main.cu
36.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
๏ปฟ#include <stdlib.h>
#include <string>
#include <fstream>
#include <algorithm>
// STIM includes
#include <stim/parser/arguments.h>
#include <stim/visualization/camera.h>
#include <stim/gl/gl_texture.h>
#include <stim/visualization/gl_network.h>
#include <stim/biomodels/network.h>
#include <stim/visualization/gl_aaboundingbox.h>
// OpenGL includes
#include <GL/glut.h>
#include <GL/freeglut.h>
#ifdef __CUDACC__
//CUDA includes
#include <cuda.h>
#endif
// BOOST includes
#include <boost/tuple/tuple.hpp>
// visualization objects
stim::gl_aaboundingbox<float> bb; // axis-aligned bounding box object
stim::camera cam; // camera object
// overall parameters
unsigned num_nets = 0; // number of networks that've been loaded
float sigma = 3.0f; // default sigma(resample rate) equals to 3.0
float radius = 0.7f; // equals to radius
float delta; // camera moving parameter
// networks
stim::gl_network<float> GT; // ground truth network
stim::gl_network<float> T; // test network
stim::gl_network<float> _GT; // splitted GT
stim::gl_network<float> _T; // splitted T
// flags
bool flag_mapping = false; // flag indicates mapping
bool flag_stack = false; // flag indicates loading image stacks
bool flag_adjoint_network = false; // flag indicates render a T overlaid on GT
bool flag_light = false; // flag indicates light on/off
bool flag_highlight_difference; // flag indicates highlight the difference between two networks
// relationships
std::vector<unsigned> _gt_t; // store indices of nearest edge points in _T for _GT
std::vector<unsigned> _t_gt; // store indices of nearest edge points in _GT for _T
// hard-coded parameters
float resample_rate = 0.5f; // sample rate for the network (fraction of sigma used as the maximum sample rate)
float camera_factor = 1.2f; // start point of the camera as a function of X and Y size
float orbit_factor = 0.01f; // degrees per pixel used to orbit the camera
float zoom_factor = 10.0f; // zooming factor
float radius_factor = 0.5f; // radius changing factor
// mouse click
bool LButtonDown = false; // true when left button down
bool RButtonDown = false;
// mouse position tracking
int mouse_x;
int mouse_y;
// render modes
bool compareMode = true; // default mode is compare mode
bool mappingMode = false;
bool volumeMode = false;
// random color set
std::vector<float> colormap;
// special key indicator
int mods;
// OpenGL objects
GLuint cmap_tex = 0; // texture name for the color map
// Stack view parameter
stim::gl_texture<unsigned char> S; // texture storing the image stack
float planes[3] = { 0.0f, 0.0f, 0.0f }; // plane position in world space
// sets an OpenGL viewport taking up the entire window
void glut_render_single_projection(){
glMatrixMode(GL_PROJECTION); // load the projection matrix for editing
glLoadIdentity(); // start with the identity matrix
int X = glutGet(GLUT_WINDOW_WIDTH); // use the whole screen for rendering
int Y = glutGet(GLUT_WINDOW_HEIGHT);
glViewport(0, 0, X, Y); // specify a viewport for the entire window
float aspect = (float)X / (float)Y; // calculate the aspect ratio
gluPerspective(60, aspect, 0.1, 1000000); // set up a perspective projection
}
// sets an OpenGL viewport taking up the left half of the window
void glut_render_left_projection(){
glMatrixMode(GL_PROJECTION); // load the projection matrix for editing
glLoadIdentity(); // start with the identity matrix
int X = glutGet(GLUT_WINDOW_WIDTH) / 2; // only use half of the screen for the viewport
int Y = glutGet(GLUT_WINDOW_HEIGHT);
glViewport(0, 0, X, Y); // specify the viewport on the left
float aspect = (float)X / (float)Y; // calculate the aspect ratio
gluPerspective(60, aspect, 0.1, 1000000); // set up a perspective projection
}
// sets an OpenGL viewport taking up the right half of the window
void glut_render_right_projection(){
glMatrixMode(GL_PROJECTION); // load the projection matrix for editing
glLoadIdentity(); // start with the identity matrix
int X = glutGet(GLUT_WINDOW_WIDTH) / 2; // only use half of the screen for the viewport
int Y = glutGet(GLUT_WINDOW_HEIGHT);
glViewport(X, 0, X, Y); // specify the viewport on the right
float aspect = (float)X / (float)Y; // calculate the aspect ratio
