obj.h
27.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
#ifndef STIM_OBJ_H
#define STIM_OBJ_H
#include <vector>
#include <sstream>
#include <fstream>
#include <stdlib.h>
#include <stim/parser/parser.h>
#include <stim/math/vector.h>
#include <stim/visualization/obj/obj_material.h>
#include <algorithm>
#include <time.h>
namespace stim{
/** This class provides an interface for loading, saving, and working with Wavefront OBJ files.
* The class structure uses similar terminology to the OBJ file structure, so one familiar with it
* should be able to work well with this class.
*
* This class currently provides the ability to load explicitly defined geometric objects, including point lists,
* lines, and faces with positions, texture coordinates, and normals. This data is stored in a protected series
* of lists that are accessible to classes that extend this one.
*
* Multiple helper classes are used to facilitate loading, storing, and saving geometry. These are protected
* and therefore only designed to be used within the confines of the class. These helper classes include:
*
* vertex class - contains methods for loading, saving, and storing 1, 2, 3, and 4 component vectors
* triplet class - contains methods for loading, saving, and storing indexed vertices used for geometric objects
* geometry class - contains a list of triplets used to define a geometric structure, such as a face or line
*/
enum obj_type { OBJ_NONE, OBJ_LINE, OBJ_FACE, OBJ_POINTS, OBJ_TRIANGLE_STRIP };
template <typename T>
class obj{
protected:
enum token_type { OBJ_INVALID, OBJ_V, OBJ_VT, OBJ_VN, OBJ_P, OBJ_L, OBJ_F };
struct vertex : public stim::vec<T>{
using vec<T>::push_back;
using vec<T>::size;
using vec<T>::at;
using vec<T>::resize;
//basic constructors (call the stim::vector constructors)
vertex(){}
vertex(T x){
resize(1);
at(0) = x;
}
vertex(T x, T y) : stim::vec<T>(x, y){}
vertex(T x, T y, T z) : stim::vec<T>(x, y, z){}
vertex(T x, T y, T z, T w) : stim::vec<T>(x, y, z, w){}
vertex(stim::vec<T> rhs) : stim::vec<T>(rhs){}
//constructor creates a vertex from a line string
vertex(std::string line){
//create a temporary vector used to store string tokens
std::vector<std::string> tokens = stim::parser::split(line, ' ');
//create temporary storage for casting the token values
T val;
//for each token (skipping the first)
for(unsigned int i = 1; i < tokens.size(); i++){
std::stringstream ss(tokens[i]); //create a stringstream object for casting
ss>>val; //cast the token to the correct numerical value
push_back(val); //push the coordinate into the vertex
}
}
//output the vertex as a string
std::string str(){
std::stringstream ss;
for(int i = 0; i < size(); i++){
if(i > 0)
ss<<' ';
ss<<at(i);
}
return ss.str(); //return the vertex string
}
}; //end vertex
//triplet used to specify geometric vertices consisting of a position vertex, texture vertex, and normal
struct triplet : public std::vector<size_t>{
//default constructor, empty triplet
triplet(){}
//create a triplet given a parameter list (OBJ indices start at 1, so 0 can be used to indicate no value)
triplet(size_t v, size_t vt = 0, size_t vn = 0){
push_back(v);
if(vn != 0){
push_back(vt);
push_back(vn);
}
else if(vt != 0)
push_back(vt);
}
//build a triplet from a string
triplet(std::string s){
//create a temporary vector used to store string tokens
std::vector<std::string> tokens = stim::parser::split(s, '\\');
//std::cout<<"processing triplet: "<<s<<std::endl;
if(tokens.size() >= 1)
push_back( atoi( tokens[0].c_str() ) );
if(tokens.size() >= 2){
if(tokens[1].length())
push_back( atoi( tokens[1].c_str() ) );
