main.cpp
9.31 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#include <iostream>
#include <string>
#include <fstream>
#include <cuda_runtime.h>
#include <stim/math/vector.h>
#include <stim/parser/arguments.h>
#include <stim/parser/filename.h>
#include <stim/visualization/colormap.h>
#include <stim/image/image.h>
#define pi 3.14159
//#define M_PI 3.14159
//#include <stim/math/circle.h>
//#include <stim/math/vec3.h>
//#include <stim/math/plane.h>
//#include <stim/math/vector.h>
//#include <stim/visualization/aabb3.h>
/*void test_3(float* gpu_out, float* gpu_grad, float rmax, float phi, int n, int x, int y, int z);
int main(){
int n=20;
float rmax;
float phi_deg;
float phi;
rmax=4;
phi_deg = 15;
phi = phi_deg * pi/180;
int x,y,z;
x=y=z=1;
unsigned int size = x*y*z*sizeof (float);
float* cpu_grad = (float*) malloc(3*size);
float* gpu_grad;
cudaMalloc(&gpu_grad, 3*size);
cpu_grad[0]=1;
cpu_grad[1]=0;
cpu_grad[2]=-0.5;
cudaMemcpy(gpu_grad, cpu_grad, 3*size, cudaMemcpyHostToDevice);
float* cpu_out = (float*) malloc(3*size*(n+1));
float* gpu_out;
cudaMalloc(&gpu_out, 3*size*(n+1));
test_3(gpu_out, gpu_grad, rmax, phi, n, x, y, z);
cudaMemcpy(cpu_out, gpu_out, 3*size*(n+1), cudaMemcpyDeviceToHost);
std::ofstream list("circle_check_cuda1.txt");
if (list.is_open()){
for (int j=0; j<=n; ++j)
list << cpu_out[3*j] << '\t' << cpu_out[3*j +1] << '\t' << cpu_out[3*j + 2] << '\n';
}
list.close();
*/
/*
int main(){
stim::vec3<float> g(-44,-3.4,-0.005); // form a vec3 variable for the gradient vector
stim::vec3<float> g_sph = g.cart2sph(); //convert cartesian coordinate to spherical for the gradient vector
int n =36; //set the number of points to find the boundaries of the conical voting area
int xi = 105;
int yi = 17;
int zi = 23;
float xc = 12 * cos(g_sph[1]) * sin(g_sph[2]); //calculate the center point of the surface of the voting area for the voter
float yc = 10 * sin(g_sph[1]) * sin(g_sph[2]) ;
float zc = 10 * cos(g_sph[2]) ;
float r = sqrt(xc*xc + yc*yc + zc*zc);
xc+=xi;
yc+=yi;
zc+=zi;
stim::vec3<float> center(xc,yc,zc);
float d = 2 * r * tan(25*pi/180 ); //find the diameter of the conical voting area
stim::vec3<float> norm = g.norm(); //compute the normalize gradient vector
float step = 360.0/(float) n;
stim::circle<float> cir(center, d, norm);
stim::aabb3<int> bb(xi,yi,zi);
bb.insert(xc,yc,zc);
for(float j = 0; j <360.0; j += step){
stim::vec3<float> out = cir.p(j);
bb.insert(out[0], out[1], out[2]);
}
bb.trim_low(0,0,0);
bb.trim_high(128-1, 128-1, 128-1);
std::cout<< bb.low[0] << '\t' << bb.low[1] << '\t' << bb.low[2] << '\n';
std::cout<< bb.high[0] << '\t' << bb.high[1] << '\t' << bb.high[2] << '\n';
std::cin >> n;
*/
/*int n=10;
stim::circle<float> cir;
float* c0= (float*) malloc(3*sizeof(float));
c0[0] =-4;
c0[1]=0;
c0[2] = 3;
stim::vec3<float> c(c0[0],c0[1],c0[2]);
float len = c.len();
stim::vec3<float> norm(c0[0]/len,c0[1]/len,c0[2]/len);
std::cout<< len << '\n';
std::cout<< norm << '\n';
cir.center(c);
cir.normal(norm);
cir.scale(2);
stim::vec3<float> out = cir.p(45);
std::vector<stim::vec3<float>> out2 = cir.getPoints(n);
std::cout<< out << '\n';
std::cout <<out[0] << '\t' << out[1] << '\t' << out[2] <<'\n';
std::cout<< c << '\n';
for (std::vector<stim::vec3<float>>::const_iterator i = out2.begin(); i != out2.end(); ++i)
std::cout << *i << '\n';
std::ofstream list("circle_check.txt");
if (list.is_open()){
for (std::vector<stim::vec3<float>>::const_iterator j = out2.begin(); j != out2.end(); ++j)
list << *j << '\n';
}
list.close();
std::cin >> n;
}
*/
void ivote3(float* img, float std[], float anisotropy, float phi, float d_phi, unsigned int r[], int iter, float t, unsigned int conn[],
unsigned int x, unsigned int y, unsigned int z);
void lmax(float* center, float* vote, float t1, unsigned int conn[], unsigned int x, unsigned int y, unsigned int z);
void invert_data(float* cpuI, unsigned int x, unsigned int y, unsigned int z){
for(int ix = 0; ix < x; ix++){
for (int iy = 0; iy < y; iy++){
for (int iz = 0; iz < z; iz++){
int idx = iz * x * y + iy * x + ix;
cpuI[idx] = 255 - cpuI[idx];
}
}
}
}
int main(int argc, char** argv){
cudaDeviceProp prop;
int count;
cudaGetDeviceCount(&count);
//printf("cudadevicecount: %i\n", count);
for (int i=0; i<count; i++){
cudaGetDeviceProperties(&prop, i);
printf("current device ID: %d\n", i);
printf("device name: %s\n", prop.name);
printf("total global mem: %lu\n", prop.totalGlobalMem);
printf("shared memory per block: %lu\n", prop.sharedMemPerBlock);
}
//output advertisement
std::cout<<std::endl<<std::endl;
std::cout<<"========================================================================="<<std::endl;
std::cout<<"Thank you for using the ivote3 segmentation tool!"<<std::endl;
std::cout<<"Scalable Tissue Imaging and Modeling (STIM) Lab, University of Houston"<<std::endl;
std::cout<<"Developers: Laila Saadatifard and David Mayerich"<<std::endl;
std::cout<<"Source: https://git.stim.ee.uh.edu/segmentation/ivote3"<<std::endl;
std::cout<<"========================================================================="<<std::endl<<std::endl;
stim::arglist args;
#ifdef _WIN32
args.set_ansi(false);
#endif
//add arduments
args.add("help", "prints this help");
args.add("x", "size of the dataset along X axis", "positive value");
args.add("y", "size of the dataset along Y axis", "positive value");
args.add("z", "size of the dataset along Z axis", "positive value");
args.add("t", "threshold value for the final result", "positive valu");
args.add("invert", "to invert the input data set", "string");
args.add("anisotropy", "anisotropy value of the imaging", "1");
//parse the command line arguments.