gluPerspective(60, aspect, 0.1, 1000000); // set up a perspective projection
}
void glut_render_modelview(){
glMatrixMode(GL_MODELVIEW); // load the modelview matrix for editing
glLoadIdentity(); // start with the identity matrix
stim::vec3<float> eye = cam.getPosition(); // get the camera position (eye point)
stim::vec3<float> focus = cam.getLookAt(); // get the camera focal point
stim::vec3<float> up = cam.getUp(); // get the camera "up" orientation
gluLookAt(eye[0], eye[1], eye[2], focus[0], focus[1], focus[2], up[0], up[1], up[2]); // set up the OpenGL camera
}
// draw x slice
void draw_x_slice(float p) {
float x = p;
float y = S.size(1);
float z = S.size(2);
float tx = p / S.size(0);
glBegin(GL_QUADS);
glTexCoord3f(tx, 0, 0);
glVertex3f(x, 0, 0);
glTexCoord3f(tx, 0, 1);
glVertex3f(x, 0, z);
glTexCoord3f(tx, 1, 1);
glVertex3f(x, y, z);
glTexCoord3f(tx, 1, 0);
glVertex3f(x, y, 0);
glEnd();
}
// draw y slice
void draw_y_slice(float p) {
float x = S.size(0);
float y = p;
float z = S.size(2);
float ty = p / S.size(1);
glBegin(GL_QUADS);
glTexCoord3f(0, ty, 0);
glVertex3f(0, y, 0);
glTexCoord3f(0, ty, 1);
glVertex3f(0, y, z);
glTexCoord3f(1, ty, 1);
glVertex3f(x, y, z);
glTexCoord3f(1, ty, 0);
glVertex3f(x, y, 0);
glEnd();
}
// draw z slice
void draw_z_slice(float p) {
float x = S.size(0);
float y = S.size(1);
float z = p;
float tz = p / S.size(2);
glBegin(GL_QUADS);
glTexCoord3f(0, 0, tz);
glVertex3f(0, 0, z);
glTexCoord3f(0, 1, tz);
glVertex3f(0, y, z);
glTexCoord3f(1, 1, tz);
glVertex3f(x, y, z);
glTexCoord3f(1, 0, tz);
glVertex3f(x, 0, z);
glEnd();
}
/// draw a bounding box around the data set
void draw_box() {
float c[3] = { S.size(0), S.size(1), S.size(2) };
glLineWidth(1.0);
glBegin(GL_LINE_LOOP);
glColor3f(0, 0, 0);
glVertex3f(0, 0, 0);
glColor3f(0, 1, 0);
glVertex3f(0, c[1], 0);
glColor3f(0, 1, 1);
glVertex3f(0, c[1], c[2]);
glColor3f(0, 0, 1);
glVertex3f(0, 0, c[2]);
glEnd();
glBegin(GL_LINE_LOOP);
glColor3f(1, 0, 0);
glVertex3f(c[0], 0, 0);
glColor3f(1, 1, 0);
glVertex3f(c[0], c[1], 0);
glColor3f(1, 1, 1);
glVertex3f(c[0], c[1], c[2]);
glColor3f(1, 0, 1);
glVertex3f(c[0], 0, c[2]);
glEnd();
glBegin(GL_LINES);
glColor3f(0, 0, 0);
glVertex3f(0, 0, 0);
glColor3f(1, 0, 0);
glVertex3f(c[0], 0, 0);
glColor3f(0, 1, 0);
glVertex3f(0, c[1], 0);
glColor3f(1, 1, 0);
glVertex3f(c[0], c[1], 0);
glColor3f(0, 1, 1);
glVertex3f(0, c[1], c[2]);
glColor3f(1, 1, 1);
glVertex3f(c[0], c[1], c[2]);
glColor3f(0, 0, 1);
glVertex3f(0, 0, c[2]);
glColor3f(1, 0, 1);
glVertex3f(c[0], 0, c[2]);
glEnd();
}
void draw_frames() {
float c[3] = { S.size(0), S.size(1), S.size(2) }; // store the size of the data set for all three dimensions
glLineWidth(1.0);
glColor3f(1, 0, 0); // draw the X plane
glBegin(GL_LINE_LOOP);
glVertex3f(planes[0], 0, 0);
glVertex3f(planes[0], c[1], 0);
glVertex3f(planes[0], c[1], c[2]);
glVertex3f(planes[0], 0, c[2]);
glEnd();
glColor3f(0, 1, 0); // draw the Y plane
glBegin(GL_LINE_LOOP);
glVertex3f(0, planes[1], 0);
glVertex3f(c[0], planes[1], 0);
glVertex3f(c[0], planes[1], c[2]);
glVertex3f(0, planes[1], c[2]);
glEnd();
glColor3f(0, 0, 1); // draw the Z plane
glBegin(GL_LINE_LOOP);
glVertex3f(0, 0, planes[2]);
glVertex3f(c[0], 0, planes[2]);
glVertex3f(c[0], c[1], planes[2]);
glVertex3f(0, c[1], planes[2]);
glEnd();
}
// enforce bound
void enforce_bounds() {
for (int d = 0; d < 3; d++) {
if (planes[d] < 0) planes[d] = 0;
if (planes[d] > S.size(d)) planes[d] = S.size(d);
}
}
// draw the network(s)
void glut_render(void) {
stim::vec3<float> p1 = cam.getLookAt() + cam.getUp() * 100000;
stim::vec3<float> p2 = cam.getPosition();
// light
GLfloat global_ambient[] = { 0.5f, 0.5f, 0.5f, 1.0f };
GLfloat ambient[] = { 0.0f, 0.0f, 0.0f, 1.0f };
GLfloat diffuse1[] = { 1.0f, 1.0f, 1.0f, 1.0f };
GLfloat diffuse2[] = { 0.4f, 0.4f, 0.4f, 1.0f };
GLfloat specular[] = { 1.0f, 1.0f, 1.0f, 1.0f };
GLfloat position1[] = { p1[0], p1[1], p1[2], 1.0f }; // upper right light source
GLfloat position2[] = { p2[0], p2[1], p2[2], 1.0f }; // lower left light source
glClearColor(0.0, 0.0, 0.0, 1.0);
glShadeModel(GL_SMOOTH);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, global_ambient);
glLightfv(GL_LIGHT0, GL_AMBIENT, ambient); // set ambient for light 0
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse1); // set diffuse for light 0
