = sm22(2,3,w)+ (ci/8.*m1mq*a1m2*fnl*cm1m1(w)*cmmp2pm(w))
                        sm22(3,2,w) = sm22(3,2,w)+ (-ci/8.*m1mq*a1m2*fnl*cm1m1(w)*cmmp2pm(w))
                        sm22(3,3,w) = sm22(3,3,w)-(m1mq*a1m2*fnl*cm1m1(w)*cmmp2pm(w))/8.
                        sm22(3,4,w) = sm22(3,4,w)+ dimag(m1mq*a1m2*fnl*cm1m1(w)*cmmp2pm(w))/8.
                        sm22(4,2,w) = sm22(4,2,w)+ dimag(ci/8.*m1mq*a1m2*fnl*cm1m1(w)*cmmp2pm(w))

                        sp22(1,4,w) = sp22(1,4,w)+ dimag(ci/8.*m1mnpl*m1w*a1m2*fnl*cm1m1(w)*cmmp2pm(w))
                        sp22(2,2,w) = sp22(2,2,w)-(m1mnpl*m1w*a1m2*fnl*cm1m1(w)*cmmp2pm(w))/8.
                        sp22(2,3,w) = sp22(2,3,w)+ (ci/8.*m1mnpl*m1w*a1m2*fnl*cm1m1(w)*cmmp2pm(w))
                        sp22(3,2,w) = sp22(3,2,w)+ (ci/8.*m1mnpl*m1w*a1m2*fnl*cm1m1(w)*cmmp2pm(w))
                        sp22(3,3,w) = sp22(3,3,w)+ (m1mnpl*m1w*a1m2*fnl*cm1m1(w)*cmmp2pm(w))/8.
                        sp22(3,4,w) = sp22(3,4,w)-dimag(m1mnpl*m1w*a1m2*fnl*cm1m1(w)*cmmp2pm(w))/8.
                        sp22(4,2,w) = sp22(4,2,w)+ dimag(-ci/8.*m1mnpl*m1w*a1m2*fnl*cm1m1(w)*cmmp2pm(w))
                     enddo
                  enddo
               enddo
            enddo
         enddo
         call ms_mpi(mpi_command='barrier')
         nsend=4*4*(2*ntot+1)
         call ms_mpi(mpi_command='allreduce',mpi_recv_buf_dp=s00,&
              mpi_number=nsend,mpi_operation=ms_mpi_sum)
         call ms_mpi(mpi_command='allreduce',mpi_recv_buf_dp=s02,&
              mpi_number=nsend,mpi_operation=ms_mpi_sum)
         call ms_mpi(mpi_command='allreduce',mpi_recv_buf_dp=sp22,&
              mpi_number=nsend,mpi_operation=ms_mpi_sum)
         call ms_mpi(mpi_command='allreduce',mpi_recv_buf_dp=sm22,&
              mpi_number=nsend,mpi_operation=ms_mpi_sum)
!
!  a patch
!
         do i=3,4
            do j=1,i
               s00(j,i,0:wtot)=-s00(j,i,0:wtot)
               s02(j,i,0:wtot)=-s02(j,i,0:wtot)
               sm22(j,i,0:wtot)=-sm22(j,i,0:wtot)
               sp22(j,i,0:wtot)=-sp22(j,i,0:wtot)
            enddo
         enddo
         deallocate(nlindex,nlnum)
         end subroutine fosmexpansion
!
!  compute the coefficients for the GSF expansion of the random orientation
!  scattering matrix.
!
!
!  original: 15 January 2011
!  revised: 21 February 2011: changed normalization on S11
!
         subroutine ranorientscatmatrix(xv,nsphere,nodr,nodrw,cbeam,tmatrixfile,&
                    sm,qext,qabs,qsca)
         use mpidefs
         use mpidata
         use intrinsics
         use specialfuncs
         use spheredata
         use numconstants
         implicit none
         integer :: nodr,nodrw,nodr2,m,n,p,k,l,q,s,t,v,u,w,nblk,kl,mn,nn1,tn, &
                    lmax,ll1,tvl,ku,k1,ns,ik,ik1,m1,nu,n1s,n1e,nu1,p1,n1max, &
                    in,n1,i,lt,kt,qt,nt,mt,ikm,klm,mnm,nodrt,nsphere, &
                    rank,iunit,numprocs
         real(8) :: sm(4,4,0:nodrw),fl,vc(0:4*nodr+2),xv,fl2,fc1,fc2,fc3,fc4, &
                    cbeam,gbn,qext(nsphere),qabs(nsphere),qsca(nsphere),qel, &
                    qal,qsl,fc(4),time1,time2,qsca0
         complex(8) :: ci,cin,a
         complex(8) :: aw(0:2,-1:1,0:nodrw),bw(0:2,-1:1,0:nodrw),cw(0:nodrw), &
                       dw(0:nodrw),pp(nodr,2,2), &
                       bm(2,nodr*(nodr+2),2),am(2,nodr+1,2),fm(3,nodr,2,nodr,2)
         complex(8), allocatable :: dm(:,:,:,:,:,:)
         complex(4), allocatable :: tc(:,:,:,:)
         integer :: nblkw,wv,sizedm,ierr,sizetm,nsend
         integer, allocatable :: windex(:),vindex(:),wvindex(:),wvnum(:)
         real(8) :: wvperproc,sum
         character*30 :: tmatrixfile
         data ci/(0.d0,1.d0)/
         call ms_mpi(mpi_command='rank',mpi_rank=rank)
         call ms_mpi(mpi_command='size',mpi_size=numprocs)
         call getrunparameters(run_print_unit=iunit)
         if(rank.eq.0) time1=mytime()
!
!  read the T matrix from the file
!
         if(rank.eq.0) then
            open(3,file=tmatrixfile)
            read(3,*) nodrt
         endif
         nodrt=nodr
         nblk=nodr*(nodr+2)
         sizetm=4*nblk*nblk
         allocate(tc(2,nblk,2,nblk))
         tc=(0.,0.)
         if(rank.eq.0) then
            qext=0.d0
            qabs=0.d0
            qsca=0.d0
            do l=1,nodr
               gbn=dexp(-((dble(l)+.5d0)*cbeam)**2.)
               do k=-l,l
                  kl=l*(l+1)+k
                  klm=l*(l+1)-k
                  do q=1,2
                     read(3,*) lt,kt,qt
                     do n=1,l
                        do m=-n,n
                           mn=n*(n+1)+m
                           mnm=n*(n+1)-m
                           read(3,*) nt,mt,fc
                           tc(1,mn,q,kl)=cmplx(fc(1),fc(2))
                           tc(2,mn,q,kl)=cmplx(fc(3),fc(4))
                           if(n.lt.l) then
                              ikm=(-1)**(m+k)
                              do p=1,2
                                 tc(q,klm,p,mnm)=tc(p,mn,q,kl)*ikm
                              enddo
                           endif
                        enddo
                     enddo
                  enddo
               enddo
               do i=1,nsphere
                  read(3,*) n,qel,qal,qsl
                  qext(i)=qext(i)+qel*gbn*gbn
                  qabs(i)=qabs(i)+qal*gbn*gbn
                  qsca(i)=qsca(i)+qsl*gbn*gbn
               enddo
            enddo
            close(3)
         endif
!
!  send to the other processors
!
         if(numprocs.gt.1) then
            call ms_mpi(mpi_command='barrier')
            call ms_mpi(mpi_command='bcast',mpi_send_buf_dp=qext,mpi_number=nsphere,mpi_rank=0)
            call ms_mpi(mpi_command='bcast',mpi_send_buf_dp=qabs,mpi_number=nsphere,mpi_rank=0)
            call ms_mpi(mpi_command='bcast',mpi_send_buf_dp=qsca,mpi_number=nsphere,mpi_rank=0)
            call ms_mpi(mpi_command='bcast',mpi_send_buf_c=tc,mpi_number=sizetm,mpi_rank=0)
         endif
         allocate(dm(-nodr-1:nodr+1,3,nodr,2,nodr,2))
         if(rank.eq.0) then
            time2=mytime()-time1
            call timewrite(iunit,' t matrix read time:',time2)
            time1=mytime()
         endif
         nodr2=nodr+nodr
         nblk=nodr*(nodr+2)
         dm=(0.d0,0.d0)
         sizedm=size(dm)
         call init(nodr2)
!
!  compute the GB modified T matrix
!
         do n=1,nodr
            gbn=dexp(-((dble(n)+.5d0)*cbeam)**2.)
            cin=ci**(n+1)
            pp(n,1,1) =-.5d0*cin*fnr(n+n+1)*gbn
            pp(n,2,1) =-pp(n,1,1)
            pp(n,1,2)=-pp(n,1,1)
            pp(n,2,2)=pp(n,2,1)
         enddo
         do n=1,nodr
            nn1=n*(n+1)
            do m=-n,n
               mn=nn1+m
               do p=1,2
                  do l=1,nodr
                     do k=-l,l
                        kl=l*(l+1)+k
                        a=tc(p,mn,1,kl)
                        tc(p,mn,1,kl)=tc(p,mn,1,kl)*pp(l,1,1)&
                           +tc(p,mn,2,kl)*pp(l,1,2)
                        tc(p,mn,2,kl)=a*pp(l,2,1)+tc(p,mn,2,kl)*pp(l,2,2)
                     enddo
                  enddo
               enddo
            enddo
         enddo
!
!  determine the distribution of work load among the processors
!
         nblkw=nodr2*(nodr2+2)+1
         allocate(windex(nblkw),vindex(nblkw),wvindex(0:numprocs-1),wvnum(0:numprocs-1))
         w=0
         do n=0,nodr2
            do m=-n,n
               w=w+1
               windex(w)=n
               vindex(w)=m
            enddo
         enddo
         wvperproc=dble(nblkw)/dble(numprocs)
         sum=0.
         do i=0,numprocs-1
            wvindex(i)=floor(sum)
            sum=sum+wvperproc
         enddo
         do i=0,numprocs-2
            wvnum(i)=wvindex(i+1)-wvindex(i)
         enddo
         wvnum(numprocs-1)=nblkw-wvindex(numprocs-1)
         if(rank.eq.0) then
            write(iunit,'('' d matrix calculation, order+degree per proc.:'',f9.2)') &
                wvperproc
            call flush(iunit)
         endif
!