else
push_back(0);
}
if(tokens.size() == 3)
push_back( atoi( tokens[2].c_str() ) );
}
//output the geometry as a string
std::string str(){
std::stringstream ss;
ss<<at(0); //the vertex is always the first value
if(size() == 3){
if(at(1) == 0)
ss<<"//"<<at(2);
else
ss<<'/'<<at(1)<<'/'<<at(2);
}
else if(size() == 2)
ss<<"/"<<at(1);
return ss.str();
}
}; //end triplet
//geometry used to specify a geometric structure consisting of several triplets
struct geometry : public std::vector<triplet>{
using std::vector<triplet>::size;
using std::vector<triplet>::at;
using std::vector<triplet>::push_back;
using std::vector<triplet>::resize;
geometry(){}
//constructs a geometry object from a line read from an OBJ file
geometry(std::string line){
//create a temporary vector used to store string tokens
std::vector<std::string> tokens = stim::parser::split(line, ' ');
resize(tokens.size() - 1); //set the geometry size based on the number of tokens
//for each triplet in the line
for(unsigned int i = 1; i < tokens.size(); i++){
//construct the triplet and push it to the geometry
//push_back( triplet(tokens[i]) );
at(i-1) = triplet(tokens[i]);
}
}
//returns a vector containing the vertex indices for the geometry
void get_v(std::vector<unsigned>& v){
v.resize(size()); //resize the vector to match the number of vertices
for(unsigned int i = 0; i<size(); i++){ //for each vertex
v[i] = (unsigned)at(i)[0]; //copy the vertex index (1st element of triplet)
}
}
void get_vt(std::vector<unsigned>& vt){
vt.resize(size()); //resize the vector to match the number of vertices
for(unsigned int i = 0; i<size(); i++) //for each vertex
vt[i] = at(i)[1]; //copy the vertex texture index (2nd element of triplet)
}
void get_vn(std::vector<unsigned>& vn){
vn.resize(size()); //resize the vector to match the number of vertices
for(unsigned int i = 0; i<size(); i++) //for each vertex
vn[i] = at(i)[2]; //copy the vertex index
}
std::string str(){
std::stringstream ss;
for(unsigned int i = 0; i < size(); i++){
if(i != 0)
ss<<' ';
ss<<at(i).str();
}
return ss.str();
}
};
std::vector<vertex> V; //vertex spatial position
std::vector<vertex> VN;
std::vector<vertex> VT;
//structure lists
std::vector<geometry> L; //list of lines
std::vector<geometry> P; //list of points structures
std::vector<geometry> F; //list of faces
//material lists
std::vector< obj_material<T> > M; //list of material descriptors
std::vector<size_t> Mf; //face index where each material begins
//information for the current geometric object
geometry current_geo;
vertex current_vt;
vertex current_vn;
obj_material<T> current_material; //stores the current material
bool new_material; //flags if a material property has been changed since the last material was pushed
//flags for the current geometric object
obj_type current_type;
bool geo_flag_vt;
bool geo_flag_vn;
bool vert_flag_vt;
bool vert_flag_vn;
void update_vt(vertex vt){
current_vt = vt;
//the geometry vertex texture flag can only be set for the first vertex
if(current_geo.size() == 0)
geo_flag_vt = true;
vert_flag_vt = true;
}
void update_vn(vertex vn){
current_vn = vn;
//the geometry normal flag can only be set for the first vertex
if(current_geo.size() == 0)
geo_flag_vn = true;
vert_flag_vn = true;
}
//create a triple and add it to the current geometry
void update_v(vertex vv){
size_t v;
size_t vt = 0;
size_t vn = 0;
//if the current geometry is using a texture coordinate, add the current texture coordinate to the geometry
if(geo_flag_vt){
if(vert_flag_vt) //don't add it more than once
VT.push_back(current_vt);
vt = VT.size();
}