glLightfv(GL_LIGHT0, GL_SPECULAR, specular); // set specular for light 0
glLightfv(GL_LIGHT0, GL_POSITION, position1); // set position for light 0
glLightfv(GL_LIGHT1, GL_AMBIENT, ambient); // set ambient for light 1
glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse2); // set diffuse for light 1
glLightfv(GL_LIGHT1, GL_SPECULAR, specular); // set specular for light 1
glLightfv(GL_LIGHT1, GL_POSITION, position2); // set position for light 1
//no mapping, just comparing
if (!flag_mapping) {
if (num_nets == 1) { // if a single network is loaded
glEnable(GL_DEPTH_TEST); // enable depth
glut_render_single_projection(); // fill the entire viewport
glut_render_modelview(); // set up the modelview matrix with camera details
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // clear the screen
if (volumeMode) {
draw_box();
draw_frames();
glEnable(GL_TEXTURE_3D); // enable 3D texture mapping
S.bind(); // bind the texture
draw_x_slice(planes[0]); // draw the X plane
draw_y_slice(planes[1]); // draw the Y plane
draw_z_slice(planes[2]); // draw the Z plane
glDisable(GL_TEXTURE_3D); // disable 3D texture mapping
}
glColor3f(1.0f, 1.0f, 1.0f);
GT.glCenterline0(); // render the GT network (the only one loaded)
glDisable(GL_DEPTH_TEST);
}
if (num_nets == 2) { // if two networks are loaded
glEnable(GL_TEXTURE_1D); // enable texture mapping
if (flag_light == 0)
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); // texture map will be used as the network color
else
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glBindTexture(GL_TEXTURE_1D, cmap_tex); // bind the Brewer texture map
glEnable(GL_DEPTH_TEST); // enable depth
glut_render_left_projection(); // set up a projection for the left half of the window
glut_render_modelview(); // set up the modelview matrix using camera details
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // clear the screen
GT.glCylinder(sigma, radius); // render the GT network
if (flag_adjoint_network == 1) {
glDisable(GL_TEXTURE_1D); // disable texture in order to render in other color
glEnable(GL_BLEND); // enable color blend
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // set blend function
glDisable(GL_DEPTH_TEST); // should disable depth to render transparancy
glColor4f(0.0f, 0.3f, 0.0f, 0.2f);
T.glAdjointCylinder(sigma, radius);
glDisable(GL_BLEND);
glEnable(GL_DEPTH_TEST);
glEnable(GL_TEXTURE_1D);
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
}
glut_render_right_projection(); // set up a projection for the right half of the window
glut_render_modelview(); // set up the modelview matrix using camera details
T.glCylinder(sigma, radius); // render the T network
if (flag_adjoint_network == 1) {
glDisable(GL_TEXTURE_1D); // temporarily disable texture
glEnable(GL_BLEND); // enable color blend
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // set blend function
glDisable(GL_DEPTH_TEST); // should disable depth
glColor4f(0.0f, 0.3f, 0.0f, 0.2f);
GT.glAdjointCylinder(sigma, radius);
glDisable(GL_BLEND);
glEnable(GL_DEPTH_TEST);
glEnable(GL_TEXTURE_1D); // re-enable texture
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
}
sigma = radius; // set sigma equal to radius
glDisable(GL_TEXTURE_1D);
}
}
//do comparing and mapping
else {
if (num_nets == 1) { // if a single network is loaded
std::cout << "You should have at least two networks to do mapping." << std::endl; // exit program because there isn't enough network
exit(1);
}
if (num_nets == 2) { // if two networks are loaded
if (compareMode) {
glEnable(GL_TEXTURE_1D); // enable texture mapping
if (flag_light == 0)
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); // texture map will be used as the network color
else
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);// map light to texture
glBindTexture(GL_TEXTURE_1D, cmap_tex); // bind the Brewer texture map
glEnable(GL_DEPTH_TEST); // enable depth
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // clear the screen
glut_render_left_projection(); // set up a projection for the left half of the window
glut_render_modelview(); //set up the modelview matrix using camera details
_GT.glCylinder(sigma, radius); // render the GT network
if (flag_adjoint_network == 1) {
glDisable(GL_TEXTURE_1D); // temporarily disable texture