!  the big loop
!
         do wv=wvindex(rank)+1,wvindex(rank)+wvnum(rank)
            w=windex(wv)
            v=vindex(wv)
            bm=(0.d0,0.d0)
            do n=1,nodr
               nn1=n*(n+1)
               do l=max(1,abs(w-n)),min(nodr,w+n)
                  am(1,l,1)=0.d0
                  am(1,l,2)=0.d0
                  am(2,l,1)=0.d0
                  am(2,l,2)=0.d0
               enddo
               do t=-n,n
                  tn=nn1+t
                  lmax=min(nodr,w+n)
                  call vcfunc(v,w,-t,n,vc)
                  do l=max(1,abs(v-t),abs(n-w)),lmax
                     ll1=l*(l+1)
                     tvl=ll1+t-v
                     do k=1,2
                        do p=1,2
                           am(k,l,p)=am(k,l,p)+vc(l)*tc(p,tn,k,tvl)
                        enddo
                     enddo
                  enddo
               enddo
               do m=-n,n
                  mn=nn1+m
                  do k=1,2
                     u=m-(-3+2*k)
                     if(abs(u).le.w) then
                        lmax=min(nodr,w+n)
                        call vcfunc(-u,w,m,n,vc)
                        do l=max(1,abs(w-n)),lmax
                           fl=-(-1)**l*vc(l)/dble(l+l+1)
                           do p=1,2
                              bm(k,mn,p)=bm(k,mn,p)+am(k,l,p)*fl
                           enddo
                        enddo
                     endif
                  enddo
               enddo
            enddo
            do u=-min(w,nodr+1),min(w,nodr+1)
               do ku=1,3
                  if(ku.eq.1) then
                     k=-1
                     k1=-1
                  elseif(ku.eq.2) then
                     k=1
                     k1=1
                  else
                     k=1
                     k1=-1
                  endif
                  m=u+k
                  ns=max(1,abs(m))
                  ik=(k+1)/2+1
                  ik1=(k1+1)/2+1
                  m1=u+k1
                  do n=ns,nodr
                     nu=n*(n+1)+m
                     n1s=max(1,abs(m1),n-nodrw)
                     n1e=min(nodr,n+nodrw)
                     do n1=n1s,n1e
                        cin=ci**(n-n1)
                        nu1=n1*(n1+1)+m1
                        fl=-fnr(n+n+1)*fnr(n1+n1+1)*dble(w+w+1)
                        do p=1,2
                           do p1=1,2
                              a=bm(ik,nu,p)*cin*fl*conjg(bm(ik1,nu1,p1))
                              dm(u,ku,n,p,n1,p1)=dm(u,ku,n,p,n1,p1)+a
                           enddo
                        enddo
                     enddo
                  enddo
               enddo
            enddo
         enddo
         deallocate(tc)
         call ms_mpi(mpi_command='barrier')
         call ms_mpi(mpi_command='allreduce',mpi_recv_buf_dc=dm,&
              mpi_number=sizedm,mpi_operation=ms_mpi_sum)
         if(rank.eq.0) then
            time2=mytime()-time1
            call timewrite(iunit,' d matrix time:',time2)
            time1=mytime()
         endif
!
!  compute the expansion coefficients
!
         aw=0.d0
         bw=0.d0
         cw=0.d0
         dw=0.d0
         do w=0,nodrw
            do n=1,nodr
               n1s=max(1,abs(n-w))
               n1e=min(nodr,n+w)
               do n1=n1s,n1e
                  do k=1,3
                     do p=1,2
                        do p1=1,2
                           fm(k,n,p,n1,p1)=0.
                        enddo
                     enddo
                  enddo
               enddo
            enddo
            do u=-nodr-1,nodr+1
               do k=-1,1,2
                  m=u+k
                  ik=(k+1)/2+1
                  ns=max(1,abs(m))
                  do n=ns,nodr
                     n1max=min(w+n,nodr)
                     call vcfunc(m,n,0,w,vc)
                     do n1=ns,nodr
                        if((n+n1.lt.w).or.(abs(n-n1).gt.w)) cycle
                        fl=-(-1)**n*vc(n1)*fnr(w+w+1)/fnr(n1+n1+1)
                        do p=1,2
                           do p1=1,2
                              fm(ik,n,p,n1,p1)=fm(ik,n,p,n1,p1)+dm(u,ik,n,p,n1,p1)*fl
                           enddo
                        enddo
                     enddo
                  enddo
               enddo
               if(w.lt.2) cycle
               m=u+1
               m1=u-1
               ns=max(1,abs(m))
               n1s=max(1,abs(m1))
               do n=ns,nodr
                  n1max=min(w+n,nodr)
                  call vcfunc(m,n,-2,w,vc)
                  do n1=n1s,nodr
                     if((n+n1.lt.w).or.(abs(n-n1).gt.w)) cycle
                     fl=-(-1)**n*vc(n1)*fnr(w+w+1)/fnr(n1+n1+1)
                     do p=1,2
                        do p1=1,2
                           fm(3,n,p,n1,p1)=fm(3,n,p,n1,p1)+dm(u,3,n,p,n1,p1)*fl
                        enddo
                     enddo
                  enddo
               enddo
            enddo
            do n=1,nodr
               n1s=max(1,abs(n-w))
               n1e=min(nodr,n+w)
               in=(-1)**n
               n1max=min(w+n,nodr)
               call vcfunc(1,n,0,w,vc)
               do n1=n1s,n1e
                  fl=2.d0*in*vc(n1)*fnr(w+w+1)/fnr(n1+n1+1)
                  i=mod(n+n1-w,2)+1
                  do p=1,2
                     p1=(2-i)*p+(i-1)*(3-p)
                     do k=-1,1,2
                        ik=(k+1)/2+1
                        aw(0,k,w)=aw(0,k,w)+fm(ik,n,p,n1,p1)*fl
                        bw(0,k,w)=bw(0,k,w)+fm(ik,n,p,n1,3-p1)*fl
                     enddo
                     bw(2,0,w)=bw(2,0,w)+fm(3,n,p,n1,3-p1)*fl
                     aw(2,0,w)=aw(2,0,w)+fm(3,n,p,n1,p1)*fl
                  enddo
               enddo
               if(w.lt.2) cycle
               call vcfunc(1,n,-2,w,vc)
               do n1=n1s,n1e
                  fl=2.d0*in*vc(n1)*fnr(w+w+1)/fnr(n1+n1+1)
                  i=mod(n+n1-w,2)+1
                  do p=1,2
                     p1=(2-i)*p+(i-1)*(3-p)
                     do k=-1,1,2
                        ik=(k+1)/2+1
                        aw(2,k,w)=aw(2,k,w)+fm(ik,n,p,n1,p1)*fl*(-1)**p1
                        bw(2,k,w)=bw(2,k,w)+fm(ik,n,p,n1,3-p1)*fl*(-1)**(3-p1)
                     enddo
                  enddo
                  fl2=2.*(-1)**(n1+w)*vc(n1)*fnr(w+w+1)/fnr(n1+n1+1)
                  do p=1,2
                     do p1=1,2
                        cw(w)=cw(w)+fm(3,n,p,n1,p1)*fl*(-1)**p1
                        dw(w)=dw(w)+fm(3,n,p,n1,p1)*fl2*(-1)**p
                     enddo
                  enddo
               enddo
            enddo
         enddo
         do w=0,nodrw
            do k=-1,1
               do i=0,2
                  aw(i,k,w)=aw(i,k,w)*2./xv/xv
                  bw(i,k,w)=bw(i,k,w)*2./xv/xv
               enddo
            enddo
            cw(w)=cw(w)*2./xv/xv
            dw(w)=dw(w)*2./xv/xv
         enddo
         do n=0,nodrw
            sm(1,1,n)=aw(0,-1,n)+aw(0,1,n)
            sm(1,2,n)=aw(2,-1,n)+aw(2,1,n)
            sm(1,3,n)=2.d0*dimag(aw(2,0,n))
            sm(1,4,n)=aw(0,1,n)-aw(0,-1,n)
            sm(2,2,n)=dw(n)
            sm(2,3,n)=dimag(dw(n))
            sm(2,4,n)=aw(2,1,n)-aw(2,-1,n)
            sm(3,2,n)=dimag(cw(n))
            sm(3,3,n)=cw(n)
            sm(3,4,n)=dimag(bw(2,-1,n)-bw(2,1,n))
            sm(4,4,n)=bw(0,1,n)-bw(0,-1,n)
         enddo
!
!  normalization
!
         qsca0=sm(1,1,0)
         do n=0,nodrw
            sm(1,1,n)=sm(1,1,n)/qsca0
            sm(1,2,n)=sm(1,2,n)/qsca0
            sm(1,3,n)=sm(1,3,n)/qsca0
            sm(1,4,n)=sm(1,4,n)/qsca0
            sm(2,2,n)=sm(2,2,n)/qsca0
            sm(2,3,n)=sm(2,3,n)/qsca0
            sm(2,4,n)=sm(2,4,n)/qsca0
            sm(3,2,n)=sm(3,2,n)/qsca0
            sm(3,3,n)=sm(3,3,n)/qsca0
            sm(3,4,n)=sm(3,4,n)/qsca0
            sm(4,4,n)=sm(4,4,n)/qsca0
         enddo
         call ms_mpi(mpi_command='barrier')
         if(rank.eq.0) then
            time2=mytime()-time1
            call timewrite(iunit,' scat matrix coef time:',time2)
         endif
         deallocate(windex,vindex,wvindex,wvnum,dm)
         end subroutine ranorientscatmatrix
!
!  calculation of the RO scattering matrix from the GSF expansion
!
!
!  original: 15 January 2011
!  revised: 21 February 2011: changed normalization on S11
!
         subroutine ranorienscatmatrixcalc(nt,tmin,tmax,iscale,smc,nodrexp,sm)
         use specialfuncs
         use numconstants
         implicit none
         integer :: nt,iscale,nodrexp,i,j,k,n,nn0,nnp2,nnm2
         real(8) :: tmin,tmax,smc(4,4,0:nodrexp),sm(4,4,nt),dc(-2:2,0:nodrexp*(nodrexp+2)), &
                    ct,th,qsca
         do i=1,nt
            if(nt.eq.1) then
               th=tmin
            else
               th=tmin+(tmax-tmin)*dble(i-1)/dble(nt-1)
            endif
            ct=cos(th*pi/180.d0)
!
!     dc is the normalized generalized spherical function
!     dc(k,n*(n+1)+m) = ((n-k)!(n+m)!/(n+k)!/(n-m)!)^(1/2) D^k_{mn},
!     where D^k_{mn} is defined in M&M JOSA 96
!
            call rotcoef(ct,2,nodrexp,dc)
            do j=1,4
               do k=j,4
                  sm(j,k,i)=0.d0
               enddo
            enddo
            do n=0,nodrexp
               nn0=n*(n+1)
               nnp2=nn0+2
               nnm2=nn0-2
               sm(1,1,i)=sm(1,1,i)+dc(0,nn0)*smc(1,1,n)
               sm(1,4,i)=sm(1,4,i)+dc(0,nn0)*smc(1,4,n)
               sm(4,4,i)=sm(4,4,i)+dc(0,nn0)*smc(4,4,n)
               if(n.ge.2) then
                  sm(1,2,i)=sm(1,2,i)+dc(2,nn0)*smc(1,2,n)
                  sm(2,4,i)=sm(2,4,i)+dc(2,nn0)*smc(2,4,n)
                  sm(3,4,i)=sm(3,4,i)+dc(2,nn0)*smc(3,4,n)
                  sm(1,3,i)=sm(1,3,i)+dc(2,nn0)*smc(1,3,n)
                  sm(2,2,i)=sm(2,2,i)+dc(2,nnm2)*smc(2,2,n)+dc(2,nnp2)*smc(3,3,n)
                  sm(2,3,i)=sm(2,3,i)+dc(2,nnp2)*smc(2,3,n)+dc(2,nnp2)*smc(3,2,n)
                  sm(3,3,i)=sm(3,3,i)-dc(2,nnm2)*smc(2,2,n)+dc(2,nnp2)*smc(3,3,n)
               endif
            enddo
!
