vote3_atomic_aabb.cuh
4.88 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#ifndef STIM_CUDA_VOTE3_ATOMIC_AABB_H
#define STIM_CUDA_VOTE3_ATOMIC_AABB_H
#include <iostream>
#include <cuda.h>
#include <stim/cuda/cudatools.h>
#include <stim/cuda/cudatools/error.h>
#include "cpyToshare.cuh"
#define M_PI 3.14159
#include <stim/math/circle.h>
#include <stim/math/vec3.h>
#include <stim/math/plane.h>
#include <stim/math/vector.h>
#include <stim/visualization/aabb3.h>
// this kernel calculates the vote value by adding up the gradient magnitudes of every voter that this pixel is located in their voting area
template<typename T>
__global__ void vote3(T* gpu_vote, T* gpu_grad, T cos_phi, int rx, int ry, int rz, int x, int y, int z){
int xi = blockIdx.x * blockDim.x + threadIdx.x; //calculate x,y,z coordinates for this thread
int grid_y = y / blockDim.y; //find the grid size along y
int blockidx_y = blockIdx.y % grid_y;
int yi = blockidx_y * blockDim.y + threadIdx.y;
int zi = blockIdx.y / grid_y;
if(xi>=x || yi>=y || zi>=z) return;
int i = zi * x * y + yi * x + xi; // calculate the 1D index of the voter
float rx_sq = rx * rx; // compute the square for rmax
float ry_sq = ry * ry;
float rz_sq = rz * rz;
float dist, cos_diff;
int idx_c;
//float rmax = sqrt(rx_sq + ry_sq + rz_sq);
stim::vec3<float> g(gpu_grad[3*i],gpu_grad[3*i+1],gpu_grad[3*i+2]); // form a vec3 variable for the gradient vector
stim::vec3<float> g_sph = g.cart2sph(); //convert cartesian coordinate to spherical for the gradient vector
int n =4; //set the number of points to find the boundaries of the conical voting area
float xc = rx * cos(g_sph[1]) * sin(g_sph[2]); //calculate the center point of the surface of the voting area for the voter
float yc = ry * sin(g_sph[1]) * sin(g_sph[2]) ;
float zc = rz * cos(g_sph[2]) ;
float r = sqrt(xc*xc + yc*yc + zc*zc);
xc+=xi;
yc+=yi;
zc+=zi;
stim::vec3<float> center(xc,yc,zc);
float d = 2 * r * tan(acos(cos_phi) ); //find the diameter of the conical voting area
stim::vec3<float> norm = g.norm(); //compute the normalize gradient vector
float step = 360.0/(float) n;
stim::circle<float> cir(center, d, norm);
stim::aabb3<int> bb(xi,yi,zi);
bb.insert(xc,yc,zc);
for(float j = 0; j <360.0; j += step){
stim::vec3<float> out = cir.p(j);
bb.insert(out[0], out[1], out[2]);
}
bb.trim_low(0,0,0);
bb.trim_high(x-1, y-1, z-1);
int bx,by,bz;
int dx, dy, dz;
float dx_sq, dy_sq, dz_sq;
for (bz=bb.low[2]; bz<=bb.high[2]; bz++){
dz = bz - zi; //compute the distance bw the voter and the current counter along z axis
dz_sq = dz * dz;
for (by=bb.low[1]; by<=bb.high[1]; by++){
dy = by - yi; //compute the distance bw the voter and the current counter along y axis
dy_sq = dy * dy;
for (bx=bb.low[0]; bx<=bb.high[0]; bx++){
dx = bx - xi; //compute the distance bw the voter and the current counter along x axis
dx_sq = dx * dx;
dist = sqrt(dx_sq + dy_sq + dz_sq); //calculate the distance between the voter and the current counter
cos_diff = (norm[0] * dx + norm[1] * dy + norm[2] * dz)/dist; // calculate the cosine of angle between the voter and the current counter
if ( ( (dx_sq/rx_sq + dy_sq/ry_sq + dz_sq/rz_sq) <=1 ) && (cos_diff >=cos_phi) ){ //check if the current counter located in the voting area of the voter
idx_c = (bz* y + by) * x + bx; //calculate the 1D index for the current counter
atomicAdd (&gpu_vote[idx_c] , g_sph[0]);
}
}
}
}
}
template<typename T>
void gpu_vote3(T* gpu_vote, T* gpu_grad, T cos_phi, unsigned int r[], unsigned int x, unsigned int y, unsigned int z){
unsigned int max_threads = stim::maxThreadsPerBlock();
dim3 threads(sqrt (max_threads),sqrt (max_threads));
dim3 blocks(x / threads.x + 1, (y / threads.y + 1) * z);
vote3 <T> <<< blocks, threads >>>(gpu_vote, gpu_grad, cos_phi, r[0], r[1], r[2], x , y, z); //call the kernel to do the voting
}
template<typename T>
void cpu_vote3(T* cpu_vote, T* cpu_grad, T cos_phi, unsigned int r[], unsigned int x, unsigned int y, unsigned int z){
//calculate the number of bytes in the array
unsigned int bytes = x * y * z * sizeof(T);
//allocate space on the GPU for the Vote Image
T* gpu_vote;
cudaMalloc(&gpu_vote, bytes);
//allocate space on the GPU for the input Gradient image
T* gpu_grad;
cudaMalloc(&gpu_grad, bytes*3);
//copy the Gradient data to the GPU
cudaMemcpy(gpu_grad, cpu_grad, bytes*3, cudaMemcpyHostToDevice);
//call the GPU version of the vote calculation function
gpu_vote3<T>(gpu_vote, gpu_grad, cos_phi, r, x , y, z);
//copy the Vote Data back to the CPU
cudaMemcpy(cpu_vote, gpu_vote, bytes, cudaMemcpyDeviceToHost) ;
//free allocated memory
cudaFree(gpu_vote);
cudaFree(gpu_grad);
}
#endif