glEnable(GL_BLEND); // enable color blend
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // set blend function
glDisable(GL_DEPTH_TEST); // should disable depth
glColor4f(0.0f, 0.3f, 0.0f, 0.2f);
_T.glAdjointCylinder(sigma, radius);
glDisable(GL_BLEND);
glEnable(GL_DEPTH_TEST);
glEnable(GL_TEXTURE_1D); // re-enable texture
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
}
glut_render_right_projection(); // set up a projection for the right half of the window
glut_render_modelview(); // set up the modelview matrix using camera details
_T.glCylinder(sigma, radius); // render the T network
if (flag_adjoint_network == 1) {
glDisable(GL_TEXTURE_1D); // temporarily disable texture
glEnable(GL_BLEND); // enable color blend
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // set blend function
glDisable(GL_DEPTH_TEST); //should disable depth
glColor4f(0.0f, 0.3f, 0.0f, 0.2f);
_GT.glAdjointCylinder(sigma, radius);
glDisable(GL_BLEND);
glEnable(GL_DEPTH_TEST);
glEnable(GL_TEXTURE_1D); // re-enable texture
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
}
sigma = radius; // set sigma equal to radius
glDisable(GL_TEXTURE_1D);
}
else if (mappingMode) {
glEnable(GL_COLOR_MATERIAL);
glEnable(GL_DEPTH_TEST); // enable depth
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // clear the screen
glut_render_left_projection(); // set up a projection for the left half of the window
glut_render_modelview(); // set up the modelview matrix using camera details
if (flag_highlight_difference == 0)
_GT.glRandColorCylinder(0, _gt_t, colormap, sigma, radius);
else
_GT.glDifferenceCylinder(0, _gt_t, colormap, sigma, radius);
glut_render_right_projection(); // set up a projection for the right half of the window
glut_render_modelview(); // set up the modelview matrix using camera details
if (flag_highlight_difference == 0)
_T.glRandColorCylinder(1, _t_gt, colormap, sigma, radius);
else
_T.glDifferenceCylinder(1, _t_gt, colormap, sigma, radius);
sigma = radius; // set sigma equal to radius
}
else if (volumeMode) {
glEnable(GL_DEPTH_TEST); // enable depth
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // clear the screen
glut_render_left_projection(); // set up a projection for the left half of the window
glut_render_modelview(); // set up the modelview matrix using camera details
draw_box();
draw_frames();
glDisable(GL_TEXTURE_1D); // disable 1D texture
glEnable(GL_TEXTURE_3D); // enable 3D texture mapping
S.bind(); // bind the texture
draw_x_slice(planes[0]); // draw the X plane
draw_y_slice(planes[1]); // draw the Y plane
draw_z_slice(planes[2]); // draw the Z plane
glDisable(GL_TEXTURE_3D); // disable 3D texture mapping
GT.glCylinder(sigma, radius);
glut_render_right_projection(); // set up a projection for the right half of the window
glut_render_modelview(); // set up the modelview matrix using camera details
draw_box();
draw_frames();
glDisable(GL_TEXTURE_1D); // disable 1D texture
glEnable(GL_TEXTURE_3D); // enable 3D texture mapping
S.bind(); // bind the texture
draw_x_slice(planes[0]); // draw the X plane
draw_y_slice(planes[1]); // draw the Y plane
draw_z_slice(planes[2]); // draw the Z plane
glDisable(GL_TEXTURE_3D); // disable 3D texture mapping
T.glCylinder(sigma, radius);
glColor3f(1.0f, 1.0f, 1.0f);
sigma = radius;
}
}
}
glDisable(GL_DEPTH_TEST);
if (num_nets == 2) { // works only with two networks
std::ostringstream ss;
if (mappingMode) // if it is in mapping mode
ss << "Mapping Mode";
else if (compareMode)
ss << "Compare Mode"; // default mode is compare mode
else
ss << "volumeDisplay";
if (flag_light == 1)
glDisable(GL_LIGHTING);
glMatrixMode(GL_PROJECTION); // set up the 2d viewport for mode text printing
glPushMatrix();
glLoadIdentity();
int X = glutGet(GLUT_WINDOW_WIDTH); // get the current window width
int Y = glutGet(GLUT_WINDOW_HEIGHT); // get the current window height
glViewport(0, 0, X / 2, Y); // locate to left bottom corner
gluOrtho2D(0, X, 0, Y); // define othogonal aspect
glColor3f(0.8f, 0.0f, 0.0f); // using red to show mode
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
glRasterPos2f(0, 5); //print text in the left bottom corner
glutBitmapString(GLUT_BITMAP_TIMES_ROMAN_24, (const unsigned char*)(ss.str().c_str()));
glPopMatrix();