!  discontiued scaling option: now done in main program
!
!            if(iscale.eq.1) then
!               do j=1,4
!                  do k=j,4
!                     if(j.ne.1.or.k.ne.1) then
!                        sm(j,k,i)=sm(j,k,i)/sm(1,1,i)
!                     endif
!                  enddo
!               enddo
!            endif
!
!    here are the VV and HH differential cross sections
!
!            gvv=.25*(sm(1,1)+sm(2,2)-2.*sm(1,2))
!            ghh=.25*(sm(1,1)+sm(2,2)+2.*sm(1,2))
!
         enddo
         return
         end subroutine ranorienscatmatrixcalc
      end module scatprops
!
! module nearfield contains local data and subroutines for near field calculation
!
!
!  last revised: 15 January 2011
!  30 March 2011: added optical activity
!
      module nearfield
      implicit none
      integer, private :: axialinc,ndimpw,nodrpwmax
      integer, private, allocatable :: nblk_nf(:),noff_nf(:)
      real(8), private :: rplotmax
      complex(8), allocatable, private :: amnp_nf(:),cmnp_nf(:),pmnp_nf(:), &
               amn3mp_nf(:),cmn3mp_nf(:),pmn3mp_nf(:)
      contains
!
!  nearfieldspherepart calculates the field at point xg generated by the spheres
!
!
!  last revised: 15 January 2011
!  30 March 2011: added optical activity
!
         subroutine nearfieldspherepart(xg,nsphere,xsp,rpos,ri,&
                    nodr,neqns,insphere,efield,hfield)
         use specialfuncs
         use numconstants
         implicit none
         integer :: nsphere,nodr(nsphere),neqns,i,insphere,nblki,n
         real(8) :: xg(3),xsp(nsphere),rpos(3,nsphere),x(3),r
         complex(8) :: ri(2,nsphere),vwh(3,neqns),efield(3),hfield(3),ri0,cn1,cn2
         complex(8), allocatable :: vwhleft(:,:,:),vwhright(:,:,:)

!
!  find if the point is inside a sphere
!
         insphere=0
         do i=1,nsphere
            x=xg(:)-rpos(:,i)
            r=sqrt(dot_product(x,x))
            if(r.le.xsp(i)) then
               insphere=i
               exit
            endif
         enddo
!
!  do the calculations
!
         if(insphere.eq.0) then
!
!  outside a sphere: field = scattered
!
            do i=1,nsphere
               x=xg(:)-rpos(:,i)
               ri0=(1.d0,0.d0)
               call vwhcalc(x,ri0,nodr(i),3,vwh(1:3,noff_nf(i)+1:noff_nf(i)+nblk_nf(i)))
            enddo
            efield(:)=matmul(vwh(:,1:neqns),amnp_nf(1:neqns))
            hfield(:)=matmul(vwh(:,1:neqns),amn3mp_nf(1:neqns))/dcmplx(0.d0,1.d0)
         else
!
!  inside a sphere: field = internal
!
            i=insphere
            if(abs(ri(1,i)-ri(2,i)).eq.0) then
               x=xg(:)-rpos(:,i)
               call vwhcalc(x,ri(1,i),nodr(i),1,vwh)
               efield(:)=matmul(vwh(:,1:nblk_nf(i)), &
                   cmnp_nf(noff_nf(i)+1:noff_nf(i)+nblk_nf(i)))
               hfield(:)=matmul(vwh(:,1:nblk_nf(i)), &
                   cmn3mp_nf(noff_nf(i)+1:noff_nf(i)+nblk_nf(i)))*ri(1,i)/dcmplx(0.d0,1.d0)
            else
               nblki=nodr(i)*(nodr(i)+2)
               allocate(vwhleft(3,2,nblki),vwhright(3,2,nblki))
               x=xg(:)-rpos(:,i)
               call vwhcalc(x,ri(1,i),nodr(i),1,vwhleft)
               call vwhcalc(x,ri(2,i),nodr(i),1,vwhright)
               efield=0.d0
               hfield=0.d0
               do n=1,nblki
                  cn1=cmnp_nf(noff_nf(i)+2*n-1)
                  cn2=cmnp_nf(noff_nf(i)+2*n)
                  efield(:)=efield(:)+(vwhleft(:,1,n)+vwhleft(:,2,n))*cn1 &
                         +(vwhright(:,1,n)-vwhright(:,2,n))*cn2
                  hfield(:)=hfield(:)+((vwhleft(:,2,n)+vwhleft(:,1,n))*cn1*ri(1,i) &
                         +(vwhright(:,2,n)-vwhright(:,1,n))*cn2*ri(2,i))/dcmplx(0.d0,1.d0)
               enddo
               deallocate(vwhleft,vwhright)
            endif
         endif
         end subroutine nearfieldspherepart
!
!  nearfieldincidentpart calculates the incident field at point xg using a regular
!  vswh expansion
!
!
!  last revised: 15 January 2011
!
         subroutine nearfieldincidentpart(xg,nodrpw,efield,hfield)
         use specialfuncs
         use numconstants
         implicit none
         integer :: nblkpw,nodrpw
         real(8) :: xg(3),r,epspw
         complex(8) :: vwhpw(3,nodrpw*(nodrpw+2)*2),vwhpwaxial(3,4*nodrpw), &
                       efield(3),hfield(3)
!
!  oblique incidence: use the full expansion
!
         if(axialinc.eq.0) then
            call vwhcalc(xg,(1.d0,0.d0),nodrpw,1,vwhpw)
            nblkpw=nodrpw*(nodrpw+2)*2
            efield(:)=matmul(vwhpw(:,1:nblkpw),pmnp_nf(1:nblkpw))
            hfield(:)=matmul(vwhpw(:,1:nblkpw),pmn3mp_nf(1:nblkpw))/dcmplx(0.d0,1.d0)
         else
!
!  axial incidence: use the shortcut
!
            call vwhaxialcalc(xg,(1.d0,0.d0),nodrpw,1,vwhpwaxial)
            nblkpw=4*nodrpw
            efield(:)=matmul(vwhpwaxial(:,1:nblkpw),pmnp_nf(1:nblkpw))
            hfield(:)=matmul(vwhpwaxial(:,1:nblkpw),pmn3mp_nf(1:nblkpw))/dcmplx(0.d0,1.d0)
         endif
         end subroutine nearfieldincidentpart
!
!  nearfieldincidentcoef generates the reshaped array of incident field coefficients
!
!
!  last revised: 15 January 2011
!
         subroutine nearfieldincidentcoef(nodrpw,alpha,beta,gamma,cbeam,epspw)
         use specialfuncs
         use spheredata
         use miecoefdata
         use numconstants
         implicit none
         integer :: m,n,p,nn1,mn,mnp,nodrpw
         real (8) :: alpha,beta,cbeam,gamma,epspw,cgamma,sgamma
         complex(8), allocatable :: pmnp0(:,:,:,:)
         allocate(pmnp0(0:nodrpw+1,nodrpw,2,2))
         if(allocated(pmnp_nf)) deallocate(pmnp_nf,pmn3mp_nf)
         if(beta.ne.0.d0) then
            axialinc=0
            ndimpw=2*nodrpw*(nodrpw+2)
         else
            axialinc=1
            ndimpw=4*nodrpw
         endif
         allocate(pmnp_nf(ndimpw),pmn3mp_nf(ndimpw))
         if(cbeam.eq.0.d0) then
            call planewavecoef(alpha,beta,nodrpw,pmnp0)
         else
            call gaussianbeamcoef(alpha,beta,cbeam,nodrpw,pmnp0)
         endif
         cgamma=cos(gamma)
         sgamma=sin(gamma)
         if(axialinc.eq.0) then
            do n=1,nodrpw
               nn1=n*(n+1)
               do p=1,2
                  do m=-n,-1
                     mn=nn1+m
                     mnp=2*(mn-1)+p
                     pmnp_nf(mnp)=pmnp0(n+1,-m,p,1)*cgamma+pmnp0(n+1,-m,p,2)*sgamma
                     pmn3mp_nf(mnp)=pmnp0(n+1,-m,3-p,1)*cgamma+pmnp0(n+1,-m,3-p,2)*sgamma
                  enddo
                  do m=0,n
                     mn=nn1+m
                     mnp=2*(mn-1)+p
                     pmnp_nf(mnp)=pmnp0(m,n,p,1)*cgamma+pmnp0(m,n,p,2)*sgamma
                     pmn3mp_nf(mnp)=pmnp0(m,n,3-p,1)*cgamma+pmnp0(m,n,3-p,2)*sgamma
                  enddo
               enddo
            enddo
         else
            do n=1,nodrpw
               do p=1,2
                  mnp=4*(n-1)+p
                  pmnp_nf(mnp)=pmnp0(n+1,1,p,1)*cgamma+pmnp0(n+1,1,p,2)*sgamma
                  pmn3mp_nf(mnp)=pmnp0(n+1,1,3-p,1)*cgamma+pmnp0(n+1,1,3-p,2)*sgamma
                  pmnp_nf(mnp+2)=pmnp0(1,n,p,1)*cgamma+pmnp0(1,n,p,2)*sgamma
                  pmn3mp_nf(mnp+2)=pmnp0(1,n,3-p,1)*cgamma+pmnp0(1,n,3-p,2)*sgamma
               enddo
            enddo
         endif
         deallocate(pmnp0)
         end subroutine nearfieldincidentcoef
!
!  nearfieldpointcalc: if newcalc = 1, generates the reshaped incident, scattered, and
!                      internal field coefficients, and returns with newcalc=0
!                      if newcalc = 0, generates the field at point xg
!
!
!  last revised: 15 January 2011
!  30 March 2011: added optical activity
!
         subroutine nearfieldpointcalc(neqns,nsphere,nodr,alpha,beta,cbeam,xsp,rpos,ri,amnp, &
                    gamma,epspw,xg,newcalc,efield,hfield)
         use specialfuncs
         use spheredata
         use miecoefdata
         use numconstants
         implicit none
         integer :: nsphere,neqns,nodr(nsphere),i,j,k,m,n,p,nn1,mn,nodrpw,newcalc, &
                    insphere
         real (8) :: alpha,beta,cbeam,xsp(nsphere),rpos(3,nsphere),xg(3),xgp(3), &
                     gamma,epspw,rplot,cgamma,sgamma
         complex(8) :: amnp(neqns,2),ri(2,nsphere),efield(3),hfield(3),einc(3),hinc(3),ri0, &
                       ct1,ct2
         complex(8), allocatable :: pmnp0(:,:,:,:),cnmie(:,:,:),amnpt(:,:),cmnpt(:,:)
!
