layerview.py
6.07 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# create a function that displays the output when run this way:
# python layerview.py ouput.dat
import sys
import os
from time import time
import subprocess
import struct
import numpy as np
import matplotlib
import math
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
def intensity(E):
Econj = np.conj(E)
I = np.sum(E*Econj, axis=-1)
return np.real(I)
#evaluate a solved homogeneous substrate
# Returns a complex NxMx3 array representing the cross section of the field at Y=0
def evaluate(Depths, k, d, n0, sz, Pt, Pr, X, Y, Z):
Depths = np.array(Depths)
sz = np.array(sz)
Pt = np.array(Pt)
Pr = np.array(Pr)
s = np.array(d) * n0
#allocate space for layer indices
LI = np.zeros(Z.shape, dtype=np.int)
#find the layer index for each sample point
L = len(Depths)
LI[Z < Depths[0]] = 0
for l in range(L-1):
idx = np.logical_and(Z > Depths[l], Z <= Depths[l+1])
LI[idx] = l
LI[Z > Depths[-1]] = L - 1
#calculate the appropriate phase shift for the wave transmitted through the layer
Ph_t = np.exp(1j * k * sz[LI] * (Z - Depths[LI]))
#calculate the appropriate phase shift for the wave reflected off of the layer boundary
LIp = LI + 1
LIp[LIp >= L] = 0
Ph_r = np.exp(-1j * k * sz[LI] * (Z - Depths[LIp]))
Ph_r[LI >= L-1] = 0
#calculate the phase shift based on the X and Y positions
Ph_xy = np.exp(1j * k * (s[0] * X + s[1] * Y))
#apply the phase shifts
Et = Pt[:, LI] * Ph_t[:, :]
Er = Pr[:, LI] * Ph_r[:, :]
#add everything together coherently
E = (Et + Er) * Ph_xy[:, :]
#return the electric field
return np.moveaxis(E, 0, -1)
class planewave:
def __int__(self):
self.LAYERS = 0 #Number of layers. int
self.depths = [] #z positions of layers. [1, 5, ..., 10] double
self.k0 = 0.0 #wavenumber at free space. double
self.d = [] #direction of propogation. [0.5, 0] double
self.n0 = 0.0+0.0j #the refractive index of the first layer. complex<double>
self.sz = [] #z-component of propagation for each layer. complex<double>
self.Pt = [[] for i in range(3)] #transmission complex<double>
self.Pr = [[],[],[]] #refraction complex<double>
# display a binary file produced using the coupled wave C code
def layer(strc):
f = open(strc, "rb")
# create an empty plane wave structure
L = planewave()
L.depths = []
L.d = []
L.sz = []
L.Pt = [[],[],[]]
L.Pr = [[],[],[]]
# open the input file for reading
file_bytes = os.path.getsize(strc)
# calculate the number of layers in the sample
L.LAYERS = int((file_bytes/8-5)/15)
# load the raw layer data into the plane wave structure
data_raw = struct.unpack('d' * (15*L.LAYERS+5), f.read((15*L.LAYERS+5)* 8))
data = np.asarray(data_raw)
L.k0 = data[0]
L.d.append(data[1])
L.d.append(data[2])
L.n0 = complex(data[3], data[4])
# load each layer's plane waves from the binary file
for i in range(L.LAYERS):
L.depths.append(data[5+15*i])
L.sz.append(complex(data[6+15*i], data[7+15*i]))
L.Pt[0].append(complex(data[8+15*i], data[9+15*i]))
L.Pt[1].append(complex(data[15*i+10], data[15*i+11]))
L.Pt[2].append(complex(data[15*i+12], data[15*i+13]))
L.Pr[0].append(complex(data[15*i+14], data[15*i+15]))
L.Pr[1].append(complex(data[15*i+16], data[15*i+17]))
L.Pr[2].append(complex(data[15*i+18], data[15*i+19]))
N = 512 # simulation resolution NxM
M = 1024
#DAVID: Don't hard-code the dimensions - you'll have to calculate them based on the sample information in the file
D = [-110, 110, 0, 60] # dimensions of the simulation
x = np.linspace(D[2], D[3], N) # set the sample points for the simulation
z = np.linspace(D[0], D[1], M)
[X, Z] = np.meshgrid(x, z) # create a mesh grid to evaluate layers
Y = np.zeros(X.shape)
# evaluate the field across all layers
E = evaluate(L.depths, L.k0, L.d, L.n0, L.sz, L.Pt, L.Pr, X, Y, Z)
Er = np.real(E)
I = intensity(E)
plt.set_cmap("afmhot") # set the color map
plt.subplot(1, 4, 1)
plt.imshow(Er[:, :, 0], extent=(D[3], D[2], D[1], D[0]))
#plt.colorbar()
plt.title("Ex")
plt.subplot(1, 4, 2)
plt.imshow(Er[:, :, 1], extent=(D[3], D[2], D[1], D[0]))
#plt.colorbar()
plt.title("Ey")
plt.subplot(1, 4, 3)
plt.imshow(Er[:, :, 2], extent=(D[3], D[2], D[1], D[0]))
#plt.colorbar()
plt.title("Ez")
plt.subplot(1, 4, 4)
plt.imshow(I, extent=(D[3], D[2], D[1], D[0]))
plt.colorbar()
plt.title("I")
#fig = plt.figure(1, (5, 10))
#plt.set_cmap("afmhot")
#matplotlib.rcParams.update({'font.size': 10})
#grid = ImageGrid(fig, rect = 211, nrows_ncols = (1, 3), axes_pad = 0.2, label_mode = "1", cbar_mode = "single", cbar_size = "18%")
#Title = ["Ex", "Ey", "Ez"]
#for i in range(3):
# grid[i].axis('off')
# im = grid[i].imshow(Er[..., i], extent=(D[3], D[2], D[1], D[0]), interpolation="nearest")
# grid[i].set_title(Title[i])
#grid.cbar_axes[0].colorbar(im)
#plt.title("E")
#plt.subplot(212)
#plt.imshow(I, extent=(D[3], D[2], D[1], D[0]))
#plt.title("I")
#plt.colorbar()
plt.show()
# function displays usage text to the console
def usage():
print("Usage:")
print(" layerview input.dat")
if __name__ == '__main__':
start = time()
if len(sys.argv) < 2: # if there are no command line arguments
usage() # display the usage text
exit() # exit
else:
layer(sys.argv[1]) # otherwise display the given data file
end = time()
print("The elapsed time is " + str(end - start) + " s. ")