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glColor3f(1.0, 1.0, 1.0); //clear red color
if (flag_light == 1)
glEnable(GL_LIGHTING);
}
glDisable(GL_COLOR_MATERIAL);
glutSwapBuffers();
}
// defines camera motion based on mouse dragging
void glut_motion(int x, int y){
int mods = glutGetModifiers();
if(LButtonDown == true && RButtonDown == false && mods == 0){
float theta = orbit_factor * (mouse_x - x); // determine the number of degrees along the x-axis to rotate
float phi = orbit_factor * (y - mouse_y); // number of degrees along the y-axis to rotate
cam.OrbitFocus(theta, phi); // rotate the camera around the focal point
}
else if (mods != 0) {
float dx = (float)(x - mouse_x);
float dist = dx; // calculate the distance that the mouse moved in pixel coordinates
float sdist = dist; // scale the distance by the sensitivity
if (mods == GLUT_ACTIVE_SHIFT) { // if the SHIFT key is pressed
planes[0] += (sdist)* S.spacing(0); // move the X plane based on the mouse wheel direction
}
else if (mods == GLUT_ACTIVE_CTRL) { // if the CTRL key is pressed
planes[1] += (sdist)* S.spacing(1); // move the Y plane based on the mouse wheel direction
}
else if (mods == GLUT_ACTIVE_ALT) { // if hte ALT key is pressed
planes[2] += (sdist)* S.spacing(2); // move the Z plane based on the mouse wheel direction
}
enforce_bounds();
}
mouse_x = x; // update the mouse position
mouse_y = y;
glutPostRedisplay(); // re-draw the visualization
}
// sets the menu options
void glut_menu(int value) {
if (value == 1) { // menu 1 represents comparing mode
compareMode = true;
mappingMode = false;
volumeMode = false;
}
if (value == 2) { // menu 2 represents mapping mode
compareMode = false;
mappingMode = true;
volumeMode = false;
}
if (value == 3) { // menu 3 represents volume mode
compareMode = false;
mappingMode = false;
volumeMode = true;
}
if (value == 4) {
exit(0);
}
glutPostRedisplay();
}
// sets the mouse position when clicked
void glut_mouse(int button, int state, int x, int y){
if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN){
mouse_x = x;
mouse_y = y;
LButtonDown = true;
}
else if(button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN){
mouse_x = x;
mouse_y = y;
RButtonDown = true;
}
else if(button == GLUT_LEFT_BUTTON && state == GLUT_UP){
mouse_x = x;
mouse_y = y;
LButtonDown = false;
}
else if(button == GLUT_RIGHT_BUTTON && state == GLUT_UP){
mouse_x = x;
mouse_y = y;
RButtonDown = false;
}
}
// define camera move based on mouse wheel move(actually we can combine this with glut_mouse)
void glut_wheel(int wheel, int direction, int x, int y) {
int mods = glutGetModifiers();
if (mods == GLUT_ACTIVE_SHIFT) { // if the SHIFT key is pressed
planes[0] += (direction)* S.spacing(0); // move the X plane based on the mouse wheel direction
}
else if (mods == GLUT_ACTIVE_CTRL) { // if the CTRL key is pressed
planes[1] += (direction)* S.spacing(1); // move the Y plane based on the mouse wheel direction
}
else if (mods == GLUT_ACTIVE_ALT) { // if hte ALT key is pressed
planes[2] += (direction)* S.spacing(2); // move the Z plane based on the mouse wheel direction
}
else {
if (direction > 0) // if it is button 3(up), move closer
delta = zoom_factor;
else // if it is button 4(down), leave farther
delta = -zoom_factor;
}
enforce_bounds();
cam.Push(delta);
glutPostRedisplay();
}
// define keyboard inputs
void glut_keyboard(unsigned char key, int x, int y){
// register different keyboard operation
switch (key) {
// change render mode
case 'm': // if keyboard 'm' is pressed, then change render mode
if (compareMode && !mappingMode && flag_mapping && !flag_adjoint_network) { // if current mode is comparing mode
compareMode = false;
mappingMode = true;
}
else if (!compareMode && mappingMode && flag_mapping && !flag_adjoint_network) {// if current mode is mapping mode
compareMode = true;
mappingMode = false;
}
break;
// render the image stack
case 'v':
if (!volumeMode && !flag_mapping)
volumeMode = true;
else if (volumeMode && !flag_mapping)
volumeMode = false;
break;
// zooming
case 'w': // if keyboard 'w' is pressed, then move closer
delta = zoom_factor;
cam.Push(delta);
break;
case 's': // if keyboard 's' is pressed, then leave farther
delta = -zoom_factor;
cam.Push(delta);
break;
// resample and re-render the cylinder in different radius