!  initialization operations: newcalc=1
!
         if(newcalc.eq.1) then
            if(allocated(amnp_nf)) deallocate(amnp_nf,cmnp_nf,amn3mp_nf,cmn3mp_nf, &
                     noff_nf,nblk_nf)
            allocate(amnp_nf(neqns),cmnp_nf(neqns),amn3mp_nf(neqns),cmn3mp_nf(neqns), &
                     noff_nf(nsphere),nblk_nf(nsphere))
            noff_nf(1)=0
            do i=1,nsphere
               nblk_nf(i)=2*nodr(i)*(nodr(i)+2)
               if(i.lt.nsphere) noff_nf(i+1)=noff_nf(i)+nblk_nf(i)
            enddo
            cgamma=cos(gamma)
            sgamma=sin(gamma)
            do i=1,nsphere
               ri0=2.d0/(1.d0/ri(1,i)+1.d0/ri(2,i))
               allocate(pmnp0(0:nodr(i)+1,nodr(i),2,2),cnmie(2,2,nodr(i)),&
                        amnpt(2,nodr(i)*(nodr(i)+2)),cmnpt(2,nodr(i)*(nodr(i)+2)))
               call getmiedata(which_sphere=i,sphere_int_mie_coefficients=cnmie)
               do p=1,2
                  pmnp0(0:nodr(i)+1,1:nodr(i),1:2,p) &
                      =reshape(amnp(noff_nf(i)+1:noff_nf(i)+nblk_nf(i),p),(/nodr(i)+2,nodr(i),2/))
               enddo
               if(abs(ri(1,i)-ri(2,i)).gt.1.d-10) then
                  do n=1,nodr(i)
                     nn1=n*(n+1)
                     do p=1,2
                        do m=-n,-1
                           mn=nn1+m
                           amnpt(p,mn)=pmnp0(n+1,-m,p,1)*cgamma+pmnp0(n+1,-m,p,2)*sgamma
                        enddo
                        do m=0,n
                           mn=nn1+m
                           amnpt(p,mn)=pmnp0(m,n,p,1)*cgamma+pmnp0(m,n,p,2)*sgamma
                        enddo
                     enddo
                     do m=-n,n
                        mn=nn1+m
                        ct1=amnpt(1,mn)*cnmie(1,1,n)+amnpt(2,mn)*cnmie(1,2,n)
                        ct2=amnpt(1,mn)*cnmie(2,1,n)+amnpt(2,mn)*cnmie(2,2,n)
                        cmnpt(1,mn)=ct1
                        cmnpt(2,mn)=-(0.d0,1.d0)/ri0*ct2
                     enddo
                  enddo
               else
                  do n=1,nodr(i)
                     nn1=n*(n+1)
                     do p=1,2
                        do m=-n,-1
                           mn=nn1+m
                           amnpt(p,mn)=pmnp0(n+1,-m,p,1)*cgamma+pmnp0(n+1,-m,p,2)*sgamma
                           cmnpt(p,mn)=amnpt(p,mn)*cnmie(p,p,n)
                        enddo
                        do m=0,n
                           mn=nn1+m
                           amnpt(p,mn)=pmnp0(m,n,p,1)*cgamma+pmnp0(m,n,p,2)*sgamma
                           cmnpt(p,mn)=amnpt(p,mn)*cnmie(p,p,n)
                        enddo
                     enddo
                  enddo
               endif
               amnp_nf(noff_nf(i)+1:noff_nf(i)+nblk_nf(i))= &
                      reshape(amnpt(1:2,1:nodr(i)*(nodr(i)+2)),(/nblk_nf(i)/))
               cmnp_nf(noff_nf(i)+1:noff_nf(i)+nblk_nf(i))= &
                      reshape(cmnpt(1:2,1:nodr(i)*(nodr(i)+2)),(/nblk_nf(i)/))
               amn3mp_nf(noff_nf(i)+1:noff_nf(i)+nblk_nf(i))= &
                      reshape(amnpt(2:1:-1,1:nodr(i)*(nodr(i)+2)),(/nblk_nf(i)/))
               cmn3mp_nf(noff_nf(i)+1:noff_nf(i)+nblk_nf(i))= &
                      reshape(cmnpt(2:1:-1,1:nodr(i)*(nodr(i)+2)),(/nblk_nf(i)/))
               deallocate(pmnp0,cnmie,amnpt,cmnpt)
            enddo
            rplot=sqrt(dot_product(xg,xg))
            rplotmax=rplot
            call planewavetruncationorder(rplot,epspw,nodrpw)
            nodrpwmax=nodrpw
            call nearfieldincidentcoef(nodrpw,alpha,beta,gamma,cbeam,epspw)
            newcalc=0
            return
         endif
!
!  point calculation operations: newcalc=0
!  first determine the required order of the incident field expansion, and recalculate
!  field coefficients, if necessary
!
         rplot=sqrt(dot_product(xg,xg))
         rplotmax=max(rplot,rplotmax)
         call planewavetruncationorder(rplot,epspw,nodrpw)
         if(nodrpw.gt.nodrpwmax) then
            nodrpwmax=nodrpw
            call nearfieldincidentcoef(nodrpw,alpha,beta,gamma,cbeam,epspw)
         endif
         efield=0.d0
         hfield=0.d0
!
!  calculate the sphere contribution to the field
!
         call nearfieldspherepart(xg,nsphere,xsp,rpos,ri,&
                    nodr,neqns,insphere,efield,hfield)
!
!  if the point is external to the spheres, calculate the incident field
!
         if(insphere.eq.0) then
            call nearfieldincidentpart(xg,nodrpw,einc,hinc)
            efield=efield+einc
            hfield=hfield+hinc
         endif
         end subroutine nearfieldpointcalc
!
!  nearfieldgridcalc is an MPI--enabled subroutine for calculating field points on a
!  rectangular grid.   Writes the data to nfoutunit.
!
!
!  last revised: 15 January 2011
!  30 March 2011: added optical activity
!  changed so that input positions are defined relative to sphere position file origin, and
!  not the gb focal point.
!
         subroutine nearfieldgridcalc(neqns,nsphere,nodr,alpha,beta,cbeam,xsp,rpos,ri,amnp, &
                    nfplane,nfplanepos0,nfplanevert0,gbfocus,deltax,gamma,nfoutunit,epspw, &
                    nfoutdata,runprintunit)
         use mpidefs
         use mpidata
         use intrinsics
         use specialfuncs
         use spheredata
         use miecoefdata
         use numconstants
         implicit none
         integer :: nsphere,neqns,nodr(nsphere),nfplane,runprintunit,npoints1,npoints2, &
                    npoints,i,j,k,np23,gcoord(3),rank,numprocs,nrowperproc,nrowrem, &
                    npoints1by5,plotincfield,nsp,nfoutunit,nfoutdata,newcalc
         real (8) :: alpha,beta,cbeam,xsp(nsphere),rpos(3,nsphere),nfplanepos,&
                     nfplanevert(2,2),frowperproc,rowsum,xg(3),xgp(3),deltax,gamma,epspw, &
                     time1,time2,xplot(3,nsphere),xi0,ri0,esquare,xgpmax(3),rplot, &
                     gbfocus(3),nfplanepos0,nfplanevert0(2,2)
         complex(8) :: amnp(neqns,2),ri(2,nsphere),efield(3),hfield(3)
         integer, allocatable :: efindex(:),efnum(:)
         complex(8), allocatable :: efieldrow(:,:),efieldrowt(:,:),hfieldrow(:,:),hfieldrowt(:,:)
         call ms_mpi(mpi_command='size',mpi_size=numprocs)
         call ms_mpi(mpi_command='rank',mpi_rank=rank)
!
!  determine the plane
!
         if(nfplane.eq.1) then
            gcoord=(/2,3,1/)
         elseif(nfplane.eq.2) then
            gcoord=(/3,1,2/)
         else
            gcoord=(/1,2,3/)
         endif
!
!  shift the coordinates to gb focal origin
!
         nfplanevert(1,1)=nfplanevert0(1,1)-gbfocus(gcoord(1))
         nfplanevert(1,2)=nfplanevert0(1,2)-gbfocus(gcoord(1))
         nfplanevert(2,1)=nfplanevert0(2,1)-gbfocus(gcoord(2))
         nfplanevert(2,2)=nfplanevert0(2,2)-gbfocus(gcoord(2))
         nfplanepos=nfplanepos0-gbfocus(gcoord(3))
         xg(gcoord(3))=nfplanepos
!
!  determine the number of points
!
         npoints1=nint((nfplanevert(1,2)-nfplanevert(1,1))/deltax)+1
         npoints2=nint((nfplanevert(2,2)-nfplanevert(2,1))/deltax)+1
         npoints=npoints1*npoints2
!
!  find the maximum point-to-target origin distance and initialize the field calculation
!
         xgp(3)=nfplanepos
         rplotmax=0.d0
         xgpmax=0.d0
         do i=1,npoints1
            xgp(1)=nfplanevert(1,1)+deltax*dble(i-1)
            do j=1,npoints2
               xgp(2)=nfplanevert(2,1)+deltax*dble(j-1)
               rplot=sqrt(dot_product(xgp,xgp))
               if(rplot.gt.rplotmax) then
                  rplotmax=rplot
                  xgpmax=xgp
               endif
            enddo
         enddo
         newcalc=1
         call nearfieldpointcalc(neqns,nsphere,nodr,alpha,beta,cbeam,xsp,rpos,ri,amnp, &
                    gamma,epspw,xgpmax,newcalc,efield,hfield)
!
!  determine the intersecting spheres
!
         nsp=0
         do i=1,nsphere
            xi0=abs(rpos(gcoord(3),i)-xg(gcoord(3)))
            if(xi0.le.xsp(i)) then
               nsp=nsp+1
               xplot(1,nsp)=rpos(gcoord(1),i)+gbfocus(gcoord(1))
               xplot(2,nsp)=rpos(gcoord(2),i)+gbfocus(gcoord(2))
               ri0=xsp(i)*xsp(i)-xi0*xi0
               if(ri0.ne.0.) ri0=sqrt(ri0)
               xplot(3,nsp)=ri0
            endif
         enddo
!
!  report to runprintunit
!
         if(rank.eq.0) then
            write(runprintunit,'('' near field calculations'')')
            write(runprintunit,'('' plane, position:'',i5,f9.3)') nfplane,nfplanepos0
            write(runprintunit,'('' rectangular plot vertices:'')')
            write(runprintunit,'('' min:'',3f9.3)') nfplanevert0(1:2,1)
            write(runprintunit,'('' max:'',3f9.3)') nfplanevert0(1:2,2)
            write(runprintunit,'('' number of plotting points, step size:'',i8,f8.3)') npoints, deltax
            write(runprintunit,'('' max plane wave order:'',i5)') nodrpwmax
         endif
!
!  determine the distribution of work among the processors
!
         allocate(efindex(0:numprocs-1),efnum(0:numprocs-1), &
                  efieldrow(3,npoints2),efieldrowt(3,npoints2), &
                  hfieldrow(3,npoints2),hfieldrowt(3,npoints2))
         np23=3*npoints2
         frowperproc=dble(npoints2)/dble(numprocs)
         rowsum=0.
         do i=0,numprocs-1
            efindex(i)=floor(rowsum)
            rowsum=rowsum+frowperproc
         enddo
         do i=0,numprocs-2
            efnum(i)=efindex(i+1)-efindex(i)
         enddo
         efnum(numprocs-1)=npoints2-efindex(numprocs-1)
         npoints1by5=int(npoints1/5.+.5)
!
