gaussian_blur3.cuh
5.44 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#ifndef STIM_CUDA_GAUSSIAN_BLUR3_H
#define STIM_CUDA_GAUSSIAN_BLUR3_H
#include <iostream>
#include <cuda.h>
#include <stim/cuda/cudatools.h>
#include <stim/cuda/cudatools/error.h>
#define pi 3.14159
template<typename T>
__global__ void blur_x(T* out, T* in, T sigma, int x, int y, int z){
//calculate x,y,z coordinates for this thread
int xi = blockIdx.x * blockDim.x + threadIdx.x;
//find the grid size along y
int grid_y = y / blockDim.y;
int blockidx_y = blockIdx.y % grid_y;
int yi = blockidx_y * blockDim.y + threadIdx.y;
int zi = blockIdx.y / grid_y;
int i = zi * x * y + yi * x + xi;
// calculate the kernel size
int k_size = sigma * 4;
//if the current pixel is outside of the image
if(xi >= x || yi >= y || zi>=z)
return;
int gx, gi;
T G;
T sum = 0; //running weighted sum across the kernel
out[i] = 0;
T sigma_sq = 2 * sigma * sigma;
T a = 1.0 / (sigma * sqrt(2 * pi));
//for each element of the kernel
for(int ki = -k_size; ki <= k_size; ki++){
//calculate the gaussian value
G = a * exp(-(ki*ki) / (sigma_sq));
//calculate the global coordinates for this point in the kernel
gx = (xi + ki) % x;
gi = zi * x * y + yi * x + gx;
sum += G * in[gi];
}
//output the result to global memory
out[i] = sum;
}
template<typename T>
__global__ void blur_y(T* out, T* in, T sigma, int x, int y, int z){
//calculate x,y,z coordinates for this thread
int xi = blockIdx.x * blockDim.x + threadIdx.x;
//find the grid size along y
int grid_y = y / blockDim.y;
int blockidx_y = blockIdx.y % grid_y;
int yi = blockidx_y * blockDim.y + threadIdx.y;
int zi = blockIdx.y / grid_y;
int i = zi * x * y + yi * x + xi;
// calculate the kernel size
int k_size = sigma * 4;
//if the current pixel is outside of the image
if(xi >= x || yi >= y || zi>=z)
return;
int gy, gi;
T G;
T sum = 0; //running weighted sum across the kernel
out[i] = 0;
T sigma_sq = 2 * sigma * sigma;
T a = 1.0 / (sigma * sqrt(2 * pi));
//for each element of the kernel
for(int ki = -k_size; ki <= k_size; ki++){
//calculate the gaussian value
G = a * exp(-(ki*ki) / sigma_sq);
//calculate the global coordinates for this point in the kernel
gy = (yi + ki ) % y;
gi = zi * x * y + gy * x + xi;
sum += G * in[gi];
}
//output the result to global memory
out[i] = sum;
}
template<typename T>
__global__ void blur_z(T* out, T* in, T sigma, int x, int y, int z){
//calculate x,y,z coordinates for this thread
int xi = blockIdx.x * blockDim.x + threadIdx.x;
//find the grid size along y
int grid_y = y / blockDim.y;
int blockidx_y = blockIdx.y % grid_y;
int yi = blockidx_y * blockDim.y + threadIdx.y;
int zi = blockIdx.y / grid_y;
int i = zi * x * y + yi * x + xi;
// calculate the kernel size
int k_size = sigma * 4;
//if the current pixel is outside of the image
if(xi >= x || yi >= y || zi>=z)
return;
int gz, gi;
T G;
T sum = 0; //running weighted sum across the kernel
out[i] = 0;
T sigma_sq = 2 * sigma * sigma;
T a = 1.0 / (sigma * sqrt(2 * pi));
//for each element of the kernel
for(int ki = -k_size; ki <= k_size; ki++){
//calculate the gaussian value
G = a * exp(-(ki*ki) / sigma_sq);
//calculate the global coordinates for this point in the kernel
gz = (zi + ki) % z;
gi = gz * x * y + yi * x + xi;
sum += G * in[gi];
}
//output the result to global memory
out[i] = sum;
}
template<typename T>
void gpu_gaussian_blur3(T* image, T sigma[], unsigned int x, unsigned int y, unsigned int z){
//get the number of pixels in the image
unsigned int pixels = x * y * z;
unsigned int bytes = sizeof(T) * pixels;
int max_threads = stim::maxThreadsPerBlock();
dim3 threads(sqrt (max_threads),sqrt (max_threads));
dim3 blocks(x / threads.x + 1, (y / threads.y + 1) * z);
//allocate temporary space on the GPU
T* gpuIb_x;
cudaMalloc(&gpuIb_x, bytes);
//allocate temporary space on the GPU
T* gpuIb_y;
cudaMalloc(&gpuIb_y, bytes);
// blur the original image along the x direction
blur_x<T> <<< blocks, threads >>>(gpuIb_x, image, sigma[0], x, y, z);
// blur the x-blurred image along the y direction
blur_y<T> <<< blocks, threads >>>(gpuIb_y, gpuIb_x, sigma[1], x, y, z);
// blur the xy-blurred image along the z direction
blur_z<T> <<< blocks, threads >>>(image, gpuIb_y, sigma[2], x, y, z);
//cudaMemcpy(image, gpuIb_y, bytes, cudaMemcpyDeviceToDevice);
cudaFree(gpuIb_x);
cudaFree(gpuIb_y);
}
/// Applies a Gaussian blur to a 2D image stored on the CPU
template<typename T>
void cpu_gaussian_blur3(T* blur, T* image, T sigma[], unsigned int x, unsigned int y, unsigned int z){
//get the number of pixels in the image
unsigned int pixels = x * y *z;
unsigned int bytes = sizeof(T) * pixels;
//---------Allocate Image---------
//allocate space on the GPU for the image
T* gpuI0;
cudaMalloc(&gpuI0, bytes);
//copy the image data to the GPU
cudaMemcpy(gpuI0, image, bytes, cudaMemcpyHostToDevice);
//run the GPU-based version of the algorithm
gpu_gaussian_blur3<T>(gpuI0, sigma, x, y, z);
//copy the image data from the device
cudaMemcpy(blur, gpuI0, bytes, cudaMemcpyDeviceToHost);
//free allocated memory
cudaFree(gpuI0);
}
#endif