case 'd': // if keyboard 'd' is pressed, then increase radius by radius_factor
radius += radius_factor;
break;
case 'a': // if keyboard 'a' is pressed, then decrease radius by radius_factor
radius -= radius_factor;
// get rid of the degenerated case when radius decrease below 0
if (radius < 0.001f)
radius = 0.2;
break;
// turn on/off the light
case 'l': // if keyboard 'l' is pressed, then change the light
if (!flag_light && !flag_adjoint_network) {
flag_light = 1;
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_LIGHT1);
}
else if (flag_light && !flag_adjoint_network) {
flag_light = 0;
glDisable(GL_LIGHTING);
glDisable(GL_LIGHT0);
glDisable(GL_LIGHT1);
}
break;
// render a transparant T very close to GT in compare mode
case 32: // if keyboard 'SPACE' is pressed, then change the flag_adjoint_network
if (!flag_adjoint_network && compareMode && !flag_light)
flag_adjoint_network = 1;
else if (flag_adjoint_network && compareMode && !flag_light)
flag_adjoint_network = 0;
break;
// render only the difference
case 'h':
if (!flag_highlight_difference && mappingMode && !flag_light)
flag_highlight_difference = 1;
else if (flag_highlight_difference && mappingMode && !flag_light)
flag_highlight_difference = 0;
break;
// close window and exit application
case 27: // if keyboard 'ESC' is pressed, then exit
exit(0);
}
glutPostRedisplay();
}
#define BREWER_CTRL_PTS 11 // number of control points in the Brewer map
void texture_initialize(){
//define the colormap
static float brewer_map[BREWER_CTRL_PTS][3] = { // generate a Brewer color map (blue to red)
{0.192157f, 0.211765f, 0.584314f},
{0.270588f, 0.458824f, 0.705882f},
{0.454902f, 0.678431f, 0.819608f},
{0.670588f, 0.85098f, 0.913725f},
{0.878431f, 0.952941f, 0.972549f},
{1.0f, 1.0f, 0.74902f},
{0.996078f, 0.878431f, 0.564706f},
{0.992157f, 0.682353f, 0.380392f},
{0.956863f, 0.427451f, 0.262745f},
{0.843137f, 0.188235f, 0.152941f},
{0.647059f, 0.0f, 0.14902f}
};
glGenTextures(1, &cmap_tex); // generate a texture map name
glBindTexture(GL_TEXTURE_1D, cmap_tex); // bind the texture map
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // enable linear interpolation
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP); // clamp the values at the minimum and maximum
glTexImage1D(GL_TEXTURE_1D, 0, 3, BREWER_CTRL_PTS, 0, GL_RGB, GL_FLOAT, // upload the texture map to the GPU
brewer_map);
if (flag_stack == 1) {
S.attach(); // attach 3D texture
}
}
// Initialize the OpenGL (GLUT) window, including starting resolution, callbacks, texture maps, and camera
void glut_initialize(){
int myargc = 1; // GLUT requires arguments, so create some bogus ones
char* myargv[1];
myargv [0]=strdup ("netmets");
glutInit(&myargc, myargv); // pass bogus arguments to glutInit()
glutSetOption(GLUT_MULTISAMPLE, 8);
glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA); // generate a color buffer, depth buffer, and enable double buffering
glutInitWindowPosition(100,100); // set the initial window position
glutInitWindowSize(320, 320); // set the initial window size
glutCreateWindow("NetMets - STIM Lab, UH"); // set the dialog box title
#ifdef _WIN32
GLenum err = glewInit(); // initialize GLEW (necessary for Windows)
if (GLEW_OK != err) { // eror with GLEW
std::cout << "Error with GLEW: " << glewGetErrorString(err) << std::endl;
exit(1);
}
#endif
// register callback functions
glutDisplayFunc(glut_render); // function executed for rendering - renders networks
glutMouseFunc(glut_mouse); // executed on a mouse click - sets starting mouse positions for rotations
glutMotionFunc(glut_motion); // executed when the mouse is moved while a button is pressed
if (flag_mapping == 1) { // only in mapping mode, keyboard will be used
glutCreateMenu(glut_menu); // register menu option callback
glutAddMenuEntry("Comparing Mode", 1); // register menu 1 as comparing mode
glutAddMenuEntry("Mapping Mode", 2); // register menu 2 as mapping mode
glutAddMenuEntry("Volume Display", 3); // register menu 3 as volume metric mode
glutAddMenuEntry("Exit", 4); // register menu 4 as exiting
glutAttachMenu(GLUT_RIGHT_BUTTON); // register right mouse to open menu option
}
glutKeyboardFunc(glut_keyboard); // register keyboard callback
glutMouseWheelFunc(glut_wheel);