!  do the calculations and write the results to the file
!
         if(rank.eq.0) then
            write(nfoutunit,*) npoints1,npoints2
            write(nfoutunit,*) nsp
            do i=1,nsp
               write(nfoutunit,'(3e13.5)') xplot(1,i),xplot(2,i),xplot(3,i)
            enddo
            time1=mytime()
         endif
         xg(gcoord(3))=nfplanepos
         newcalc=0
         do i=1,npoints1
            xg(gcoord(1))=nfplanevert(1,1)+deltax*dble(i-1)
            xgp(gcoord(1))=nfplanevert0(1,1)+deltax*dble(i-1)
            efieldrowt=0.d0
            efieldrow=0.d0
            hfieldrowt=0.d0
            hfieldrow=0.d0
            do j=efindex(rank)+1,efindex(rank)+efnum(rank)
               xg(gcoord(2))=nfplanevert(2,1)+deltax*dble(j-1)
               call nearfieldpointcalc(neqns,nsphere,nodr,alpha,beta,cbeam,xsp,rpos,ri,amnp, &
                    gamma,epspw,xg,newcalc,efieldrowt(:,j),hfieldrowt(:,j))
            enddo
            call ms_mpi(mpi_command='barrier')
            call ms_mpi(mpi_command='reduce',mpi_send_buf_dc=efieldrowt,mpi_recv_buf_dc=efieldrow,&
                 mpi_number=np23,mpi_rank=0,mpi_operation=ms_mpi_sum)
            if(nfoutdata.ge.2) then
               call ms_mpi(mpi_command='reduce',mpi_send_buf_dc=hfieldrowt,mpi_recv_buf_dc=hfieldrow,&
                    mpi_number=np23,mpi_rank=0,mpi_operation=ms_mpi_sum)
            endif
            if(rank.eq.0) then
               do j=1,npoints2
                  xgp(gcoord(2))=nfplanevert0(2,1)+deltax*dble(j-1)
                  if(nfoutdata.eq.0) then
                     esquare=dot_product(efieldrow(:,j),efieldrow(:,j))
                     write(nfoutunit,'(2f9.4,e13.5)') xgp(gcoord(1)),xgp(gcoord(2)),esquare
                  elseif(nfoutdata.eq.1) then
                     write(nfoutunit,'(2f9.4,6e13.5)') xgp(gcoord(1)),xgp(gcoord(2)),efieldrow(:,j)
                  else
                     write(nfoutunit,'(2f9.4,12e13.5)') xgp(gcoord(1)),xgp(gcoord(2)),efieldrow(:,j), &
                                                        hfieldrow(:,j)
                  endif
               enddo
               if(mod(i,npoints1by5).eq.0) then
                  k=i/npoints1by5
                  time2=(mytime()-time1)*dble(5-k)/dble(k)
                  call timewrite(runprintunit,' estimated time remaining:',time2)
               endif
            endif
         enddo
         deallocate(efindex,efnum,efieldrow,efieldrowt,hfieldrow,hfieldrowt)
         end subroutine nearfieldgridcalc
!
!  nearfieldaverage is an MPI--enabled subroutine for calculating average field
!  values along a line.
!
         subroutine nearfieldaverage(neqns,nsphere,nodr,alpha,beta,cbeam,xsp,rpos,ri,amnp, &
                    nfplane,nfplaneposstart0,nfplaneposend0,numberplanes,nfplanevert0,gbfocus, &
                    deltax,gamma,epspw,runprintunit,efieldavez,hfieldavez,svecavez)
         use mpidefs
         use mpidata
         use intrinsics
         use specialfuncs
         use spheredata
         use miecoefdata
         use numconstants
         implicit none
         integer :: nsphere,neqns,nodr(nsphere),nfplane,runprintunit,npoints1,npoints2, &
                    npoints,i,j,k,np23,gcoord(3),rank,numprocs,nrowperproc,nrowrem, &
                    npoints1by5,plotincfield,nsp,nfoutunit,nfoutdata,newcalc,nsend
         integer :: numberplanes
         real (8) :: alpha,beta,cbeam,xsp(nsphere),rpos(3,nsphere),nfplanepos,&
                     nfplanevert(2,2),frowperproc,rowsum,xg(3),xgp(3),deltax,gamma,epspw, &
                     time1,time2,xplot(3,nsphere),xi0,ri0,esquare,xgpmax(3),rplot, &
                     gbfocus(3),nfplanepos0,nfplanevert0(2,2),nfplaneposstart,nfplaneposend, &
                     deltanfplane,nfplaneposstart0,nfplaneposend0,svec(3),svecave(3)
         real (8) :: svecavez(3,numberplanes)
         real(8), allocatable :: xypoint(:,:)
         complex(8) :: amnp(neqns,2),ri(2,nsphere),efield(3),hfield(3),hfieldave(3),efieldave(3)
         complex(8) :: efieldavez(3,numberplanes),hfieldavez(3,numberplanes)
         integer, allocatable :: efindex(:),efnum(:)
         call ms_mpi(mpi_command='size',mpi_size=numprocs)
         call ms_mpi(mpi_command='rank',mpi_rank=rank)
!
!  determine the plane
!
         if(nfplane.eq.1) then
            gcoord=(/2,3,1/)
         elseif(nfplane.eq.2) then
            gcoord=(/3,1,2/)
         else
            gcoord=(/1,2,3/)
         endif
!
!  shift the coordinates to gb focal origin
!
         nfplanevert(1,1)=nfplanevert0(1,1)-gbfocus(gcoord(1))
         nfplanevert(1,2)=nfplanevert0(1,2)-gbfocus(gcoord(1))
         nfplanevert(2,1)=nfplanevert0(2,1)-gbfocus(gcoord(2))
         nfplanevert(2,2)=nfplanevert0(2,2)-gbfocus(gcoord(2))
         nfplaneposstart=nfplaneposstart0-gbfocus(gcoord(3))
         nfplaneposend=nfplaneposend0-gbfocus(gcoord(3))
         xg(gcoord(3))=nfplanepos
!
!  determine the number of points
!
         npoints1=nint((nfplanevert(1,2)-nfplanevert(1,1))/deltax)+1
         npoints2=nint((nfplanevert(2,2)-nfplanevert(2,1))/deltax)+1
         npoints=npoints1*npoints2
         allocate(efindex(0:numprocs-1),efnum(0:numprocs-1),xypoint(2,npoints))
         frowperproc=dble(npoints)/dble(numprocs)
         rowsum=0.
         do i=0,numprocs-1
            efindex(i)=floor(rowsum)
            rowsum=rowsum+frowperproc
         enddo
         do i=0,numprocs-2
            efnum(i)=efindex(i+1)-efindex(i)
         enddo
         efnum(numprocs-1)=npoints-efindex(numprocs-1)

         xgp(gcoord(3))=max(abs(nfplaneposstart),abs(nfplaneposend))
         rplotmax=0.d0
         xgpmax=0.d0
         k=0
         do i=1,npoints1
            xgp(gcoord(1))=nfplanevert(1,1)+deltax*dble(i-1)
            do j=1,npoints2
               xgp(gcoord(2))=nfplanevert(2,1)+deltax*dble(j-1)
               k=k+1
               xypoint(1,k)=xgp(gcoord(1))
               xypoint(2,k)=xgp(gcoord(2))
               rplot=sqrt(dot_product(xgp,xgp))
               if(rplot.gt.rplotmax) then
                  rplotmax=rplot
                  xgpmax=xgp
               endif
            enddo
         enddo
         newcalc=1
         call nearfieldpointcalc(neqns,nsphere,nodr,alpha,beta,cbeam,xsp,rpos,ri,amnp, &
                    gamma,epspw,xgpmax,newcalc,efield,hfield)
         newcalc=0

         do k=1,numberplanes
            if(numberplanes.eq.1) then
               nfplanepos=nfplaneposstart
            else
               nfplanepos=nfplaneposstart+(nfplaneposend-nfplaneposstart)*(k-1)/dble(numberplanes-1)
            endif
!
!  find the maximum point-to-target origin distance and initialize the field calculation
!
            xg(3)=nfplanepos
            efieldave=0.
            hfieldave=0.
            svecave=0.
            do i=efindex(rank)+1,efindex(rank)+efnum(rank)
               xg(gcoord(1))=xypoint(1,i)
               xg(gcoord(2))=xypoint(2,i)
               efield=0.d0
               hfield=0.d0
               call nearfieldpointcalc(neqns,nsphere,nodr,alpha,beta,cbeam,xsp,rpos,ri,amnp, &
                    gamma,epspw,xg,newcalc,efield,hfield)
               efieldave=efieldave+efield
               hfieldave=hfieldave+hfield
               hfield=conjg(hfield)/2.d0
               svec(1)=-efield(3)*hfield(2)+efield(2)*hfield(3)
               svec(2)=efield(3)*hfield(1)-efield(1)*hfield(3)
               svec(3)=-efield(2)*hfield(1)+efield(1)*hfield(2)
               svecave=svecave+svec
            enddo
            call ms_mpi(mpi_command='barrier')
            efield=0.d0
            hfield=0.d0
            svec=0.d0
            call ms_mpi(mpi_command='reduce',mpi_send_buf_dc=efieldave,mpi_recv_buf_dc=efield,&
                    mpi_number=3,mpi_rank=0,mpi_operation=ms_mpi_sum)
            call ms_mpi(mpi_command='reduce',mpi_send_buf_dc=hfieldave,mpi_recv_buf_dc=hfield,&
                    mpi_number=3,mpi_rank=0,mpi_operation=ms_mpi_sum)
            call ms_mpi(mpi_command='reduce',mpi_send_buf_dp=svecave,mpi_recv_buf_dp=svec,&
                    mpi_number=3,mpi_rank=0,mpi_operation=ms_mpi_sum)
            call ms_mpi(mpi_command='barrier')
            if(rank.eq.0) then
               efield=efield/dble(npoints)
               hfield=hfield/dble(npoints)
               svec=svec/dble(npoints)
               efieldavez(:,k)=efield
               hfieldavez(:,k)=hfield
               svecavez(:,k)=svec
               i=gcoord(3)
               write(runprintunit,'('' plane:'',i5,f9.3,2e12.4)') k,nfplanepos, &
                   svec(i)
               call flush(runprintunit)
            endif
         enddo
         nsend=3*numberplanes
         call ms_mpi(mpi_command='bcast',mpi_send_buf_dc=efieldavez, &
              mpi_number=nsend,mpi_rank=0)
         call ms_mpi(mpi_command='bcast',mpi_send_buf_dc=hfieldavez, &
              mpi_number=nsend,mpi_rank=0)
         call ms_mpi(mpi_command='bcast',mpi_send_buf_dp=svecavez, &
              mpi_number=nsend,mpi_rank=0)
         call ms_mpi(mpi_command='barrier')

         deallocate(efindex,efnum,xypoint)
         end subroutine nearfieldaverage


      end module nearfield
!