//if the current geometry is using a normal, add the current texture coordinate to the geometry
if(geo_flag_vn){
if(vert_flag_vn) //don't add it more than once
VN.push_back(current_vn);
vn = VN.size();
}
//add the current vertex position to the geometry
V.push_back(vv);
v = V.size();
//create a triplet and add it to the current geometry
current_geo.push_back(triplet(v, vt, vn));
//clear the vertex flags
vert_flag_vt = false;
vert_flag_vn = false;
}
void init(){
//clear all lists
V.clear();
VT.clear();
VN.clear();
P.clear();
L.clear();
F.clear();
//initialize all of the flags
current_type = OBJ_NONE;
geo_flag_vt = false;
geo_flag_vn = false;
vert_flag_vt = false;
vert_flag_vn = false;
new_material = false; //initialize a new material to false (start with no material)
}
//gets the type of token representing the entry in the OBJ file
token_type get_token(std::string s){
//if the line contains a vertex
if(s[0] == 'v'){
if(s[1] == ' ') return OBJ_V;
if(s[1] == 't') return OBJ_VT;
if(s[1] == 'n') return OBJ_VN;
}
if(s[0] == 'l' && s[1] == ' ') return OBJ_L;
if(s[0] == 'p' && s[1] == ' ') return OBJ_P;
if(s[0] == 'f' && s[1] == ' ') return OBJ_F;
return OBJ_INVALID;
}
public:
/// Constructor loads a Wavefront OBJ file
obj(std::string filename){
load(filename);
}
//functions for setting the texture coordinate for the next vertex
void TexCoord(T x){ update_vt(vertex(x));}
void TexCoord(T x, T y){ update_vt(vertex(x, y));}
void TexCoord(T x, T y, T z){ update_vt(vertex(x, y, z));}
void TexCoord(T x, T y, T z, T w){ update_vt(vertex(x, y, z, w));}
//functions for setting the normal for the next vertex
void Normal(T x){ update_vn(vertex(x));}
void Normal(T x, T y){ update_vn(vertex(x, y));}
void Normal(T x, T y, T z){ update_vn(vertex(x, y, z));}
void Normal(T x, T y, T z, T w){ update_vn(vertex(x, y, z, w));}
//functions for setting the next vertex position (note that this updates the current geometry)
void Vertex(T x){ update_v(vertex(x));}
void Vertex(T x, T y){ update_v(vertex(x, y));}
void Vertex(T x, T y, T z){ update_v(vertex(x, y, z));}
void Vertex(T x, T y, T z, T w){ update_v(vertex(x, y, z, w));}
///Material functions
void matKa(T r, T g, T b) {
new_material = true;
current_material.ka[0] = r;
current_material.ka[1] = g;
current_material.ka[2] = b;
}
void matKa(std::string tex = std::string()) {
new_material = true;
current_material.tex_ka = tex;
}
void matKd(T r, T g, T b) {
new_material = true;
current_material.kd[0] = r;
current_material.kd[1] = g;
current_material.kd[2] = b;
}
void matKd(std::string tex = std::string()) {
new_material = true;
current_material.tex_kd = tex;
}
void matKs(T r, T g, T b) {
new_material = true;
current_material.ks[0] = r;
current_material.ks[1] = g;
current_material.ks[2] = b;
}
void matKs(std::string tex = std::string()) {
new_material = true;
current_material.tex_ks = tex;
}
void matNs(T n) {
new_material = true;
current_material.ns = n;
}
void matNs(std::string tex = std::string()) {
new_material = true;
current_material.tex_ns = tex;
}
void matIllum(int i) {
new_material = true;
current_material.illum = i;
}
void matD(std::string tex = std::string()) {
new_material = true;
current_material.tex_alpha = tex;
}
void matBump(std::string tex = std::string()) {
new_material = true;
current_material.tex_bump = tex;
}
void matDisp(std::string tex = std::string()) {
new_material = true;
current_material.tex_disp = tex;
}
void matDecal(std::string tex = std::string()) {
new_material = true;
current_material.tex_decal = tex;
}
///This function starts drawing of a primitive object, such as a line, face, or point set