texture_initialize(); // set up texture mapping (create texture maps, enable features)
stim::vec3<float> c = bb.center(); // get the center of the network bounding box
// place the camera along the z-axis at a distance determined by the network size along x and y
cam.setPosition(c + stim::vec<float>(0, 0, camera_factor * std::max(bb.size()[0], bb.size()[1])));
cam.LookAt(c[0], c[1], c[2]); // look at the center of the network
}
#ifdef __CUDACC__
// set specific device to work on
void setdevice(int &device){
int count;
cudaGetDeviceCount(&count); // numbers of device that are available
if(count < device + 1){
std::cout<<"No such device available, please set another device"<<std::endl;
exit(1);
}
}
#else
void setdevice(int &device){
device = -1; // set to default -1
}
#endif
// compare both networks and fill the networks with error information
void compare(float sigma, int device){
GT = GT.compare(T, sigma, device); // compare the ground truth to the test case - store errors in GT
T = T.compare(GT, sigma, device); // compare the test case to the ground truth - store errors in T
//calculate the metrics
float FPR = GT.average(); // calculate the metrics
float FNR = T.average();
std::cout << "FNR: " << FPR << std::endl; // print false alarms and misses
std::cout << "FPR: " << FNR << std::endl;
}
// split and map two networks and fill the networks' R with metric information
void mapping(float sigma, int device, float threshold){
// compare and split two networks
_GT.split(GT, T, sigma, device, threshold);
_T.split(T, GT, sigma, device, threshold);
// mapping two new splitted networks and get their edge relation
_GT.mapping(_T, _gt_t, device, threshold);
_T.mapping(_GT, _t_gt, device, threshold);
// generate random color set based on the number of edges in GT
size_t num = _gt_t.size(); // also create random color for unmapping edge, but won't be used though
colormap.resize(3 * num); // 3 portions compound RGB
for(int i = 0; i < 3 * num; i++)
colormap[i] = rand()/(float)RAND_MAX; // set to [0, 1]
//calculate the metrics
float FPR = _GT.average(0); // calculate the metrics
float FNR = _T.average(0);
std::cout << "FNR: " << FPR << std::endl; // print false alarms and misses
std::cout << "FPR: " << FNR << std::endl;
}
// writes features of the networks i.e average segment length, tortuosity, branching index, contraction, fractal dimension, number of end and branch points to a csv file
// Pranathi wrote this - saves network features to a CSV file
void features(std::string filename){
double avgL_t, avgL_gt, avgT_t, avgT_gt, avgB_t, avgB_gt, avgC_t, avgC_gt, avgFD_t, avgFD_gt;
unsigned int e_t, e_gt, b_gt, b_t;
avgL_gt = GT.Lengths();
avgT_gt = GT.Tortuosities();
avgL_t = T.Lengths();
avgT_t = T.Tortuosities();
avgB_gt = GT.BranchingIndex();
avgB_t = T.BranchingIndex();
avgC_gt = GT.Contractions();
avgFD_gt = GT.FractalDimensions();
avgC_t = T.Contractions();
avgFD_t = T.FractalDimensions();
e_gt = GT.EndP();
e_t = T.EndP();
b_gt = GT.BranchP();
b_t = T.BranchP();
std::ofstream myfile;
myfile.open (filename.c_str());
myfile << "Length, Tortuosity, Contraction, Fractal Dimension, Branch Points, End points, Branching Index, \n";
myfile << avgL_gt << "," << avgT_gt << "," << avgC_gt << "," << avgFD_gt << "," << b_gt << "," << e_gt << "," << avgB_gt <<std::endl;
myfile << avgL_t << "," << avgT_t << "," << avgC_t << "," << avgFD_t << "," << b_t << "," << e_t << "," << avgB_t <<std::endl;
myfile.close();
}
// Output an advertisement for the lab, authors, and usage information
void advertise(){
std::cout<<std::endl<<std::endl;
std::cout<<"========================================================================="<<std::endl;
std::cout<<"Thank you for using the NetMets network comparison tool!"<<std::endl;
std::cout<<"Scalable Tissue Imaging and Modeling (STIM) Lab, University of Houston"<<std::endl;
std::cout<<"Developers: Pranathi Vemuri, David Mayerich, Jiaming Guo"<<std::endl;
std::cout<<"Source: https://git.stim.ee.uh.edu/segmentation/netmets" <<std::endl;
std::cout<<"========================================================================="<<std::endl<<std::endl;
std::cout<<"usage: netmets file1 file2 --sigma 3"<<std::endl;
std::cout<<" compare two .obj files with a tolerance of 3 (units defined by the network)"<<std::endl<<std::endl;