!  module solver: subroutines for solving interaction equations for fixed orientation
!  and T matrix problems
!
!
!  last revised: 15 January 2011
!
      module solver
      implicit none

      contains
!
!  tmatrixsoln: calculation of T matrix via solution of interaction equations for
!  a generalized plane wave expansion
!
!
!  original: 15 January 2011
!  revised: 21 February 2011: call for sphereqeff changed
!
         subroutine tmatrixsoln(neqns,nsphere,nodr,nodrt,xsp,rpos,epssoln,epscon,niter,&
                    calctmatrix,tmatrixfile,fftranpresent,niterstep,qext,qabs,qsca,istat)
         use mpidefs
         use mpidata
         use intrinsics
         use numconstants
         use specialfuncs
         use miecoefdata
         use spheredata
         use translation
         use scatprops
         implicit none
         integer :: iter,niter,neqns,nsphere,nodr(nsphere),ntran(nsphere),nodrt, &
                    nodrmax,i,ierr,istat,m,n,p,k,l,q,noff,nblk,ma,na,ka,la,mn,istart,iunit, &
                    rank,iexit(1),calctmatrix,lt,kt,qt,nt,mt,it,nodrtt,lstart(1),numsolns,isoln, &
                    isolnstart,igroup,ngroup,rgrank,lold,grank,nsend,nodrta(1), &
                    fftranpresent,niterstep
         integer, allocatable :: lindex(:),kindex(:)
         real(8) :: eps,err,qext(nsphere),qabs(nsphere),qsca(nsphere),xsp(nsphere),xv, &
                    rpos(3,nsphere),xij(3),qabsklq(nsphere),qscaklq(nsphere),qextklq(nsphere), &
                    f2,qexttot,qabstot,qscatot,qextold(1),qscaold(1),errqe,errqs, &
                    timetran,timesolve,time1,time2,epssoln,epscon,dtemp(4),timeorder,&
                    at1,at2,at3,at4
         real(8) :: qextl(nsphere),qabsl(nsphere),qscal(nsphere)
         real(8), allocatable :: qextgroup(:,:),qabsgroup(:,:),qscagroup(:,:)
         complex(8) :: amnp(neqns),pmnp(neqns),pmnpan(neqns)
         complex(8), allocatable :: pmnp0(:,:,:),ac(:,:,:,:),pmnpt(:,:,:),amnp0(:,:,:), &
                    amnp0group(:,:,:)
         character*30 :: tmatrixfile
         character*4 :: timeunit
         data istart,iexit/1,0/
         rank=base_rank
         rgrank=root_group_rank
         grank=group_rank
         ngroup=number_groups
         call getrunparameters(run_print_unit=iunit)
         xv=(sum(xsp**3.d0))**(1.d0/3.d0)
         nodrmax=maxval(nodr)
         qext=0.d0
         qabs=0.d0
         qsca=0.d0
         qextold=0.d0
         qscaold=0.d0
!
!  perform T matrix file operations as needed
!
         if(rank.eq.0) then
            if(calctmatrix.eq.1) then
               open(3,file=tmatrixfile)
               write(3,'(i4)') nodrt
               lstart(1)=1
            else
               open(3,file=tmatrixfile)
               write(iunit,'('' finding end of record to file '',a)') tmatrixfile
               read(3,*) nodrtt
               do l=1,nodrt
                  do k=-l,l
                     do q=1,2
                        read(3,'(3i5)',end=20,err=20) lt,kt,qt
                        do n=1,l
                           do m=-n,n
                              read(3,'(2i5,4e17.9)',end=20,err=20) nt,mt,at1,at2,at3,at4
                           enddo
                        enddo
                     enddo
                  enddo
                  do i=1,nsphere
                     read(3,'(i5,3e17.9)',end=20,err=20) it,qextl(i),qabsl(i),qscal(i)
                  enddo
                  qext=qext+qextl
                  qabs=qabs+qabsl
                  qsca=qsca+qscal
               enddo
20             close(3)
               open(3,file=tmatrixfile)
               qextold(1)=0.d0
               qabstot=0.d0
               do i=1,nsphere
                  qextold=qextold+qext(i)*xsp(i)*xsp(i)/xv/xv
                  qabstot=qabstot+qabs(i)*xsp(i)*xsp(i)/xv/xv
               enddo
               qscaold(1)=qextold(1)-qabstot
               lstart(1)=lt
               read(3,*) nodrtt
               write(iunit,'('' calculations begin with order '',i5)') lstart(1)
               do l=1,lstart(1)-1
                  do k=-l,l
                     do q=1,2
                        read(3,'(3i5)') lt,kt,qt
                        do n=1,l
                           do m=-n,n
                              read(3,'(2i5,4e17.9)') nt,mt,at1,at2,at3,at4
                           enddo
                        enddo
                     enddo
                  enddo
                  do i=1,nsphere
                     read(3,'(i5,3e17.9)') it,at1,at2,at3
                  enddo
               enddo
            endif
         endif
         call ms_mpi(mpi_command='bcast',mpi_send_buf_i=lstart,mpi_number=1,mpi_rank=0)
         call ms_mpi(mpi_command='bcast',mpi_send_buf_dp=qextold,mpi_number=1,mpi_rank=0)
         call ms_mpi(mpi_command='bcast',mpi_send_buf_dp=qscaold,mpi_number=1,mpi_rank=0)
         call ms_mpi(mpi_command='bcast',mpi_send_buf_dp=qext,mpi_number=nsphere,mpi_rank=0)
         call ms_mpi(mpi_command='bcast',mpi_send_buf_dp=qabs,mpi_number=nsphere,mpi_rank=0)
         call ms_mpi(mpi_command='bcast',mpi_send_buf_dp=qsca,mpi_number=nsphere,mpi_rank=0)
         call ms_mpi(mpi_command='barrier')
         allocate(amnp0group(2,nodrt*(nodrt+2),0:ngroup-1),qextgroup(nsphere,0:ngroup-1), &
                  qabsgroup(nsphere,0:ngroup-1),qscagroup(nsphere,0:ngroup-1))
         numsolns=2*nodrt*(nodrt+2)
         allocate(lindex(numsolns),kindex(numsolns))
!
!  find the starting point
!
         i=0
         do l=1,nodrt
            do k=-l,l
               do q=1,2
                  i=i+1
                  lindex(i)=l
                  kindex(i)=k
               enddo
            enddo
         enddo
         do i=1,numsolns
            if(lindex(i).eq.lstart(1).and.kindex(i).eq.-lstart(1)) exit
         enddo
         isolnstart=i
         qextl=0.d0
         qabsl=0.d0
         qscal=0.d0
         lold=0
!
!  begin the loop over RHS of the interaction equations.   The solutions are distributed
!  among ngroup groups of processors
!
         do isoln=isolnstart,numsolns,ngroup
            if(rank.eq.0) timeorder=mytime()
            do igroup=0,ngroup-1
               l=lindex(isoln+igroup)
               k=kindex(isoln+igroup)
               q=mod(isoln+igroup-1,2)+1
!
!  calculate the RHS
!
               if(l.eq.-k.and.q.eq.1) then
                  if(allocated(ac)) deallocate(ac,amnp0)
                  allocate(ac(2,nodrmax*(nodrmax+2),-l:l,nsphere),amnp0(0:l+1,l,2))
                  do i=1,nsphere
                     xij=rpos(:,i)
                     call gentrancoef(1,xij,(1.d0,0.d0),1,nodrmax,l,l,0,0,ac(1,1,-l,i))
                  enddo
               endif
               if(igroup.eq.rgrank) then
                  if(k.le.-1) then
                     ka=l+1
                     la=-k
                  else
                     ka=k
                     la=l
                  endif
                  noff=0
                  do i=1,nsphere
                     nblk=nodr(i)*(nodr(i)+2)*2
                     allocate(pmnp0(0:nodr(i)+1,nodr(i),2))
                     do p=1,2
                        do n=1,nodr(i)
                           do m=-n,n
                              mn=n*(n+1)+m
                              if(m.le.-1) then
                                 ma=n+1
                                 na=-m
                              else
                                 ma=m
                                 na=n
                              endif
                              pmnp0(ma,na,p)=ac(abs(p-q)+1,mn,k,i)
                           enddo
                        enddo
                     enddo
                     pmnp(noff+1:noff+nblk)=reshape(pmnp0,(/nblk/))
                     deallocate(pmnp0)
                     noff=noff+nblk
                  enddo
!
!  multiply RHS by mie coefficients
!
                  call miecoeffmult(1,nsphere,neqns,pmnp,pmnpan)
                  amnp=pmnpan
!
!  call the solver
!
                  if(fftranpresent.eq.1) then
                     call cbicgff(neqns,nsphere,niter,epssoln,pmnpan,amnp,0, &
                          niterstep,iter,err)
                  else
                     call cbicg(neqns,nsphere,niter,epssoln,pmnpan,amnp,0,iter,err)
                  endif
                  if(iter.gt.niter.or.err.gt.epssoln) istat=1
                  call sphereqeff(nsphere,neqns,nodr,nodrmax,xsp,amnp,amnp, &
                         pmnp,pmnp,qextklq,qabsklq,qscaklq)
                  qextgroup(1:nsphere,igroup)=qextklq(1:nsphere)
                  qabsgroup(1:nsphere,igroup)=qabsklq(1:nsphere)
                  qscagroup(1:nsphere,igroup)=qscaklq(1:nsphere)
!
!  compute the target-based expansion
!
                  ntran=l
                  amnp0=0.d0
                  call amncommonorigin(neqns,nsphere,nodr,ntran,l,rpos, &
                                       amnp,amnp0)
                  do n=1,l
                     do m=-n,n
                        if(m.le.-1) then
                           ma=n+1
                           na=-m
                        else
                           ma=m
                           na=n
                        endif
                        mn=n*(n+1)+m
                        do p=1,2
                           amnp0group(p,mn,igroup)=amnp0(ma,na,p)
                        enddo
                     enddo
                  enddo
               endif
            enddo
!