/// @param t is the type of object to be drawn: OBJ_POINTS, OBJ_LINE, OBJ_FACE
void Begin(obj_type t){
if (new_material) { //if a new material has been specified
if (current_material.name == "") { //if a name wasn't given, create a new one
std::stringstream ss; //create a name for it
ss << "material" << M.size(); //base it on the material number
current_material.name = ss.str();
}
Mf.push_back(F.size()); //start the material at the current face index
M.push_back(current_material); //push the current material
current_material.name = ""; //reset the name of the current material
new_material = false;
}
current_type = t;
}
//generates a list of faces from a list of points, assuming the input list forms a triangle strip
std::vector<geometry> genTriangleStrip(geometry s) {
if (s.size() < 3) return std::vector<geometry>(); //return an empty list if there aren't enough points to form a triangle
size_t nt = s.size() - 2; //calculate the number of triangles in the strip
std::vector<geometry> r(nt); //create a list of geometry objects, where the number of faces = the number of triangles in the strip
r[0].push_back(s[0]);
r[0].push_back(s[1]);
r[0].push_back(s[2]);
for (size_t i = 1; i < nt; i++) {
if (i % 2) {
r[i].push_back(s[i + 1]);
r[i].push_back(s[i + 0]);
r[i].push_back(s[i + 2]);
}
else {
r[i].push_back(s[i + 0]);
r[i].push_back(s[i + 1]);
r[i].push_back(s[i + 2]);
}
}
return r;
}
/// This function terminates drawing of a primitive object, such as a line, face, or point set
void End(){
//copy the current object to the appropriate list
if(current_geo.size() != 0)
{
switch(current_type){
case OBJ_NONE:
std::cout<<"STIM::OBJ error, objEnd() called before objBegin()."<<std::endl;
break;
case OBJ_POINTS:
P.push_back(current_geo);
break;
case OBJ_LINE:
L.push_back(current_geo);
break;
case OBJ_FACE:
F.push_back(current_geo);
break;
case OBJ_TRIANGLE_STRIP:
std::vector<geometry> tstrip = genTriangleStrip(current_geo); //generate a list of faces from the current geometry
F.insert(F.end(), tstrip.begin(), tstrip.end()); //insert all of the triangles into the face list
break;
}
}
//clear everything
current_type = OBJ_NONE;
current_geo.clear();
vert_flag_vt = false;
vert_flag_vn = false;
geo_flag_vt = false;
geo_flag_vn = false;
}
//temporary convenience method
void rev(){
if(current_geo.size() != 0)
// current_geo.reverse(current_geo.begin(), current_geo.end());
std::reverse(current_geo.begin(), current_geo.end());
}
//output the OBJ structure as a string
std::string str(){
std::stringstream ss;
unsigned int i;
//output all of the vertices
if(V.size()){
ss<<"#vertex positions"<<std::endl;
for(i = 0; i < V.size(); i++){
ss<<"v "<<V[i].str()<<std::endl;
}
}
//output all of the texture coordinates
if(VT.size()){
ss<<std::endl<<"#vertex texture coordinates"<<std::endl;
for(i = 0; i < VT.size(); i++){
ss<<"vt "<<VT[i].str()<<std::endl;
}
}
//output all of the normals
if(VN.size()){
ss<<std::endl<<"#vertex normals"<<std::endl;
for(i = 0; i < VN.size(); i++){
ss<<"vn "<<VN[i].str()<<std::endl;
}
}
//output all of the points
if(P.size()){
ss<<std::endl<<"#point structures"<<std::endl;
for(i = 0; i < P.size(); i++){
ss<<"p "<<P[i].str()<<std::endl;
}
}
//output all of the lines
if(L.size()){
ss<<std::endl<<"#line structures"<<std::endl;
for(i = 0; i < L.size(); i++){
ss<<"l "<<L[i].str()<<std::endl;
}
}
//output all of the faces
if(F.size()){
ss<<std::endl<<"#face structures"<<std::endl;
size_t mi = 0; //start the current material index at 0
for(i = 0; i < F.size(); i++){
if (mi < M.size() && Mf[mi] == i) {