args.parse(argc, argv);
//display the help text if requested
if(args["help"].is_set()){
std::cout<<std::endl<<"usage: ivote input_image output_list --option [A B C ...]"<<std::endl;
std::cout<<std::endl<<std::endl
<< "examples: ivote blue.bmp list.txt "<<std::endl;
std::cout<<std::endl<<std::endl;
std::cout<<args.str()<<std::endl;
exit(1);
}
//if the input and output files aren't specified, throw an error and exit
if(args.nargs() < 2){
std::cout<<"ERROR: two files must be specified for segmentation, enter ivote --help for options."<<std::endl<<std::endl;
exit(1);
}
//get the input image file
stim::filename Ifilename(args.arg(0));
//get the output file name
stim::filename OutName(args.arg(1));
//set the x, y, z.
int x = args["x"].as_int();
int y = args["y"].as_int();
int z = args["z"].as_int();
//set the threshold.
float t = args["t"].as_float();
//set the anisotropy
float anisotropy = args["anisotropy"].as_float();
unsigned int rmax = 10;
unsigned int r[3] = { 12, rmax, rmax};
float std = 5;
float sigma[3] = { std, std, std};
unsigned int nlmax = 1;
unsigned int conn[3] = { nlmax, nlmax, nlmax};
float phi_deg = 25.0;
float phi = phi_deg * pi /180;
int iter = 8;
float d_phi = phi/(iter+2);
std::string filename = Ifilename.str();
unsigned int bytes = x*y*z*sizeof(float);
//allocate space on the cpu for the input data
float* cpuI = (float*) malloc(bytes);
//load the input file into the cpuI
std::ifstream nissl(filename, std::ios::in | std::ios::binary);
nissl.read((char*)cpuI, bytes);
nissl.close();
if(args["invert"].is_set())
invert_data(cpuI, x, y, z);
//write a new file from the cpuI.
std::ofstream original("shared2D-v1/inv-128.vol", std::ofstream::out | std::ofstream::binary);
original.write((char*)cpuI, bytes);
original.close();
//allocate space on the cpu for the output result
float* cpu_out = (float*) malloc(bytes);
// call the ivote function
//ivote3(cpu_out, cpuI, sigma, anisotropy, phi, d_phi, r, iter, t, conn, x, y, z);
ivote3(cpuI, sigma, anisotropy, phi, d_phi, r, iter, t, conn, x, y, z);
//write the blurred file from the cpuI.
std::ofstream fblur("shared2D-v8/vote8.vol", std::ofstream::out | std::ofstream::binary);
fblur.write((char*)cpuI, bytes);
fblur.close();
//stim::image<float>imgrad3;
//imgrad3.set_interleaved3(cpu_out, 128,128,128,3);
//std::ofstream fgx("syn/gx-128.vol", std::ofstream::out | std::ofstream::binary);
//fgx.write((char*)imgrad3.channel(0).data(), bytes);
//fgx.close();
//write the output file.
//for (int t0=0; t0<=5000; t0+=100){
// float t1 = t0;
int t0 = t;
lmax(cpu_out, cpuI, t, conn, x, y, z);
//std::ofstream fo("shared2D-v8/" + OutName.str(), std::ofstream::out | std::ofstream::binary);
std::ofstream fo( OutName.str()+std::to_string(t0)+".vol", std::ofstream::out | std::ofstream::binary);
fo.write((char*)cpu_out, bytes);
fo.close();
// creat a file for saving the list centers
//std::ofstream list("shared2D-v8/" + OutName.str()+std::to_string(t0)+".obj");
//// set the number of detected cells to zero.
//int nod = 0;
//if (list.is_open()){
// for (int iz=0; iz<z; iz++){
// for (int iy=0; iy<y; iy++){
// for (int ix=0; ix<x; ix++){
// int idx = iz * x * y + iy * x + ix;
// if (cpu_out[idx]==1){
// nod++;
// list << "v" << "\t" << ix << "\t" << iy << "\t"<< iz << '\n' ;
//
// }
// }
// }
// }
// list << "p" << "\t";
// for (unsigned int i_nod =1 ; i_nod <=nod; i_nod++){
// list << i_nod << "\t";
// }
//list.close();
//}
//}
cudaDeviceReset();
}