!  send the solutions to the rank 0 processor
!
            call ms_mpi(mpi_command='barrier')
            if(grank.eq.0) then
               if(rank.ne.0) then
                  l=lindex(isoln+rgrank)
                  nblk=l*(l+2)
                  nsend=2*nblk
                  call ms_mpi(mpi_command='send',mpi_send_buf_dc=amnp0group(1,1,rgrank),&
                       mpi_number=nsend,mpi_rank=0,mpi_comm=root_group_comm)
                  call ms_mpi(mpi_command='send',mpi_send_buf_dp=qextgroup(1,rgrank),&
                       mpi_number=nsphere,mpi_rank=0,mpi_comm=root_group_comm)
                  call ms_mpi(mpi_command='send',mpi_send_buf_dp=qabsgroup(1,rgrank),&
                       mpi_number=nsphere,mpi_rank=0,mpi_comm=root_group_comm)
                  call ms_mpi(mpi_command='send',mpi_send_buf_dp=qscagroup(1,rgrank),&
                       mpi_number=nsphere,mpi_rank=0,mpi_comm=root_group_comm)
               else
                  do igroup=1,ngroup-1
                     l=lindex(isoln+igroup)
                     nblk=l*(l+2)
                     nsend=2*nblk
                     call ms_mpi(mpi_command='recv',mpi_recv_buf_dc=amnp0group(1,1,igroup),&
                          mpi_number=nsend,mpi_rank=igroup,mpi_comm=root_group_comm)
                     call ms_mpi(mpi_command='recv',mpi_recv_buf_dp=qextgroup(1,igroup),&
                          mpi_number=nsphere,mpi_rank=igroup,mpi_comm=root_group_comm)
                     call ms_mpi(mpi_command='recv',mpi_recv_buf_dp=qabsgroup(1,igroup),&
                          mpi_number=nsphere,mpi_rank=igroup,mpi_comm=root_group_comm)
                     call ms_mpi(mpi_command='recv',mpi_recv_buf_dp=qscagroup(1,igroup),&
                          mpi_number=nsphere,mpi_rank=igroup,mpi_comm=root_group_comm)
                  enddo
               endif
            endif
            call ms_mpi(mpi_command='barrier')
!
!  write results, check for convergence
!
            if(rank.eq.0) then
               do igroup=0,ngroup-1
                  l=lindex(isoln+igroup)
                  k=kindex(isoln+igroup)
                  q=mod(isoln+igroup-1,2)+1
                  qextl=qextl+qextgroup(1:nsphere,igroup)
                  qabsl=qabsl+qabsgroup(1:nsphere,igroup)
                  qscal=qscal+qscagroup(1:nsphere,igroup)
                  qext=qext+qextgroup(1:nsphere,igroup)
                  qabs=qabs+qabsgroup(1:nsphere,igroup)
                  qsca=qsca+qscagroup(1:nsphere,igroup)
                  write(3,'(3i5)') l,k,q
                  do n=1,l
                     do m=-n,n
                        mn=n*(n+1)+m
                        write(3,'(2i5,4e17.9)') n,m,amnp0group(1,mn,igroup), &
                                                amnp0group(2,mn,igroup)
                     enddo
                  enddo
                  if(istart.eq.1.and.igroup.eq.0) then
                     time1=mytime()-timeorder
                     call timewrite(iunit,' time per group solution:',time1)
                     time2=time1*dble(numsolns-isolnstart)/dble(ngroup)
                     call timewrite(iunit,' estimated t matrix calcuation time:',time2)
                     write(iunit,'(''  n   # its  qext         qabs'',&
                         &''         qsca      error     est. time rem.'')')
                     call flush(iunit)
                     istart=0
                  endif
                  if(igroup.eq.0) then
                     timeorder=mytime()-timeorder
                     time2=timeorder*dble(numsolns-isoln)/dble(ngroup)
                     if(time2.gt.3600.d0) then
                        time2=time2/3600.d0
                        timeunit=' hrs'
                     elseif(time2.gt.60.d0) then
                        time2=time2/60.d0
                        timeunit=' min'
                     else
                        timeunit=' sec'
                     endif
                  endif
                  iexit(1)=0
                  if(k.eq.l.and.q.eq.2) then
                     qexttot=0.d0
                     qabstot=0.d0
                     do i=1,nsphere
                        qexttot=qexttot+qext(i)*xsp(i)*xsp(i)/xv/xv
                        qabstot=qabstot+qabs(i)*xsp(i)*xsp(i)/xv/xv
                        write(3,'(i5,3e17.9)') i,qextl(i),qabsl(i),qscal(i)
                     enddo
                     qextl=0.d0
                     qabsl=0.d0
                     qscal=0.d0
                     qscatot=qexttot-qabstot
                     errqe=qexttot-qextold(1)
                     errqs=qscatot-qscaold(1)
                     err=max(errqe,errqs)
                     write(iunit,'(i4,i5,4e13.5,f8.2,a4)') l,iter,qexttot,qabstot, &
                        qscatot,err,time2,timeunit
                     call flush(iunit)
                     qextold(1)=qexttot
                     qscaold(1)=qscatot
                     if(err.le.epscon) iexit(1)=1
                  endif
                  if(iexit(1).eq.1) then
                     nodrt=l
                     exit
                  endif
               enddo
            endif
            call ms_mpi(mpi_command='bcast',mpi_send_buf_i=iexit,mpi_number=1,mpi_rank=0)
            call ms_mpi(mpi_command='barrier')
            if(iexit(1).eq.1) then
!
!  solution has converged
!
               deallocate(amnp0group,qextgroup,qabsgroup,qscagroup,lindex,kindex,ac,amnp0)
               nodrta(1)=nodrt
               call ms_mpi(mpi_command='bcast',mpi_send_buf_i=nodrta,mpi_number=1,mpi_rank=0)
               nodrt=nodrta(1)
               if(rank.eq.0) then
                  write(iunit,'('' T matrix converged, order:'',i5)') nodrt
                  close(3)
                  open(3,file=tmatrixfile,form='formatted',access='direct',recl=4)
                  write(3,'(i4)',rec=1) nodrt
                  close(3)
               endif
               return
            endif
         enddo
         deallocate(amnp0group,qextgroup,qabsgroup,qscagroup,lindex,kindex,ac,amnp0)
         if(rank.eq.0) then
            write(*,'('' T matrix did not converge to set epsilon'')')
            close(3)
         endif
         end subroutine tmatrixsoln
!
!  solution of interaction equations for a fixed orientation
!
!
!  original: 15 January 2011
!  revised: 21 February 2011: modification of efficiency calculation, to calculate
!           polarized components
!  30 March 2011: took out gbfocus argument: this is not needed since positions are defined
!  relative to the gb focus.
!  20 April 2011: used 2-group MPI formulation
!
         subroutine fixedorsoln(neqns,nsphere,nodr,alpha,beta,cbeam,xsp,rpos,&
                    eps,epstran,niter,amnp,qext,qabs,qsca,maxerr,maxiter,iterwrite, &
                    fftranpresent,niterstep,istat)
         use mpidefs
         use mpidata
         use intrinsics
         use numconstants
         use specialfuncs
         use miecoefdata
         use translation
         use scatprops
         implicit none
         integer :: iter,niter,neqns,nodrmax,k,nsphere,i,ierr,istat,rank,maxiter,iterwrite
         integer :: nodr(nsphere),m1,n1,p,rgrank,grank,ngroup,sendrank,numprocs, &
                    fftranpresent,niterstep
         real(8) :: alpha,beta,eps,err,qext(nsphere,3),maxerr,&
                    qabs(nsphere,3),qsca(nsphere,3),cbeam,gbfocus(3),epstran
         real(8) :: xsp(nsphere), rpos(3,nsphere),maxerra(1)
         complex(8) :: amnp(neqns,2)
         complex(8), allocatable :: pmnp(:,:),pmnpan(:)
         rank=base_rank
         rgrank=root_group_rank
         grank=group_rank
         ngroup=number_groups
         numprocs=number_proc
         sendrank=numprocs/2
         nodrmax=maxval(nodr)
         allocate(pmnp(neqns,2))
         gbfocus=0.d0
         if(cbeam.eq.0.d0) then
            call sphereplanewavecoef(nsphere,neqns,nodr,nodrmax,alpha,beta,rpos,pmnp)
         else
            call spheregaussianbeamcoef(nsphere,neqns,nodr,alpha,beta,cbeam, &
                    rpos,gbfocus,epstran,pmnp)
         endif
         istat=0
         maxiter=0
         maxerr=0.
!
!  calculate the two solutions
!
         allocate(pmnpan(neqns))
         if(ngroup.eq.1) then
            do k=1,2
               call miecoeffmult(1,nsphere,neqns,pmnp(1,k),pmnpan)
               amnp(1:neqns,k)=pmnpan(1:neqns)
               if(fftranpresent.eq.1) then
                  call cbicgff(neqns,nsphere,niter,eps,pmnpan,amnp(1,k),iterwrite, &
                               niterstep,iter,err)
               else
                  call cbicg(neqns,nsphere,niter,eps,pmnpan,amnp(1,k),iterwrite, &
                               iter,err)
               endif
               maxiter=max(iter,maxiter)
               maxerr=max(err,maxerr)
               if(iter.gt.niter.or.err.gt.eps) istat=1
               call ms_mpi(mpi_command='barrier')
            enddo
         else
            k=rgrank+1
            call miecoeffmult(1,nsphere,neqns,pmnp(1,k),pmnpan)
            amnp(1:neqns,k)=pmnpan(1:neqns)
            if(fftranpresent.eq.1) then
               call cbicgff(neqns,nsphere,niter,eps,pmnpan,amnp(1,k),iterwrite, &
                            niterstep,iter,err)
            else
               call cbicg(neqns,nsphere,niter,eps,pmnpan,amnp(1,k),iterwrite, &
                            iter,err)
            endif
            maxiter=max(iter,maxiter)
            maxerr=max(err,maxerr)
            call ms_mpi(mpi_command='barrier')
            call ms_mpi(mpi_command='bcast',mpi_send_buf_dc=amnp(1,2),&
                  mpi_number=neqns,mpi_rank=sendrank)
         endif
         deallocate(pmnpan)
!
!  efficiency factor calculations
!
         call sphereqeff(nsphere,neqns,nodr,nodrmax,xsp,amnp(1,1),amnp(1,1), &
                      pmnp(1,1),pmnp(1,1),qext(1,1),qabs(1,1),qsca(1,1))
         call sphereqeff(nsphere,neqns,nodr,nodrmax,xsp,amnp(1,2),amnp(1,2), &
                      pmnp(1,2),pmnp(1,2),qext(1,2),qabs(1,2),qsca(1,2))
         call sphereqeff(nsphere,neqns,nodr,nodrmax,xsp,amnp(1,1),amnp(1,2), &
                      pmnp(1,1),pmnp(1,2),qext(1,3),qabs(1,3),qsca(1,3))
         call ms_mpi(mpi_command='barrier')
         deallocate(pmnp)
         end subroutine fixedorsoln
!