ss << "usemtl " << M[mi].name << std::endl;
mi++;
}
ss<<"f "<<F[i].str()<<std::endl;
}
}
return ss.str(); //return the constructed string
}
///Output the material file as a string
std::string matstr() {
std::stringstream ss;
for (size_t i = 0; i < M.size(); i++) {
ss << M[i].str() << std::endl;
}
return ss.str();
}
obj(){
init(); //private function that initializes everything
}
void clear(){
init();
}
/// This function saves the current structure as a Wavefront OBJ file
/// @param filename is the name of the file to be saved
bool save(std::string filename){
std::string obj_ext = ".obj";
size_t ext_found = filename.find(obj_ext);
if (ext_found != std::string::npos) //if the extension was found
filename = filename.substr(0, ext_found);
std::string obj_filename;
std::string mtl_filename;
obj_filename = filename + ".obj";
mtl_filename = filename + ".mtl";
std::ofstream outfile(obj_filename.c_str());
if (!outfile) {
std::cout << "STIM::OBJ error opening file for writing" << std::endl;
return false;
}
if (M.size()) //if there are any materials, there will be a corresponding material file
outfile << "mtllib " << mtl_filename << std::endl; //output the material library name
//output the OBJ data to the file
outfile<<str();
//close the file
outfile.close();
if (M.size()) { //if materials are used
outfile.open(mtl_filename.c_str()); //open the material file
for (size_t i = 0; i < M.size(); i++) { //for each material
outfile << M[i].str() << std::endl; //output the material name and properties
}
outfile.close();
}
return true;
}
/// Load a Wavefront OBJ file (support for faces, lines, and point lists)
/// @param filename is the name of the OBJ file to load
bool load(std::string filename){
//load the file
std::ifstream infile(filename.c_str());
//if the file is invalid, throw an error
if(!infile){
std::cout<<"STIM::OBJ Error loading file "<<filename<<std::endl;
return false;
}
std::string line;
getline(infile, line); //get the first line
unsigned int l = 0;
while(infile){
l++;
//unsigned int t = time(NULL);
//get the token representing the first parameter
token_type token = get_token(line);
switch(token){
case OBJ_INVALID:
break;
case OBJ_V:
V.push_back(vertex(line));
break;
case OBJ_VT:
VT.push_back(vertex(line));
break;
case OBJ_VN:
VN.push_back(vertex(line));
break;
case OBJ_F:
F.push_back(geometry(line));
break;
case OBJ_L:
L.push_back(geometry(line));
break;
};
//get the next line
getline(infile, line);
}
//close the file
infile.close();
return true;
}
/// Return the number of position vertices in the OBJ model
unsigned int numV(){
return V.size();
}
unsigned int numVT() {
return VT.size();
}
/// Retrieve the vertex stored in index i
/// @param vi is the desired vertex index
stim::vec<T> getV(unsigned int vi){
stim::vec<T> v = V[vi];
return v;
}
std::vector< stim::vec<T> > getAllV() {
std::vector< stim::vec<T> > v(V.size());
for (unsigned i = 0; i < V.size(); i++)
v[i] = V[i];
return v;
}
std::vector< stim::vec<T> > getAllV(std::vector<unsigned> vertexIndices){
std::vector< stim::vec<T> > allVerticesList;
for (unsigned int i=0; i<numV(); i++)
{
vertexIndices[i] = i + 1;
}
allVerticesList = getV(vertexIndices);
return allVerticesList;
}
int
getIndex(std::vector< stim::vec<T> >allVerticesList, stim::vec<T> v0)
{
int result = 0;
for (unsigned int i = 0; i < allVerticesList.size() ; i++)
{
if (allVerticesList[i] == v0)
{
result = i;
}
}
return result;
}
/// Retrieve the vertex texture coordinate at index i
/// @param vti is the desired index
stim::vec<T> getVT(unsigned int vti){
stim::vec<T> vt = VT[vti];
return vt;
}
/// Retrieve the vertex normal at index i