std::cout<<" netmets file1 --gui"<<std::endl;
std::cout<<" load a file and display it using OpenGL"<<std::endl<<std::endl;
std::cout<<" netmets file1 file2 --device 0"<<std::endl;
std::cout<<" compare two files using device 0 (if there isn't a gpu, use cpu)"<<std::endl<<std::endl;
std::cout<<" netmets file1 file2 --mapping value"<<std::endl;
std::cout<<" mapping two files in random colors with a threshold of value"<<std::endl<<std::endl;
}
int main(int argc, char* argv[])
{
stim::arglist args; // create an instance of arglist
// add arguments
args.add("help", "prints this help");
args.add("sigma", "force a sigma value to specify the tolerance of the network comparison", "3");
args.add("gui", "display the network or network comparison using OpenGL");
args.add("device", "choose specific device to run", "0");
args.add("features", "save features to a CSV file, specify file name");
args.add("mapping", "mapping input according to similarity");
args.add("stack", "load the image stacks");
args.add("spacing", "spacing between pixel samples in each dimension", "1.0 1.0 1.0", "any real positive value");
args.parse(argc, argv); // parse the user arguments
if(args["help"].is_set()){ // test for help
advertise(); // output the advertisement
std::cout<<args.str(); // output arguments
exit(1); // exit
}
if (args.nargs() >= 1) { // if at least one network file is specified
num_nets = 1; // set the number of networks to one
std::vector<std::string> tmp = stim::parser::split(args.arg(0), '.'); // split the filename at '.'
if ("swc" == tmp[1]) // loading swc file
GT.load_swc(args.arg(0)); // load the specified file as the ground truth
else if ("obj" == tmp[1]) // loading obj file
GT.load_obj(args.arg(0)); // load the specified file as the ground truth
else {
std::cout << "Invalid loading file" << std::endl;
exit(1);
}
}
if (args.nargs() == 2) { // if two files are specified, they will be displayed in neighboring viewports and compared
int device = args["device"].as_int(); // get the device value from the user
num_nets = 2; // set the number of networks to two
sigma = args["sigma"].as_float(); // get the sigma value from the user
std::vector<std::string> tmp = stim::parser::split(args.arg(1), '.'); // split the filename at '.'
if ("swc" == tmp[1]) // loading swc files
T.load_swc(args.arg(1)); // load the second (test) network
else if ("obj" == tmp[1]) // loading obj files
T.load_obj(args.arg(1));
else {
std::cout << "Invalid loading file" << std::endl;
exit(1);
}
if (args["features"].is_set()) // if the user wants to save features
features(args["features"].as_string());
GT = GT.resample(resample_rate * sigma); // resample both networks based on the sigma value
T = T.resample(resample_rate * sigma);
if (args["mapping"].is_set()) {
float threshold = (float)args["mapping"].as_float();
mapping(sigma, device, threshold);
}
else
compare(sigma, device); // run the comparison algorithm
}
if (args["stack"].is_set()) {
S.load_images(args["stack"].as_string());
flag_stack = true;
}
float sp[3] = { 1.0f, 1.0f, 1.0f }; // allocate variables for grid spacing
if (args["spacing"].nargs() == 1) // if only one argument is given
sp[2] = (float)args["spacing"].as_float(0); // assume that it's the z coordinate (most often anisotropic)
else if (args["spacing"].nargs() == 3) { // if three arguments are given
sp[0] = (float)args["spacing"].as_float(0); // set the arguments as expected
sp[1] = (float)args["spacing"].as_float(1);
sp[2] = (float)args["spacing"].as_float(2);
}
S.spacing(sp[0], sp[1], sp[2]); // set the spacing between samples
planes[0] = S.size(0) / 4.0f; // initialize the start positions for the orthogonal display planes
planes[1] = S.size(1) / 4.0f;
planes[2] = S.size(2) / 4.0f;
//if a GUI is requested, display the network using OpenGL
if(args["gui"].is_set()){
if (args["mapping"].is_set()) {
flag_mapping = true; // set flag of mapping to true
bb = _GT.boundingbox(); // generate a bounding volume
glut_initialize(); // create the GLUT window and set callback functions
glutMainLoop(); // enter GLUT event processing cycle
}
else {
bb = GT.boundingbox(); // generate a bounding volume
glut_initialize(); // create the GLUT window and set callback functions
glutMainLoop(); // enter GLUT event processing cycle
}
}
}