! hybrid bcgm, using far field translation
! november 2011
!
         subroutine cbicgff(neqns,nsphere,niter,eps,pnp,anp,iterwrite,niterstep,iter,err)
         use mpidefs
         use mpidata
         use intrinsics
         use spheredata
         use miecoefdata
         use numconstants
         use specialfuncs
         use translation
         implicit none
         integer :: neqns,niter,iter,nsphere,writetime,nodr(nsphere),noff(nsphere+1),&
                    nblk(nsphere),rank,ierr,iexit,i,j,m,n,p,iunit,iterwrite,ip1,ip2, &
                    np1,np2,nsend,numprocs,grank,istore,itermax,istep,niterstep
         real(8) :: eps,err,erra(1),enorm,time1,time2,epsstep,errstep
         complex(8)  :: pnp(neqns),anp(neqns),gnp(neqns),gnpold(neqns),pgnp(neqns), &
                        cr(neqns)
         data writetime/0/
         rank=base_rank
         grank=group_rank
         numprocs=proc_per_group
         call getmiedata(sphere_order=nodr,sphere_block=nblk,sphere_block_offset=noff)
         if(rank.eq.0) then
            call getrunparameters(run_print_unit=iunit)
         endif
         err=0.d0
         iter=0
         enorm=dot_product(pnp,pnp)
         gnpold=0.d0
         if(enorm.eq.0.d0) return
         gnp=0.d0
         ip1=mpi_sphere_index(grank)+1
         ip2=mpi_sphere_index(grank)+mpi_sphere_number(grank)
         do i=ip1,ip2
            do j=1,nsphere
               if(i.ne.j) then
                  call fftranslationerror(anp(noff(j)+1:noff(j)+nblk(j)), &
                   gnp(noff(i)+1:noff(i)+nblk(i)),j,i,nodr(j),nodr(i))
               endif
            enddo
         enddo
         do i=0,numprocs-1
            ip1=mpi_sphere_index(i)+1
            ip2=mpi_sphere_index(i)+mpi_sphere_number(i)
            np1=noff(ip1)+1
            np2=noff(ip2)+nblk(ip2)
            nsend=np2-np1+1
            call ms_mpi(mpi_command='bcast',mpi_send_buf_dc=gnp(np1:np2),mpi_number=nsend, &
                 mpi_rank=i,mpi_comm=group_comm)
         enddo
         call miecoeffmult(1,nsphere,neqns,gnp,gnp)

         iter=0
         epsstep=eps
         istep=0
         do
            istep=istep+1
            gnpold=gnp
            pgnp=pnp+gnp
            call cbicg(neqns,nsphere,niterstep,epsstep,pgnp,anp,0,itermax,errstep)
            iter=iter+min(itermax,niterstep)
            gnp=0.d0
            ip1=mpi_sphere_index(grank)+1
            ip2=mpi_sphere_index(grank)+mpi_sphere_number(grank)
            do i=ip1,ip2
               do j=1,nsphere
                  if(i.ne.j) then
                     call fftranslationerror(anp(noff(j)+1:noff(j)+nblk(j)), &
                      gnp(noff(i)+1:noff(i)+nblk(i)),j,i,nodr(j),nodr(i))
                  endif
               enddo
            enddo
            do i=0,numprocs-1
               ip1=mpi_sphere_index(i)+1
               ip2=mpi_sphere_index(i)+mpi_sphere_number(i)
               np1=noff(ip1)+1
               np2=noff(ip2)+nblk(ip2)
               nsend=np2-np1+1
               call ms_mpi(mpi_command='bcast',mpi_send_buf_dc=gnp(np1:np2),mpi_number=nsend, &
                    mpi_rank=i,mpi_comm=group_comm)
            enddo
            call miecoeffmult(1,nsphere,neqns,gnp,gnp)
            err=dot_product(gnp-gnpold,gnp-gnpold)/enorm
            if(rank.eq.0.and.iterwrite.eq.1) then
               write(iunit,'('' step,iteration,bcgm err,correc err:'',2i5,2e13.5)') &
                           istep,iter,errstep,err
               call flush(iunit)
            endif
            epsstep=eps
            err=max(err,errstep)
            if((err.lt.eps).or.iter.gt.niter) exit
         enddo
         end subroutine cbicgff

!
! iteration solver
! generalized complex biconjugate gradient method
! original code: Piotr Flatau, although not much remains.
! specialized to the multiple sphere problem
!
!
!  last revised: 15 January 2011
!  october 2011: translation calls modified
!
         subroutine cbicg(neqns,nsphere,niter,eps,pnp,anp,iterwrite,iter,err)
         use mpidefs
         use mpidata
         use intrinsics
         use spheredata
         use miecoefdata
         use numconstants
         use specialfuncs
         use translation
         implicit none
         integer :: neqns,niter,iter,nsphere,writetime,nodr(nsphere),noff(nsphere+1),&
                    nblk(nsphere),rank,ierr,iexit,i,j,m,n,p,iunit,iterwrite,ip1,ip2, &
                    np1,np2,nsend,numprocs,grank,istore
         real(8) :: eps,err,erra(1),enorm,time1,time2
         complex(8)  :: pnp(neqns),anp(neqns)
         complex(8) :: cak(1),csk,cbk,csk2(1)
         complex(8) :: cr(neqns),cp(neqns),cw(neqns),cq(neqns),cap(neqns),caw(neqns), &
                       crt(neqns),capt(neqns),cawt(neqns),ccw(neqns)
         data writetime/0/
         rank=base_rank
         grank=group_rank
         numprocs=proc_per_group
         call getmiedata(sphere_order=nodr,sphere_block=nblk,sphere_block_offset=noff)
         ip1=mpi_sphere_index(grank)+1
         ip2=mpi_sphere_index(grank)+mpi_sphere_number(grank)
         np1=noff(ip1)+1
         np2=noff(ip2)+nblk(ip2)
         nsend=np2-np1+1
         crt=0.d0
         iexit=0
         if(rank.eq.0) then
            call getrunparameters(run_print_unit=iunit)
         endif
         err=0.d0
         iter=0
         enorm=dot_product(pnp,pnp)
         cr=0.d0
         if(enorm.eq.0.d0) return
         do i=ip1,ip2
            do j=1,nsphere
               if(i.ne.j) then
                  call rottranjtoi(anp(noff(j)+1:noff(j)+nblk(j)), &
                       cr(noff(i)+1:noff(i)+nblk(i)),j,i,nodr(j),nodr(i),1,1)
               endif
            enddo
         enddo
         do i=0,numprocs-1
            ip1=mpi_sphere_index(i)+1
            ip2=mpi_sphere_index(i)+mpi_sphere_number(i)
            np1=noff(ip1)+1
            np2=noff(ip2)+nblk(ip2)
            nsend=np2-np1+1
            call ms_mpi(mpi_command='bcast',mpi_send_buf_dc=cr(np1:np2),mpi_number=nsend, &
                 mpi_rank=i,mpi_comm=group_comm)
         enddo
         call miecoeffmult(1,nsphere,neqns,cr,cr)
         cr=pnp-anp+cr
         cq=conjg(cr)
         cw=cq
         cp=cr
         csk=dot_product(conjg(cr),cr)
         if(cdabs(csk).eq.0.d0) return
!
!  here starts the main iteration loop
!
         do iter=1,niter
            ip1=mpi_sphere_index(grank)+1
            ip2=mpi_sphere_index(grank)+mpi_sphere_number(grank)
            np1=noff(ip1)+1
            np2=noff(ip2)+nblk(ip2)
            nsend=np2-np1+1
            cak(1)=(0.d0,0.d0)
            cawt=(0.d0,0.d0)
            capt=(0.d0,0.d0)
            if(rank.eq.0) then
               if(writetime.eq.0) time1=mytime()
            endif
            ccw=conjg(cw)
            cap=0.d0
            caw=0.d0
            call miecoeffmult(1,nsphere,neqns,ccw,ccw)
            do i=ip1,ip2
               do j=1,nsphere
                  if(i.ne.j) then
                     call rottrantwojtoi(cp(noff(j)+1:noff(j)+nblk(j)), &
                       ccw(noff(j)+1:noff(j)+nblk(j)), &
                       cap(noff(i)+1:noff(i)+nblk(i)), &
                       caw(noff(i)+1:noff(i)+nblk(i)), &
                       j,i,nodr(j),nodr(i))
!                     call rottranjtoi(cp(noff(j)+1:noff(j)+nblk(j)), &
!                       cap(noff(i)+1:noff(i)+nblk(i)),j,i,nodr(j),nodr(i),1,1)
!                     call rottranjtoi(ccw(noff(j)+1:noff(j)+nblk(j)), &
!                       caw(noff(i)+1:noff(i)+nblk(i)),j,i,nodr(j),nodr(i),-1,-1)
                  endif
               enddo
            enddo
            call miecoeffmult(ip1,ip2,neqns,cap,cap)
            cap(np1:np2)=cp(np1:np2)-cap(np1:np2)
            caw(np1:np2)=cw(np1:np2)-conjg(caw(np1:np2))
            cak(1)=dot_product(cw(np1:np2),cap(np1:np2))
            call ms_mpi(mpi_command='allreduce',mpi_recv_buf_dc=cak,mpi_number=1, &
                    mpi_operation=ms_mpi_sum,mpi_comm=group_comm)
            cak(1)=csk/cak(1)
            anp(np1:np2)=anp(np1:np2)+cak(1)*cp(np1:np2)
            cr(np1:np2)=cr(np1:np2)-cak(1)*cap(np1:np2)
            cq(np1:np2)=cq(np1:np2)-conjg(cak(1))*caw(np1:np2)
            csk2(1)=dot_product(cq(np1:np2),cr(np1:np2))
            err=dot_product(cr(np1:np2),cr(np1:np2))
            erra(1)=err
            call ms_mpi(mpi_command='allreduce',mpi_recv_buf_dc=csk2,mpi_number=1, &
                    mpi_operation=ms_mpi_sum,mpi_comm=group_comm)
            call ms_mpi(mpi_command='allreduce',mpi_recv_buf_dp=erra,mpi_number=1, &
                    mpi_operation=ms_mpi_sum,mpi_comm=group_comm)
            err=erra(1)
            err=err/enorm
            if(err.lt. eps) exit
            cbk=csk2(1)/csk
            cp(np1:np2)=cr(np1:np2)+cbk*cp(np1:np2)
            cw(np1:np2)=cq(np1:np2)+conjg(cbk)*cw(np1:np2)
            csk=csk2(1)
            do i=0,numprocs-1
               ip1=mpi_sphere_index(i)+1
               ip2=mpi_sphere_index(i)+mpi_sphere_number(i)
               np1=noff(ip1)+1
               np2=noff(ip2)+nblk(ip2)
               nsend=np2-np1+1
               call ms_mpi(mpi_command='bcast',mpi_send_buf_dc=cp(np1:np2),mpi_number=nsend, &
                    mpi_rank=i,mpi_comm=group_comm)
               call ms_mpi(mpi_command='bcast',mpi_send_buf_dc=cw(np1:np2),mpi_number=nsend, &
                    mpi_rank=i,mpi_comm=group_comm)
            enddo
            if(rank.eq.0.and.iter.eq.1.and.writetime.eq.0) then
               time2=mytime()-time1
               call timewrite(iunit,' time per iteration:',time2)
               writetime=1
            endif
            if(rank.eq.0.and.iterwrite.eq.1) then
                write(iunit,'('' iter, err:'',i5,e13.5)') iter,err
                call flush(iunit)
            endif
         enddo
!
!  arrive here with a converged solution
!
         do i=0,numprocs-1
            ip1=mpi_sphere_index(i)+1
            ip2=mpi_sphere_index(i)+mpi_sphere_number(i)
            np1=noff(ip1)+1
            np2=noff(ip2)+nblk(ip2)
            nsend=np2-np1+1
            call ms_mpi(mpi_command='bcast',mpi_send_buf_dc=anp(np1:np2),mpi_number=nsend, &
                    mpi_rank=i,mpi_comm=group_comm)
         enddo
         end subroutine cbicg

      end module solver