/// @param vni is the desired index
stim::vec<T> getVN(unsigned int vni){
stim::vec<T> vn = VN[vni];
return vn;
}
/// Retrieve a vertex stored at a list of given indices
/// @param vi is an array containing a series of indices
std::vector< stim::vec<T> > getV( std::vector<unsigned> vi ){
std::vector< stim::vec<T> > v;
v.resize(vi.size()); //pre-allocate an array of vertices
for(unsigned i = 0; i < vi.size(); i++)
v[i] = V[vi[i] - 1];
return v; //return the array of vertices
}
/// Retrieve a vertex stored at a list of given indices
/// @param vi is an array containing a series of indices
std::vector< stim::vec<T> > getVT( std::vector<unsigned> vti ){
std::vector< stim::vec<T> > vt;
vt.resize(vti.size()); //pre-allocate an array of vertices
for(unsigned i = 0; i < vti.size(); i++)
vt[i] = VT[vti[i] - 1];
return vt; //return the array of vertices
}
/// Retrieve a vertex stored at a list of given indices
/// @param vi is an array containing a series of indices
std::vector< stim::vec<T> > getVN( std::vector<unsigned> vni ){
std::vector< stim::vec<T> > vn;
vn.resize(vni.size()); //pre-allocate an array of vertices
for(unsigned i = 0; i < vni.size(); i++)
vn[i] = VN[vni[i] - 1];
return vn; //return the array of vertices
}
stim::vec<T> centroid(){
//get the number of coordinates
size_t N = V[0].size();
//allocate space for the minimum and maximum coordinate points (bounding box corners)
stim::vec<float> vmin, vmax;
vmin.resize(N);
vmax.resize(N);
//find the minimum and maximum value for each coordinate
size_t NV = V.size();
for(size_t v = 0; v < NV; v++)
for(size_t i = 0; i < N; i++){
if(V[v][i] < vmin[i])
vmin[i] = V[v][i];
if(V[v][i] > vmax[i])
vmax[i] = V[v][i];
}
//find the centroid using the min and max points
stim::vec<T> c = vmin * 0.5 + vmax * 0.5;
return c;
}
stim::vec<T> dimensions() {
//get the number of coordinates
size_t N = V[0].size();
//allocate space for the minimum and maximum coordinate points (bounding box corners)
stim::vec<float> vmin, vmax;
vmin.resize(N);
vmax.resize(N);
//find the minimum and maximum value for each coordinate
size_t NV = V.size();
for (size_t v = 0; v < NV; v++)
for (size_t i = 0; i < N; i++) {
if (V[v][i] < vmin[i])
vmin[i] = V[v][i];
if (V[v][i] > vmax[i])
vmax[i] = V[v][i];
}
//find the soze using the min and max points
stim::vec<T> d = vmax - vmin;
return d;
}
/// Returns the number of lines in the OBJ structure
unsigned int numL(){
return (unsigned)L.size();
}
/// Returns all points in the line corresponding to a given index
/// @param i is the index of the desired line
std::vector< stim::vec<T> > getL_V(unsigned int i){
//get the number of points in the specified line
unsigned int nP = L[i].size();
//create a vector of points
std::vector< stim::vec<T> > l;
//set the size of the vector
l.resize(nP);
//copy the points from the point list to the stim vector
unsigned int pie;
for(unsigned int p = 0; p < nP; p++){
//get the index of the geometry point
pie = L[i][p][0] - 1;
//get the coordinates of the current point
stim::vec<T> newP = V[pie];
//copy the point into the vector
l[p] = newP;
}
return l;
}
/// Returns the vertex indices for the specified line
/// @param i is the index of the line
std::vector< unsigned int > getL_Vi(unsigned int i){
unsigned int nP = L[i].size();
std::vector< unsigned int > l;
//set the size of the vector
l.resize(nP);
//copy the indices from the geometry structure to the array
for(unsigned int p = 0; p < nP; p++){
l[p] = L[i][p][0];
}
return l;
}
/// Returns a vector containing the list of texture coordinates associated with each point of a line.
/// @param i is the index of the desired line
std::vector< stim::vec<T> > getL_VT(unsigned int i){
//get the number of points in the specified line
unsigned int nP = L[i].size();
//create a vector of points
std::vector< stim::vec<T> > l;
//set the size of the vector
l.resize(nP);
//copy the points from the point list to the stim vector
unsigned int pie;
for(unsigned int p = 0; p < nP; p++){
//get the index of the geometry point
pie = L[i][p][1] - 1;
//get the coordinates of the current point
stim::vec<T> newP = VT[pie];
//copy the point into the vector
l[p] = newP;
}
return l;
}
/// Add an array of vertices to the vertex list
unsigned int addV(std::vector< stim::vec<T> > vertices){
unsigned int NV = vertices.size(); //get the total number of new vertices
unsigned int currentV = V.size() + 1; //store the index to the first submitted point
//for each vertex
for(unsigned int vi = 0; vi < NV; vi++){
vertex v(vertices[vi]);
V.push_back(v);
}
//return the index to the first point
return currentV;
}
/// Add a line to the object
void addLine(std::vector<unsigned> v, std::vector<unsigned> vt = std::vector<unsigned>(), std::vector<unsigned> vn = std::vector<unsigned>()){
//create a new line geometry
geometry new_line;
unsigned int v_i, vt_i, vn_i;
for(unsigned int i = 0; i < v.size(); i++){
v_i = vt_i = vn_i = 0;
v_i = v[i];
if(vt.size() != 0)
vt_i = vt[i];
if(vn.size() != 0)
vn_i = vn[i];
new_line.push_back(triplet(v_i, vt_i, vn_i));
}
//push the new geometry to the line list
L.push_back(new_line);
}
/// Fills three std::vector structures with the indices representing a line
/// @param l is the line index
/// @param vi is a vertex index array that will be filled
void getLinei(unsigned l, std::vector<unsigned>& vi){
L[l-1].get_v(vi);
}
/// Fills three std::vector structures with the indices representing a line
/// @param l is the line index
/// @param vi is a vertex index array that will be filled
/// @param vti is a vertex texture coordinate index array that will be filled
void getLinei(unsigned l, std::vector<unsigned>& vi, std::vector<unsigned>& vti){
getLinei(l, vi);
L[l-1].get_vt(vti);
}
/// Fills three std::vector structures with the indices representing a line
/// @param l is the line index
/// @param vi is a vertex index array that will be filled
/// @param vti is a vertex texture coordinate index array that will be filled
/// @param vni is a vertex normal index array that will be filled
void getLinei(unsigned l, std::vector<unsigned>& vi, std::vector<unsigned>& vti, std::vector<unsigned>& vni){
getLinei(l, vi, vti);
L[l-1].get_vn(vni);
}
/// Returns a list of points corresponding to the vertices of a line
void getLine(unsigned l, std::vector< stim::vec<T> >& v){
std::vector<unsigned> vi; //create a vector to store indices to vertices
getLinei(l, vi); //get the indices for the line vertices
v = getV(vi); //get the vertices corresponding to the indices
}
void getLine(unsigned l, std::vector< stim::vec<T> >& v, std::vector< stim::vec<T> >& vt){
std::vector<unsigned> vi, vti;
getLinei(l, vi, vti); //get the indices for the line vertices
v = getV(vi); //get the vertices corresponding to the indices
vt = getVT(vti);
}
void getLine(unsigned l, std::vector< stim::vec<T> >& v,
std::vector< stim::vec<T> >& vt,
std::vector< stim::vec<T> >& vn){
std::vector<unsigned> vi, vti, vni;
getLinei(l, vi, vti, vni); //get the indices for the line vertices
v = getV(vi); //get the vertices corresponding to the indices
vt = getVT(vti);
vn = getVN(vni);
}
/// Return the number of vertices in a line
/// @param l is the line index
unsigned getLineN(unsigned l) {
return (unsigned)L[l].size();
}
};
};
#endif